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Abstract

Partial information in databases can arise when information from several databases is
combined. Even if each database is complete for some “world”, the combined databases
will not be, and answers to queries against such combined databases can only be approx-
imated. In this paper we describe various situations in which a precise answer cannot
be obtained for a query asked against multiple databases. Based on an analysis of these
situations, we propose a classification of constructs that can be used to model approxi-
mations.

The main goal of the paper is to study several formal models of approximations and
their semantics. In particular, we obtain universality properties for these models of ap-
proximations. Universality properties suggest syntax for languages with approximations
based on the operations which are naturally associated with them. We prove univer-
sality properties for most of the approximation constructs. Then we design languages
built around datatypes given by the approximation constructs. A straightforward ap-
proach results in languages that have a number of limitations. In an attempt to overcome
those limitations, we explain how all the languages can be embedded into a language
for conjunctive and disjunctive sets from [25], and demonstrate its usefulness in querying
independent databases. We also discuss the semantics of approximation constructs and
relationship between them.

1 Introduction

The idea of using approximate answers to queries against databases with partial information
has been known in the database literature for more than ten years. In his classical papers,
Lipski [27, 28] suggests the use of two approximations to answer queries ) for which a precise
answer cannot be found. The lower approzimation to ) consists of those objects for which one
can conclude with certainty that they belong to the answer to ¢). The upper approzimation to
() consists of those objects for which one can conclude that they may belong to the answer to
Q.

However, it was not until ten years later that it was observed by Buneman, Davidson and
Watters [5] that those pairs of approximations may not only be regarded as the results of



query evaluation, but may also be used as a representation mechanism for certain kinds of
partial data. Moreover, this kind of partiality is different from traditional models such as null
values and disjunctive information. If a query is asked against several databases, the combined
database may not be complete even if each database is complete for some “world”. Hence,
incompleteness shows up in the form of an answer to query, rather than (or in addition to)
incompleteness of the stored data as in the classical models. Let us give some examples.

Example: Querying independent databases

Simple approximations. Consider the following problem. Assume that we have access to
two relations in a university database. These relations, Employees and CS1 (for teaching the
course CS1), are shown below.

‘ Name ‘ Salary ‘ Room ‘

John 15K 1 ‘ Name ‘ Salary ‘ Room ‘
Employees: Ann 17K 1 CS1: John 1 76
Mary 12K L Michael L 320
Michael | 14K €

Assume that our query asks to compute the set TA of teaching assistants. Suppose that
only TAs can teach CS1 and that every TA is a university employee. To make the example
easier to understand, we make an assumption that the Name field is a key. We use nulls |
to make both relations have the same set of attributes. Let us outline how the TA query can
be answered. Since every person in CS1 is a TA, CS1 gives us the certain part of the answer.
Moreover, every TA is an employee, hence finding people in Employees who are not represented
in CS1 gives us the possible part of the answer to the TA query.

The pair of relations CS1 and Employees is called a sandwich (for TA), cf. [5]. The Em-
ployees relation is an upper bound: every TA is an Employee. The CS1 relation is a lower
bound: every entry in CS1 represents a TA. We are looking for the set TA — something that’s
in between; hence the name. Notice that the records in CS1 and Employees are consistent:
for every record in CS1, there is a record in Employees consistent with it. That is, they are
joinable (in the sense of [6, 35]) and their join can be defined. For example,

| John | 15K | L |v|John [ L | 76 |=| John | 15K | 76 |

Note that taking this join makes sense only under the assumption that Name is a key.

Hence, a sandwich (for a query @) is a pair of relations U and L such that U is an upper
approximation to @), L is a lower approximation to ¢}, and U and L are consistent.

Assume that a pair of consistent relations U and L is given. What is the semantics of
the sandwich (U, L)? That is, what is the family of possible answers to ¢ that U and L
approximate? To answer this question, we appeal to the idea of representing partial objects as
elements of ordered sets. In a graphical representation, ordered sets will be shown as triangles
standing on one of their vertices. That vertex represents the minimal, or bottom element. The
side opposite to that vertex represents maximal elements. In our interpretation the order means
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Figure 1: Models of approximations and their semantics

“being less partial,” or “being more informative”. Maximal elements correspond to complete
descriptions, i.e. those that do not have any partial information at all.

For the graphical representation of sets, we depict each set X as a segment, together with
all the elements that are above one element of X. In figure 1, each set X is thus shown as a
trapezoid “standing” on the segment representing the elements of X.

The picture of a sandwich (U, L) is the leftmost one in figure 1. The semantics of a sandwich
is a family of sets such as the one denoted by three bullets in the picture. Such sets X satisfy
two properties:

o Every element [ of the lower approximation L approzimates an element of X. That is,
for every element [ € L, there is an element z € X such that [ < z.

o Every element z of X is approzimated by an element of the upper approximation U. That
is, for every ¢ € X, there exists u € U such that u < z.

Note that in the example shown in figure 1, L is assumed to have two elements, each of them
being under an element shown as a bullet. Elements shown as bullets are in turn above some
elements of U. Therefore, (U, L) satisfies the consistency condition, i.e. it is a sandwich.

Under the assumption that the Name field is a key, one can replace certain nulls in relations
CS1 and Employees by corresponding values taken from the other relation. The reason is that
certain tuples are joinable, and corresponding joins can be taken to infer missing values. One
such join was shown above. Since Name is a key, we know that there is only one John and we
assume that the same John is represented by both databases. Hence we infer that he is in the
office 76 and his salary is 15K. Similarly for Michael we infer that he is in the office 320 and
his salary is 14K.

We can regard the newly constructed relations as another approximation for TA. But this
one satisfies a much stronger consistency condition than sandwiches: every record in the lower
approximation is at least as informative as some record in the upper approximation. Such a
pair is called a miz. An example of a mix is shown in figure 1. Mixes were introduced in
[13] as an alternative approximation construct, whose properties are generally easier to study
than properties of sandwiches because of its simpler consistency condition in which no joins are
involved.

Semantics of mixes is defined in exactly the same way as semantics of sandwiches: we
look at sets that represent all elements of the lower approximation and whose elements are



representable by the upper approximation. In Figure 1, the set shown by four bullets is an
example.

Approximating by many relations. Let us consider a more complicated situation. As-
sume now that CS1 has two sections: CS1; and CS1,, and each section requires a teaching
assistant. Assume that we have a pool of prospective TAs for each section that includes those
graduate students who volunteered to TA for that section. Suppose that the selection of TAs
has been made, and those selected have been entered in the database of employees, while the
database of prospective TAs remained unchanged. This situation is represented by an example

below:
Employees
‘ Name ‘ Salary ‘ Room ‘ CS1, CS1,
John 15K 1 ‘ Name ‘ Salary ‘ Room ‘ ‘ Name ‘ Salary ‘ Room ‘
Ann 17K L John L 76 Michael L 320
Mary 12K L Jim L L Helen L 451
Michael | 14K L

Since all the selections have been made, at least one of prospective TAs for each section is now
a TA, and therefore there is a corresponding record in Employees for him or her. That is, in
each of the subrelations of CS1, at least one entry is consistent with the Employees relation.

Let us summarize the main difference between this construction and sandwiches or mixes.

1. The lower approximation is no longer a single relation but a famaly of relations.

2. The consistency condition does not postulate that all elements in the lower approximation
are consistent with the upper approximation, but rather that there ezists an element in
each of the subrelations of the lower approximation that is consistent with the upper.

Such approximations are called scones, cf. [31]. We shall denote the lower approximation by £
and its components by L;, Ly etc. The graphical representation of a scone with two-element £
is shown in Figure 1.

The semantics of a scone is a family of sets X that satisfy the following two properties.
First, for every set in the lower approximation, one of its elements approximates an element of
X. That is, for every set L € L, there exists [ € L and ¢ € X such that [ < z. Second, every
element of X is approximated by some element of the upper approximation. That is, X lies
in the trapezoid standing on U; or, for every # € X, there exists u € U such that v < z. An
example from Figure 1 is the set denoted by three bullets. Observe that the second property
is exactly the same for scones as it is for sandwiches and mixes, while the first one reflects the
difference in the structure of scones and sandwiches.

Now let us look at the data represented by CS1; and CS1,. Assuming that the Name field
is a key, one can do some preprocessing before any queries are asked. There is no entry for
Jim in Employees. Hence, Jim could not have been chosen as a possible TA for a section of
CS1. Similarly, Helen can be removed from CS1,. Having removed Jim and Helen from CS1,
and CS1,, we can infer some of the null fields as we did before in order to obtain a mix from
a sandwich. In the new approximation that we obtain, the condition expressing consistency is
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much stronger than the condition used for scones. In fact, all elements in CS1; and CS1, have
become elements of Employees. Taking into account that some entries can be nulls, we see that
the new consistency condition says that every element of every set in the lower approximation
is at least as informative as some element of the upper approximation. Such constructions are
called snacks [29, 31, 19]. The reason for this name is that they were initially thought of — not
quite correctly, as we shall show — as “many sandwiches,” hence snacks.

The graphical representation of a snack with a two-element £ is given in Figure 1. The
semantics of snacks is defined precisely as the semantics of scones. For example, in Figure 1 the
four-bullet set is in the semantics of (U, {L1, Lo}). Thus, it is only the consistency condition
that makes scones different from snacks.

Finally, what if we have arbitrary data coming from two independent databases that may
not be consistent? For instance, there may be anomalies in the data that violate various
consistency conditions. We need a model that does not require any consistency condition at
all. Such a model was first introduced in [22]. Since it is in essence “all others put together,”
it 1s called a salad.

One may ask why we consider lower approximations given by a family of sets, while all upper
approximations are just sets. The reason is simple: if upper approximations were allowed to
be families of sets, then taking the union of all the elements in the family we would obtain
an equivalent approximation. For example, assume that a generalized sandwich of the form
({U1,U,}, L) is now permitted. The semantics of such a sandwich is the family of all sets X that
are approximated by L from below, and such that each element in X is above either an element
of Uy or an element of U,. But this is the same as the sandwich (U; U Us,, L). Henceforth, the
upper approximation is always a single set.

Goals of the paper and organization. The main problem that we address in this paper is
building the general theory of approzimate answers to queries. In particular, we want to make
approximate answers first class citizen objects in a query language. Towards that goal, we focus
on the following questions.

e What are the formal models of approximations? Is it possible to classify those models
according to some general principle?

e Do approximation constructs correspond to (a combination of) known datatypes?

o How can we program with approximations?

Note that the problems of approximation have been studied by the datalog community;
see, for example, [10, 11]. There are, however, major differences between the problems that are
addressed. In papers like [10, 11] information is complete, and using approximations reduces
the complexity of query evaluation. For example, upper and lower envelopes are defined as
datalog programs whose result would always be superset (subset) of a given program P. If P is
a recursive program, envelopes are usually sought in the class of conjunctive queries. Secondly,
approximating relations are usually defined as subset or superset.

In our approach the reason for approximating is incompleteness of information. Approxima-
tions arise as the best possible answers to queries that one can get, and not as the best answers



that can be computed within a given complexity class. Moreover, our notions of approximations
are much more sophisticated than simple subsets and supersets.

The paper is organized in follows. In section 2 we present preliminary results necessary
to describe our approach. First we explain an approach to databases with partial information
that treats database objects as subsets of some partially ordered space of descriptions. The
meaning of the ordering is “being more informative”. This approach is based on [6, 18, 21].
One of its important features is that it allows one to abstract from a concrete data model
(e.g. relational, complex object) as it can be used with a variety of models [6, 21]. Then we
explain a “data-oriented” paradigm for query language design [9]. This approach is based on
incorporating operations naturally associated with datatypes into a query language [8]. To
find such operations, it is necessary to describe the semantic domains of those datatype via
unwversality properties.

In section 3 we use the ordered semantics to give formal models of approximations and
classify them.

The main part of the paper is section 4 in which we show that most of the constructs possess
universality properties. This tells us what are the important operations on approximations.
Obtaining universality properties is an easy task for most datatypes (such as sets, bags, and
lists). However, here we encounter a novel situation in which obtaining these properties is
difficult. Moreover, we obtain results of a new kind, saying that some constructs do not possess
universality properties.

In section 5 we discuss programming with approximation. We apply the data-oriented
paradigm to descriptions of approximations obtained in section 4 and discuss problems with
using this approach. One problem is the undecidability of certain preconditions that need to
be checked to ensure well-definedness of programs. As a solution to this problem, we suggest
an encoding of approximation constructs with or-sets [17, 25, 33] and explain how the language
for or-sets [25] is suitable for programming with approximations. In fact, a system based on
this language [15] has been used in the problems of querying independent databases.

2 Preliminaries

2.1 Partial objects and ordered sets

Most models of partiality of data can be represented via orderings on values [3, 16, 12]. In
A general approach to the treatment of partial information in the context of ordered sets is
developed in [6, 21, 25]. Here we present the basics of that approach.

First, elements of base types are ordered. For example, if there is only one null value L,
then the ordering is given by letting | be less than any nonpartial value v. In an approach
with three kinds of nulls — no information ni, existing unknown un and nonexisting ne — the
ordering is given by ni < un < v and ni < ne. For more examples, see [3, 6, 22].

Complex objects, or nested relations, are constructed from the base objects by using the
record and the set type constructors. Hence, one has to lift an order to records and sets. Lifting
to records is done componentwise. For example, [Name: Joe, Age: | | < [Name: Joe, Age: 28].



But it is not immediately clear how to lift an order to sets. This problem also arises in the
semantics of concurrency, where a number of solutions have been proposed [14]. Here we
consider two approaches, which turn out to be suitable for our problems. Given an ordered set
(A, <), its subsets can be ordered by the Hoare ordering C" (generalized subset) or the Smyth
ordering C! (generalized superset):

XC'YeVeeX yeY.e<y XOYovweYzeX z2<y

Earlier work on representing partiality via orders did not consider the problem of choosing
the right ordering. Recently, a theory for deciding which order is suitable for which collec-
tion was developed [25, 22]. It turns out that C" is suitable for sets' and C! is suitable for
or-sets [17]. Or-sets, denoted by the angle brackets, are sets of exclusive possibilities, i.e.
[Name: Joe, Age:(25,27)] says that Joe is 25 or 27 years old.

Orderings suggest a natural approach to the semantics of partiality: an object may de-
note any other object that is above it. For example, [Name: Joe, Age: || denotes the set
{[Name: Joe,Age:n] | m € N}. Hence, we define the semantic function for the database
objects of the same domain D as [o] = {o' € D | o' > o}. This semantics leads to an impor-
tant observation. Since sets are ordered by C°, then for any set X we have [X] = [max X],
where max X is the set of maximal elements of X. For any or-set X we have [X] = [min X7,
where min X is the set of minimal elements of X. Elements of max X and min X are not com-
parable; such subsets of ordered sets are called antichains. Therefore, this ordered semantics
suggests that the database objects are represented as antichains in certain posets, cf. [6, 21].

2.2 Data-oriented programming

In this subsection we give an overview of the data-orientation as a paradigm for programming
language design (cf. Cardelli [9]) and demonstrate one instance of this approach: a language
for sets.

It was observed in [9] that while traditional programming languages are mostly algorithmic
and procedure-oriented, database languages require more emphasis on data. Databases are
designed using some data models, e.g. relational, complex object, etc. To make it possible to
program with data, it is necessary to represent the concept of a data model in a programming
language. The best way to do it is to use type systems. This often allows static type-checking
of programs which is particularly important in handling large data as run-time errors are
very costly. To make sure that the type system is not too restrictive and does not limit
the programmer’s freedom, some form of polymorphism can be allowed. We allow all type
constructs to be polymorphic, e.g. a set type constructor can be applied to any type, a product
type constructor can be applied to any pair of types etc. For example, for a language for
complex objects, types are given by the grammar ¢t ::=b | [l; : ¢,...,0, : t] | {t}, where b
ranges over base types. We often use pair types which are a special case of records: instances
of type t X s are pairs (z,y) where z has type t and y has type s.

!Technically speaking, this is true only if we believe in the open world assumption. For closed worlds, the
Plotkin ordering [14] should be used. However, the nature of lower approximations, for which the set ordering
will be used, suggests the open world assumption, so we consider only the Hoare ordering in this paper.



[t] — ™~ ([C()], @) [t] — ([C(0)], @)
+ eat(f)

(X, Q) ([C(s)], 1)

Figure 2: Structural recursion and ezt

It was suggested in [9] that one use introduction and elimination operations associated with
a type constructor as primitives of a programming language. The introduction operations are
needed to construct objects of a given type whereas the elimination operations are used for
doing computations over them. For example, record formation is the introduction operation
for records, and projections are the elimination operations.

Databases work with various kinds of collections. One approach (cf. [8, 4]) to find the
introduction and elimination operations for those collections is to look for operations naturally
associated with them. To do so, one often characterizes the semantic domains of collection types
via universality properties, which suggest what the introduction and the elimination operations
are.

Assume that we have a collection type constructor (like sets, bags etc.) that we denote by
C(:) and a type t. Let [t] denote the semantic domain of type t and [C(¢)] denote the semantic
domain of type C(t) of collections of elements of type t. By universality property we mean that
the following is true about [t] and [C(¢)]. It is possible to find a set €} of operations on [C(¢)]
and a map 7 : [t] — [C(¢)] such that for any other Q-algebra (X,2) and a map f : [t] = X

there exists a unique -homomorphism f* such that the first diagram in figure 2 commutes.

If we are successful in identifying n and (2, then we can make them the introduction opera-
tions. The reason is that now any object of type C(t) can be constructed from objects of type
t by first embedding them into type C(¢) by means of 7, and then constructing more complex
objects using the operations from Q.

The elimination operation is given by the universality property. In fact, the general elimi-
nation operation is a higher-order operation that takes f as an input and returns f+.

At this point, let us see what these operations are for sets. The semantic domain of {t} is
the finite powerset of elements of ¢, that is, Pg,([t]). For any set X, its finite powerset Pg,(X)
is the free semilattice generated by X. That is, the operations of {2 are ) and U and 7 is the
singleton formation: n(z) = {#}. We consider U and 5 as polymorphic operations: U has type
{t} x {t} — {t} and n has type t — {t}.

To include the elimination operation f* in a language, we must specify a constant and a
binary operation that play the role of the operations of {) on the range of f*. That is, f* is
in fact a parameterized family of functions. Assume that e plays the role of the constant and
u plays the role of the binary operation. The operation that takes f into f7 is the following



fun f*le,u](0) = e
| fTleul{=}) = fle)
| fTle,uwl(AUB) = u(fT[e,ul(A), fT[e,ul(B))

This operation f* is often called structural recursion [8]. Notice that if we include it as a
query language primitive, there is no guarantee that e and u will satisfy the same equations
as 0 and U. But if e and v do not supply the range of f* with the structure of a semilat-
tice, then f* may not be well-defined. For example, if e is 0, f is Az.1, and » is +, then
ftle,ul({1}) = ftle,u]({1} U {1}), thus implying 1 = 2.

To overcome this problem, originally noticed in [4], one can require that e be interpreted

as () and u as U. Generally, the simplest way to ensure well-definedness of f* is to require that
(X,Q) be ([C(s)], ) for some type s. Thus, we obtain the second diagram in figure 2.

The unique completing homomorphism is called ezt(f), the extension of f. Its semantics in
the case of sets is ezt(f){z1,...,2n} = f(z1)U.. .U f(z,) (that is, it “extends” f to sets.) This
function is well-defined. Using ext together with n, 0, U, projections and record formation,
conditional and the equality test gives us precisely the nested relational algebra [8] but the
presentation is nicer than the standard ones, such as in [34]. This approach to the language
design has proved extremely fruitful in the solution of some open problems (e.g. [26]) and the
development of languages for other collection types (e.g. [25, 24]). In order to apply it to the
approximation constructs, we need formal models of them as well as the universality properties
for these models.

The diagrams above are constructions well known in universal algebra and category theory.
The first one says that [C(¢)] is the free Q-algebra generated by [t], or, equivalently, establishes
an adjunction between the category of {)-algebras and the category where the semantic objects
live. The second diagram represents going from that adjunction to the Kleisls category of its
monad [2]. Using monads as the basis for the query language design has been advocated in
[8, 7]. The languages thus obtained come equipped with an equational theory, and also admit
an easy-to-use comprehension syntax [7].

3 Formal models of approximations

In this section we reexamine the approximation constructs by applying the idea of representing
database objects with partial information as elements of certain ordered sets. By giving their
formal models, we make it possible to elevate the intuitive notion of approximate answers to first
class citizens in a query language. Further towards that goal, we show that the approximation
constructs are instances of partial information themselves, and as such can be ordered. We also
discuss the formal semantics of the approximation constructs.

We shall need the notion of consistency in posets: two elements z,y € A are consistent
(written = Ty) if there exists z € A such that z,y < z. In the case of records, consistent
means joinable (as in [35].) We shall use 1X for {y | y > z, somez € X} and |X for
{y |y <z, somez € X}. We shall call 1X and |X filters and ideals (principal, if X is a

singleton).



3.1 Definition and classification of approximations

Recall that a sandwich is given by an upper approximation U and a lower approximation L
which satisfy the following consistency condition: for every w € U, there is an [ € L such that
u and [ are consistent. Representing objects in approximating sets as elements of some posets,
we can formally define sandwiches:

Definition 1 (cf. [5].) Given a poset (A, <), a sandwich over A is a pair of finite antichains
(U, L) satisfying the following consistency condition: ¥l € L Ju € U : utl (ie. 3X : L C°
X,UC" X ). The set U is usually referred to as the upper approzimation and L as the lower
approzimation. The family of all sandwiches over A is denoted by P™(A) (the reason for this
notation will be seen shortly).

The consistency condition for mixes says that every element in the lower approximation is
at least as informative as some element of the upper. Hence, we obtain

Definition 2 (cf. [13].) Given a poset (A, <), a mix over A is a pair of finite antichains (U, L)
satisfying the following consistency condition: ¥l € L 3u ¢ U : u <1 (ie. U C'" L.) The
family of all mizes over A is denoted by PY(A).

In a scone, the lower approximation is a family of sets (relations), and the consistency
condition says that for each set in the lower approximation, at least one element is consistent
with an element of the upper. Hence

Definition 3 (cf. [31].) Given a poset (A, <), a scone over A is a pair (U,L) where U is a
finite antichain, and L = {Ly,..., Ly} is a family of finite nonempty antichains which is itself
an antichain with respect to C!. That s, L; /' L; if 1 # j. Scones satisfy the consistency
condition: VL € LI € LIu € u: utl (i.e. VL€ L:FLNAU #£ 0). The family of all scones
over A is denoted by P (A).

Snacks are obtained from scones exactly as mixes are obtained from sandwiches: by using
the assumption about keys, additional information is inferred. Thus, the consistency condition
is similar to that of mixes.

Definition 4 (cf. [29, 31, 19].) Given a poset (A, <), a snack over A is a pair (U, L) where U
is a finite antichain, and L = {Ly,..., Lg} is a family of finite nonempty antichains which is
itself an antichain with respect to C!. A snack is required to satisfy the consistency condition:
VheLVlieLFucu: w<l(ie VL€ L:UZLC!L). The family of all snacks over A is
denoted by P(A).

Now let us look at these constructs again. One can see that there are three main parameters
that may vary and give rise to new constructs.

1. The lower approximation is either a set or a set of sets.
2. The consistency condition is of form

10



Qlel JuelU C(u,l) for simple lower approximations and
VLel QlelL FuelU C(u,l) for multi-set lower approximations,

where Q is a quantifier (either V or 3) and C(u,!) is a condition that relates v and .
3. The condition C(u,!) is either u <1 or utl.

Thus, we have eight constructions since each of the parameters — the structure of the lower
approximation, the quantifier Q and the condition C(u,!) — has two possible values. For
constructs with a simple lower approximation we use notation P, for constructs with multi-set
lower approximation we use P. The rest is indicated in the superscript whose first symbol
is the quantifier Q, that is, V or 3. If the condition is u 1!, then the second symbol in the
superscript is A (to indicate that there is an element above u and [); otherwise, if C(u,!) is
u < [, no second symbol is used. We have seen the need for constructs with no consistency
condition, in order to deal with inconsistencies. For two such constructs we shall use just one
superscript 0.

Summing up, we have ten possible constructs, which are shown in the table below. For
example, we denote the family of sandwiches over A by P"(A), mixes by PY(A), snacks by
PY(A) etc.

type of consistency condition (quantifier—condition)
L-part V u<l vV o wufl 4 u<l 34 utl no condition
one set PY (mix) | P™ (sandwich) P P PP
family of sets | P° (snack) P P P> (scone) P°

3.2 Ordering approximations

We introduce two orderings C* and E};‘i on the approximation constructs. The ordering C* is
used for the constructs with a single set in the lower approximation (those denoted by P) and
C} is used for the constructs with a family of sets in the lower approximation (denoted by ).
These are called the Buneman orderings [6, 13] and are defined as follows:

(U,Lyc® (U, iff UC'U'and LT L

(U,L)cs (U',L) f UC'U'andVLel3L el': LCHL
Compactly, C*=C! x " and jS:gﬂ X(Eﬂ)l’. The index f in E};‘i indicates that the ordering
deals with families of sets in the lower approximations.
Claim. The approximations are ordered by the Buneman orderings. a

We refer the reader to [22] for the rationale behind this claim. It is justified by proving the
results similar to those proved in [25, 22, 24] for sets, or-sets and bags. That is, a family of
elementary transformations is introduced, such that each transformation makes the approxi-
mation more precise. Then it is shown that CF and E};‘i correspond to the transitive closure of
such transformations. We also notice that the Buneman orderings were used in [5, 13].

Thus, when we consider approximation constructs P*(A) and P*(A), where i ¢
{V,3,VA, A, 0}, we assume that they are ordered by C* and E};‘i respectively.
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The approximation constructs are similar to (and, in fact, motivated by) the powerdomain
constructions used extensively in programming language theory, cf. [14]. We can turn each of
the approximation constructs P into a powerdomain as follows. Given a domain D, apply P
to the poset of the compact elements of D, and take the ideal completion of the result. Several
papers [6, 31, 19] adopt this approach and work with powerdomains. We do not believe that
using powerdomains is justified in the present context, as the ideal completion helps us model
recursive datatypes, and we do not use recursive datatypes in this paper. However, should this
become necessary, all the results that follow can easily be generalized to powerdomains, along

the line of [13].

3.3 Semantics of approximations

To understand the semantics of the approximation constructs, we use the example from the
introduction. For sandwiches and mixes, we assumed that a set TA is approximated by Em-
ployees and CS1 if every record in CS1 represents (is less than) a record in TA and every record
in TA is represented by (is greater than) a record in Employees. In other words, CS1 C" TA
and TA C! Employees.

For scones and snacks, where CS1 was subdivided into a family of relations CS1;, we
assumed that at least one element from each CS1; represents an element in TA. That is, TA
C! Employees, and for all 7, there exists an element in CS1; that represents an element of TA.

In other words, 1CS1; N 1TA # 0.

To formalize this, we introduce two semantic functions for the constructs with one- and
multi-element lower approximations:

[(U,L)] = {X € Pen(A) |[UC! X and LLC° X}
[(U,L)] ={X € Pa(A) | UC! X and Vi:1L;N X # 0}

The semantics of mixes and sandwiches has been studied in [5] and [13]. Here we concentrate
on the constructs with the multi-element L-part.

Proposition 1 (see also [29]) If S; and Sy are two snacks, then S; E};‘i Sy iff [Sa] C [S4]-

Proof. Let S; = (U, L) and S; = (V, M). Prove the ’%f’ part first. Assume [S,] C [S1]. Pick
arbitrarily an element mps from each M € M. Then V' = VU {my|M € M} € [S;] and
therefore V' € [S;] which means U C'V'C! V. Hence, U C' V.

If M = 0, then £ = 0 because otherwise §§ € [S;] but § ¢ [S1]. Hence, in this case
Si E};‘i Sy. Assume M # ) and S; JZ};‘Z Sy; then ALYM I3m € MVI€ L : Il £ m. Let L € L be
a set for which the statement above is true; then, selecting appropriate m for each M € M we
obtain a set @) such that QN M # ( forall M € M and VI € LVq € Q : | £ q. In other words,
1L NQ = 0. On the other hand, @ € [S,] C [S1] and therefore 1L N Q # @ for all L € L. This

contradiction shows S; E};‘i Ss.

To show the ’only if’ part, assume S; T} S, and @ € [S,]. Then U C! V C! Q and, given
L € L, there exist M € M such that 1M C 1L and therefore @ N 1L # 0. Thus @ € [S;]. O
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Unfortunately, this is no longer true for scones. If A = {1, T, a,b,c} is a poset with L
and T the bottom and the top elements, and {a, b, c} being incomparable, then for two scones
S1 = (a,{b}) and S; = (a,{c}) we have {{T},{a, T}} = [Si] = [S:2], but S; and S, are

incomparable.

However, there is a very close connection between the semantics of scones and snacks and
their ordering. In some sense, the family of snacks over A is the maximal subclass of scones over
A on which the semantics and the orderings agree. To formulate this rigorously, let $; < S
iff [S2] C [S1]- Then < is a preorder and the induced equivalence relation is denoted by eg.
Recall that a poset is called bounded complete [14] if any pair of consistent elements has a least
upper bound.

Proposition 2 For a bounded complete poset A, (P*(A), x)ex = P (A).

Proof. If A is bounded complete, then for two finite sets U and L the set min(tU N 1L) is
also finite. Hence, we define ¢ : P*(A) — P (A) by ¥((U, £)) = (U, {min(1U N1+L)}|L € L).
Clearly, [S] = [¥(S)] and ¥ (¢(S)) = ¥(S). According to proposition 1, ¥(S) is the only snack
in the e4-equivalence class of S. Moreover, ¥ is monotone because, if U Cf V and L C! M,
then min(tL N1U) Cf min(tM N V). This finishes the proof of the proposition. O

The following result follows directly from the definitions.
Proposition 3 Given S € PY(A4), [S]#0 iff S € P*(A). O

Summing up, scones are the maximal class of approximation constructs with multi-set L-part
that has well-defined semantics, and snacks are the maximal subclass of scones over on which
the semantics and the orderings agree.

4 Universality properties of approximations

Now that we formalized the notion of approximation and found a number of models to represent
them, we are about to prove the main technical results of this paper. These results describe
most formal models of approximations via their universality properties, or show the absence
thereof. As was explained in subsection 2.2, this makes the approximation constructs first
class citizens in a query language, provides query language primitives to work with them and
suggests a query language syntax.

Due to the nature of the approximation constructs, the characterization theorems and
equational theories below are rather involved. For the reader who wants to understand the flavor
of the results and then move on to section 5 dealing with query languages for approximations,
we included a short subsection below that summarizes the results of this section.

4.1 The flavor of the results and summary

Let us give a quick overview of the universality results. The desired result is to obtain the

first diagram in figure 3, where n(z) = ({z}, {z}) for P*(A) and n(z) = ({z},{{z}}) for
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'Pi(A). That is, every monotone map f can be extended to a monotone homomorphism f.
Unfortunately, this is not always possible for the following reason. Let z 1y, where z,y € A.
Then S,y = ({z},{y}) is a sandwich and S,, = ({z},{{y}}) is a scone. If P"(A) or P¥(A)
were free algebras generated by A, there would be a way to construct S, and S,, from the
singletons 7(-). But this way must use the information about consistency in A and therefore
can not be “universal”!

Therefore, we shall settle for less. Namely, we make the generating poset convey the
information about consistency in A. We define the consistent closure of A as

AtA={(a,b)| a € Abe A atb}

The consistent closure of A can be embedded into P*(A) and P*(A) (where i € {3\, w\}) by
means of the functions n'(z,y) = ({z}, {y}) and n'(z) = ({=},{{y}})- Since A7 A interacts
in a certain way with the structure of approximations, we shall seek results like the one in the
second diagram in figure 3. In this case we say that P¢(A) or 'Pi(A) is freely-generated by ATA
with respect to the class C of monotone maps.

The results of this section are summarized in the following table. For each construct
with w < [ used in the consistency condition (with one exception) we find a free algebra
characterization. For constructs with 1/ used in the consistency condition, we show that they
do not arise as free algebras generated by the poset itself, but do arise as free constructions
generated by AT A (with respect to a restricted class of map). We use dna (does not apply)
for constructions based on the u < [ consistency condition with A1 A as the generating poset.
Notice that there are still three ni null values — these questions remain open. Nonnull entries
give the name of an algebra and refer to the subsection where the result is to be found.

type of consistency condition (quantifier—condition)
L-part; generator YV u<l Y utl 3 u<l 3 ufl no condition
one set; A mix (4.2) | ne (4.3) | bi-LNB (4.4) ni bi-mix (4.5)
one set; ATA dna mix (4.3) dna ni dna
family of sets; A | snack (4.6) | ne (4.7) ne (4.8) ne (4.9) | salad (4.10)
family of sets; ATA dna ni dna scone (4.9) dna

dna = does not apply; ne = non-existent; ni = no information (unknown)

For our characterizations, we need two kinds of algebras defined in [32]. A bisemilattice
(B,+,-) is an algebra with two semilattice operations, i.e. idempotent, commutative and
associative. It is called distributive if both distributive laws hold. A left normal band (B, *) is
an algebra with an idempotent associative operation * such that z xy *z =z x z x y.

We shall use four kinds of operations on the approximation constructs. The union-like
operations will satisfy the laws of semilattices. An example of such operation is (U, L)+(V, M) =
(min(U U V), max(LU M)) on mixes or sandwiches. The unary (modal) operations will be used
to ignore one of the components of an approximation; for example, we shall use the operation
O(U, L) = (U,0) on mixes. We shall also make use of “skewed” union operations that satisfy
the left normal band laws. An example of such operation is (U, L)® (V, M) = (min(UUV), L)

on elements of P3(A). For approximations P*(A), we shall also use pairwise union operations
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or '7PZ ATA ;» (Pi(A) or '7PZ

Figure 3: Universality results

that take component-wise unions of the sets in the lower approximation. For details, see section

4.6.

For the rest of the section we use the following notation. To distinguish orderings on
algebras and their generating posets, we use < for the former and =< for the latter. In proofs we
often omit the set brackets {} when we deal with singletons. In particular, by {z} we mean a
family of sets that consists of one singleton. We occasionally omit commas separating elements
of sets, writing zyz for {z,y, z}.

4.2 Universality of P7(A) (mixes)

Define a miz algebra [13] (M, +,0,¢e) as an algebra with a partially ordered carrier M, one
monotone binary operation + and one monotone unary operation 0. (M, +,e) is a semilattice
with identity e, and in addition the following equations must hold:

1) O(z + y) = Oz + Oy.

Uz = Ugz.

To make PY(A) a mix algebra, interpret the ordering as C®. For the operations, (U, L) +
(V, M) = (min(U U V), max(L U M)), O(U, L) = (U,0) and e = (0, 0).

Theorem 1 ([13]) PY(A) is the free miz algebra generated by A. O

4.3 Universality of P"(A) (sandwiches)

First, we present a negative result.

Theorem 2 For no ) is P™(A) the free ordered ()-algebra generated by A.

Proof. Assume that there exists a set of operation {2 such that P™(A) the free ordered -
algebra generated by A for any poset A. Let A = {z,y, z} be an antichain and A’ = {z',¢/, 2’}
be a poset such that ',y <X 2’ and 2’ £ ¢/, y' £ z'. Let f : A — P™(A') be defined by
f(a) = (d/,a'),a € A. Now the assumed universality property tells us that f can be extended
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to a monotone (-homomorphism f* : P"(A) — P™(A'). Let S € P™(A'). Since P™(A')
is the free {l-algebra generated by A’, we can find a term ¢ in the signature ) such that
S = t(n(z'),n(y"),n(z")). Since n(z') = f(z) = fT(n(z)) and similarly for y' and 2, we obtain
S = fH(t(n(z),n(y),n(2))) = fF(So) for some Sy € P™(A). Therefore, f* is onto.

Define PE’;,y(A) as the set of elements of P™(A) which are not under (z,z) or (y,y). It
is easy to check that PE’;,y(A) includes the following: (z,2), (zz,z2), (yz, 2), (2,0), (zz,zz),
(yz,yz), (zy, zy), (zyz,z2), (zyz,y2), (vyz, zy), (zyz, z). Similarly, define PE",\B,y,(A') as the set
of elements of P"( A') which are not under (z’,z') or (y',y'). These are: (z',y'), (v, z"), (z'y’, 2'),
(', z'y"), (', 2), (¢, 2'), (v, %), (#,¥), (#',0), (¢,2'). Since f* is monotone, we derive that
its restriction on Pig,y(A) must be an onto map from a subset of Pfg,y(A) to Pi’;ly,(A'). Observe
that in PE’;,y(A) the only element that is not above (zyz, z) is (2,0). Hence, if f*((zyz,z)) =
S e PE’;,y,(A'), then f* (PE’;,y(A) 1 {(#,0)}) is a subset of the principal filter of S in Pi’;ly,(A').
However, PE’;@,(A') has four minimal elements: (z',y'), (v, z'), (z'y’, 2’) and (2’, §) which shows
that f* cannot be an onto monotone map between PE’;y(A) and PE’;ly,(A'). This contradiction
shows that P™(A) can not be obtained as the free {)-algebra generated by A. O

However, we can overcome this by using the consistent closure and mix algebras with the
same interpretation of operations. Let M be a mix algebra. A monotone map f: ATA > M
is called sandwich-admissible if f(z,y) + f(z,y) < f(z,y) and Of(z,y) = Of(z, z).

Theorem 3 P™(A) is the free miz algebra generated by A1 A with respect to the sandwich-
admassible maps.

Proof. Throughout this proof, by admissible we mean sandwich-admissible. We omit an easy
verification that P¥(A) is a mix algebra. Now we must show that, given a mix algebra M and
an admissible map f : ATA — M, there exists a unique mix homomorphism f* : P%"(A4) - M
such that the following diagram commutes:

ara= " (pn(a), 1, 0,¢)
Tt
s . f

\
<M7+7D76>

Let us first list a number of useful properties of admissible maps f: ATA — M.

1) Assume v < u and ufl. Then f(u,l) + f(v,l) = f(v,).

2) Assume p - I, vl and gtp. Then f(v,) + f(q,p) = Of(v,v) + f(q,p)-

3) 1t 1 < m, then f(v,) + f(g,m) = Of(s,v) + f(g,m).

4) Assume v 3 u. Then f(v,l) = f(u,l) + Of(v,v).

5) If v = u, then Of(u,u) + Of(v,v) = Of(v,v).

6) Assume ufl and vfl. Then f(v,!) + Of(u,u) = f(v,l) + Of(u,u) + f(u,l).

Let S = (U, L) be a sandwich over A with U = {us,...,u,} and L = {l;,...,lz}. Since S is a
sandwich, for every [; € L there exists u;; € U such that [;1u;;. Let T C [n] x [k] be the set of

16



pairs of indices such that (¢,7) € Z < u;1l;. Then

(E1) S= % n(unly) + 0> 0 (i)

From now on we assume that summation over an empty set is the identity for the +
operation. It shows that (E1) holds even if one of the components of a sandwich is empty.

Using representation (E1), define f* for an admissible f: ATA — M as follows:

(k2) FHS) = X flus ) + 03 flus )

(5,9)€T

Let us show that f* is a homomorphism. Prove that f* is monotone first. Let S; = (U, L)
and Sy = (V, M) be two sandwiches such that S; = S,, that is, U ! V and L C' M.
Let S = (U, M). Observe that S is a sandwich. Therefore, the proof of f*(S;) < fH(Ss) is
contained in the following two claims.

Claim 1: f+(S1) < f(S).

Proof of claim 1: If L = (), then the claim follows easily from (E1), admissibility and
equation 4 of mix algebras. For L # 0, since L " M, there is a sequence of sets Lo =
L,Lq,...,L, = M such that each L; C LUM and either L;;; = max(L;Ul) or L;;; = max((L; L
L'YUl) where I' < [ for all I’ € L', see proposition 3 of [25]. Then each (U, L;) is a sandwich. We
must show (U, L;) < f*(U, Li11). Consider the first case, i.e. L;y; = max(L; Ul). To verify
FH(U,L;) < ft(U, L;11) in this case, it is enough to show Of(u,u) + f(u,l) > Of(u,u) if utl
and, if there is an element I' € L such that I' <[, then f(u',l') + f(u,l) + Of(u,u) > f(u',I')+
Of(u,u) if u'tl'. The former is easy: Of(u,u)+ f(u,l) = Of(u, )+ f(u,l) = f(u,l) > Of(u,u).
The latter follows from monotonicity of +: f(u,!) + Of(u,u) > Of(u,l) = Of(u,u).

Consider the second case, i.e. L;y; = max((L; L L') U ). Assume ut!l. Then ut! for
any I' € L'. Therefore, any summand f(u,!) in (E2) for (U, L;;1) is bigger than f(u,l') in
(E2) for (U, L;). Now suppose there is I’ € L' such that w'11 but u' is not consistent with
[. If | is consistent with some w € U, then u 1 1l'. Therefore, to finish the proof of claim
1, we must show that f(u',l') + f(u,l') < f(u,l). But this follows from admissibility of f:
F@, )+ f(u,l) < f(u,l') < f(u,l). Claim 1 is proved.

Claim 2: fH(S) < f1(S2).

Proof of clavm 2: Again, we assume non-emptiness, since for empty sets the proof of claim
2 readily follows from (E1). Given a sandwich (W, N) and n € N, let w,, be arbitrarily chosen
element of W such that w,tn. Then, given an admissible function f, f*(W, N) defined by (E2)
equals Y, cn f(wn,n) + 00X yew f(w,w). To prove this, assume that there are two elements w;
and wy in W consistent with » € N. Then we must show f(wi,n) + f(ws,n) + Of(wr,w1) +
O f (w2, w2) = f(w1,n)+ 0 f (w1, w)+ O f(wa,ws). That the left hand side is less than the right
hand side follows from admissibility. On the other hand, f(wi,n)+ Of(wi,w1) + Of(wa, ws) =
f(wi,n) +0f(wz,n)+0Of(wi, wi) + 0 f(wz, wz) < fwi,n)+ fwz,n) +0f (w1, w:)+0f(ws, ws)

which proves our claim.

Now, to prove claim 2, consider S; = (V, M) and let v,, be an element of V' consistent with
m € M and u,, be an element of U under v,,. Then u,,Tm. Also, let v’ be an element of U
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underv € V. Then OY, ¢y f(u,u) = O oy f(u’,u?) +0 3, 1 fu,u) <OY,cp flu?,u’) <
O ,ev f(v,v). Now, by the claim proved above, f*(S) = Y near f(Um, m) + O wer flu,u) <
Ymert J(Vm,m)+0 3 oy f(v,v) = fT(S2) which finishes the proof of claim 2 and monotonicity
of f*.

Now we demonstrate that f* preserves the operations of the signature of the mix algebras.
Since O distributes over +, Of*(S) = ¥; ez Of (wi, ;) + X Of (ui, us). Since Of(uy,l;) +
Of(us,u;) = Of(ui,u;), we obtain Of*(S) = 37, Of(u;,uw;) = fT(0S). Moreover, since
Oe = e, this also holds when one of components is empty. In addition, f(0,0) = e.

That f* is a +-homomorphism easily follows from (E2) when one of the components is
empty. So in the rest of the proof we assume that the second components of all sandwiches are
not empty.

Let S = (U, L), So = (V,M). Let S = §; + S» = (W, N). Consider a pair (u;,;) such that
u; € U, l; € L and u;1l;. There are three cases: this pair is either present in the representation
(E1) of S or u; = v, for some vy € VN min(U U V) or I; < mi € M Nmax(LU M).

Consider the second case. We have v 11l;. Assume l; < pand p € N. We know that pfq for
some g € W. Since f(vk, ;) + f(g,p) + Of (v, vr) = f(g,p) + O f(v,v) by 2), we obtain f+(S) =
I(S) + f(vk,!;). Furthermore, since O f(vk, vi) + f(ui, ;) + f(vk, ;) = Of (v, vx) + f(vk, ;)
by 1), we have f*(S) = f7(S) + f(vr, 1;) + f(us, 1j)-

Consider the third case. Assume wu; is greater or equal than some v € W and my 1 ¢q for
g € W. Then (v, 15)+(g,ms) = D (v, )+ £(g, mx) by 3), and hence £+(S) = £+(S)+£(v, ;).
Since f(v,l;) = f(u,l;) + Of(v,v) by 4), we obtain f+(S) = f(S) + f(u;, ;).

Assume that v = v. Since Of(u,u) + Of(v,v) = Of(v,v) by 5), we obtain f+(S) =
FH(S) + Of(us,u;) for any wu;.

All this shows that f(S) can be rewritten as f(S1) + f1(S2) + X where X is a sum of
some elements of form f(u;, m;) or f(v;,1;). Consider a pair (u;,m;) such that u;tm;. There
exists vg such that vy tm; . Since f(vg,m;) + Of(u;,u;) = f(ve,m;) + Of(ui,w;) + f(ui, m;)
by 6), the summand f(u;,m;) can be safely removed from X. Thus, any summand can be

removed from X and f7(S) = f7(S1) + f7(Sz). Therefore, f* is a homomorphism.

The uniqueness of f* follows from (E1). Since f*(n'(z,z)) = f(z,z)+ O0f(z,z) = f(z,z),
we have ft on® = f. The theorem is proved. O

4.4 Universality of P3(A)

An algebra (B, @, ) is called a bi-LNB algebra if:
1) ® and * are left normal band operations.

2) All distributive laws between * and @ hold.
3ad (bxc)=adb.

4) (a*xb)Db=(b*a)®a.

This definition does not include any notion of order, because the ordering on carriers of bi-LNB
algebras can be defined from its operations.

18



Lemma 1 In a bi-LNB algebra define a < b iff b a = axb. Then < is a partial order.
Moreover, @ and x are monotone with respect to <.

Proof. First, let us show that bda = axbimplies a®d b =a and bxa =b. If axb = bP a, then
bxa = bxaxb=bx(b®a) = bDbxa=bdb=>b. Moreover,a = a®a = aPaxb= adbDda = adb.

Because of idempotency, < is reflexive. To prove transitivity, let a < b and b < ¢. We must
show axc=c®a. Calculate cDa=c*xbDa®b=(cODb)*xbPa=bxcxbDa=bxcPa=
(b®a)*(cDa) = axbxcBaxbxa = axbxcda = a*xbxcPaxbxc = axbxc. On the other hand,
akc=(a®b)xcxb=a*xcxb@Dbxcxb=axcxb®b= (a®b)x(cPbb=axbrcxb=axbxc.
Hence,c®a = a*xcand a < c. Finally, if a < band b < a, then a® b = a and b*a = b. Hence,
b=>bxa=a®b= a, which finishes the proof that < is a partial order.

Assume that a < b. To see that a®c < bPe, calculate (a®c)*(bDc) = axbPaxcdcxbPe =
axb®a®c=bPadc=(bdc)® (a®c). Similarly, @ is monotone in its second argument.
To show axc < bx*c, calculate axc®bxc=(aPb)*c=bkax*xc=>bx*cxax*c. Similarly,
cxa@cxb=cx*(a®b) =cxbxa=cxaxcxb. Hence, x is monotone. O

From now on, bi-LNB algebras are treated as ordered algebras with the order relation being
defined as in lemma 1. The operations @ and * on P3(A) as interpreted as follows:

(U,L)® (V,M) = (min(UUV),L) and (U,L)=*(V,M) = (U,max(LU M)).

Theorem 4 PF(A) is the free bi-LNB algebra algebra generated by A.

Proof. We leave it to the reader to prove that P3(A) satisfies all equations of the bi-LND
algebras under the given interpretation of @ and * and that S; C* S, iff $; xS, = So ® S;. We
must show that for any bi-LNB algebra B and any monotone map f : A — B, there exists a
unique homomorphism f* such that f*on = f. Observe that if (U, L) € P3(A), then U, L # 0.
Given (U,L) € P3(A), we can find v € U and [ € L such that u; < ;. Then, using > for
repeated applications of @, and @ for repeated applications of *, we can see that

= > n(u) *n(w) *n(l) * Qn(l)

uelU leL

if in the summation over elements of U the first summand is below an element of L. Now, given
a monotone f from A into an algebra B, define f* : P3(A) — B as follows:

=Y, flu)* flu) * f(l) * Q) f(1)

uelU leL

In this representation any number of expressions of form f(u') * f(I'), where u’ < I', can be
added after f(uq)*f(l1). Since f(u') < f(I'), we have f(u')x f(I') = f(I'), and f(I') is subsumed
by Qicr f(1)-

Denote f(u1) ® ... @ f(un) by U for U = {uy,...,un} and F(l) = ... % f(lx) by L for
L={l,...,Ix}. Then f+((U, L)) = Ux* f(u;, ) *. . *f(uzm)*f) for any number of u;,’s which are
under some elements of L. To show that f* is well-defined, we must prove that its value does not
change if we pick a different first summand in U as long as it is below an element of L. It suffices

to prove the following. Let u; <I;,;7 = 1,2. Then (f(ul)@f(uz))*f) = (f(uz)@f(ul))*f) This
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can be further reduced to proving (f(u1) @ f(uz2))* f(I1)* f(l2) = (F(u2) ® f(u1)) * f(l1) * f(I2).

Again, we calculate

(fu1) @ fuz)) * f(l) * f(la) = fur) * f(l) * f(l2) @ fluz) * f(L) x f(l2) =
(f(L) © f(w)) * f(l2) ® (f(I2) © f(u2)) * f(l) =
F(lL) * f(l2) © f(la) * f(L) © flua) * f(l2) © flu2) * f(l)

Similarly,

(f(u2) @ fu1)) = f(l) * f(la) = f(l2) * (1) © f(l1) * f(L2) ® f(wr) * f(I2) © f(ua) * f(I1)

Now the desired equality follows from the equality (a * b) @ (b*a) = (b a) @ (a * b) which is
true in all bi-LNB algebras.

Our next goal is to show that any number of nonminimal elements can be added to U and
any number of nonmaximal elements can be added to L and that it does not change the value
of f*. That is, writing expressions for f*, we may disregard min and max operations.

Assume that v < u' and u' is added to U. There are two cases. If f(u') is not the first
summand in UUu'U U w/, thenf(u) ®f(u') = f(u), so we may disregard f(u'). It is also possible
that f(u') can be used in the expression for f* between U and j), in which case it can also be
disregarded as, if it is below some [, then f(u')*f(I) = f(I). Finally, consider the case when f(u’)
is the first summand. It is only possible if u 3 u’ < [ for some [ € L. To prove that f(u') can be
dropped and replaced by f(u) in this case, we must show (f(u')® f(u))*f(I) = f(u)*f(l). Since
fu) < f(') and f(u)® f(u) = f(u)*f(u'), we obtain (f(u')@f(u))*f(l) = fu)xf(w)xf(I) =
Fu) = f(1) « f(w') = F(u) x £(1).

If I’ < lis added to L, f(I') does not change the value of f* as f(I)* f(I') = f(I). Therefore,

we may disregard all max and min operations in expressions for f.

At this point we are ready to show that f* is a homomorphism. Its uniqueness will follow
from the representation of elements of P?(A) from singletons and well-definedness of f*. Let
S = (U,L) and S; = (V,M). Let uy Xl and vy < my for uy € U,l; € L,v; € V,m; €
M. Then fH(S1) = fH(S2) = 2pev(fT(S1) * f(v) * f(vr) * M) For two v; and vj, consider
FH(S1) * f(vi) * f(v1) * M and f+(81) * f(v;) * f(v1) * M. Since L # 0, they are the same,
because axb@ a*c= ax*bis a derivable equality. Hence, f(S1) * f1(S2) = f(S1) * f(v1) * M.
Since v; X my, we have f(mi) * f(vi) = f(my) and hence z * f(v;) * M = z % M for any =z.
Thus, f+(Sy)* f1(S2) = U * flu)* Lx M = U * f(u) * LUMLU M = f+(S; S,). Therefore,
f* is a *-homomorphism.

Now consider f*(S;)@® f(S2). From the equational theory, we immediately have f*(S;) ®
FH(Sy) = (U * f(uq) #if)) ® V. Furthermore, since (a® c)xb=axb®c*xb=a*b® c, we have
FFS)D T (S)=UdV)* f(ur) * L=UUVU UV sf(ur)* L = ft(S1) ® f+(Sz). Thus, f*

is a homomorphism. This proves Theorem 4. a

4.5 Universality of P?(A)

An algebra (B, <, +,0,<) is called a bi-miz algebra if (B, +,0) is a mix algebra, z = Oz 4 Oz

and (B, +,<) is a dual mix algebra. By this we mean that < is a closure, that is, & is monotone,
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Oz >z, OO0z = Oz and O(z + y) = Oz + Oy, and in addition z + Oz = ¢ and z + Oy > .

We interpret the operations +, 0 and e on P?(A) in the same way as we interpreted them

for the mix algebras. For the new operation <, define (U, L) = (0, L).
Theorem 5 P°(A) is the free bi-mizx algebra generated by A. O

We omit the proof of this theorem, which is very similar, but somewhat simpler, than the
proof of theorem 10.

4.6 Universality of P"(4) (snacks)

As we have said before, snacks and mixes are the only two constructs for which universality
results are known. For snacks, in the totally unordered case it was first obtained more than 20
years ago, see [30]. Later it was extended to the ordered case in [31]; however, the equational
theory used in [31] is slightly different. We now formulate the result and sketch the proof.

A snack algebra is a distributive bisemilattice (B, +, -, e) with added identity for +. That
is, z + e = e+ x = z. Each semilattice operation gives rise to an ordering. We always
consider bisemilattices as algebras ordered by the - meet-semilattice operation. That is, z <y
iffc-y=e.

The operations are interpreted as follows:
(U, L)+ (V,M) = (min(U U V), max*(L U M))

(U,L)- (V,M) = (min(U UV),max{min(LUM) | L € L,M € M}),

where max? means family of maximal elements w.r.t. C!. For this interpretation of - on 7PV(A),
the ordering on P”(A) coincides with L}, see [31]. The constant e is interpreted as (0, {0}).

Theorem 6 (see also [30, 31]) PY(A) is the free snack algebra generated by A.

Proof sketch. First, P'(A) is a snack algebra [31]. We have to show that for any snack
algebra Sn and a monotone map f : A — Sn, there exists a unique snack homomorphism

ft:PY(A) — Sn that extends f.
Given a snack S = (U, L) where U = {uy,...,u,} and £ ={Ly,..., L}, Li = {li, ..., I},

we have

n ko ki

(E3) S = ([T n(w))e + XTI (%)

=1 =1 j=1

Then, if a monotone f : A — Sn is given, define f* : PY(A) — Sn by f1(S) = ([T, f(u:))e+
Yk Hf’zl f(l;) Clearly, f7(0,0) = e and f*(n(z)) = f(z)-e+ f(z) = f(z). It is fairly routine

to show that f* is the unique homomorphic extension of f. a
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4.7 Universality of P™(A)

We have seen that the union-like operation +, that takes the component-wise union of two
approximation constructs, is present in all characterizations obtained so far. One can also see
that all ten approximation constructs are closed under this operation. Thus, it is natural to
require that + be among the operations associated with approximations. However, no such set
operations can be found for P (A).

Theorem 7 Let 2, be a set of operations on elements of 7PVA(A) such that + 1s a deriwed
operation. Then 7PVA(A) 1s not the free ordered Q) -algebra generated by A.

Proof. Assume that there exists a set of operation (1, such that P"(A) the free ordered
(Y-algebra generated by A for any poset A and + is a derived operation. Let A = {z,y, 2z}
be an antichain and A’ = {z',y’, 2’} be a poset such that z’,y’ < 2’ and 2’ £ ¢/, y' £ «'. Let
f: A— P™A) be defined by f(a) = (a/,a'),a € A. Now the assumed universality property
tells us that f can be extended to a monotone 0 -homomorphism f* : P%(A4) — P™(4').
Let S € P™(A'). Since P™(A') is the free O, -algebra generated by A’, we can find a term
¢t in the signature 1, such that S = t(n(z'),n(y’),n(z")). Since n(z’) = f(z) = fT(n(z)) and
similarly for 3’ and z’, we obtain S = f*(¢t(n(z),n(y),n(2))) = f1(So) for some Sy € P™(A).
Therefore, f* is an onto +-homomorphism.

Using the fact that f* is a +-homomorphism, we find f*((zy,{z,y})) = f((z,z) +
(1,9)) = (&, 2) + () = (&' {o',y'}) and F (2, {2, 23)) = £+ ((,2) + (= 2)) = (&2) +
(2/,2') = (2',2'). Similarly, f*((yz,{y,2})) = (¢',2'). Define

,PXA(A) = PVA(A) J_i{(af:,af:),(y,y),(my,{m,y}),(mz,{m,z}),(yz,{y,z})} and

Po(A) = PMNA) L), y), @Y {2\ y'D), (2, 2), (¢, 2)}
Since f* maps P"(A) L PP (A) into P™(A") L PP (A'), there must be an onto map from a
subset of Py (A) onto Py (A’). Now we can find that P (A) = {(zyz, {z,y, 2}), (2, 2), (2,0)}
and Py (A") = {(#,2), (2", {«',¥'}), (', 2"), (2", '), (', 2'y'), (', 0), (z'y', 2')}. Therefore, there
is no map from a subset of Py (A) onto P (A’). This contradiction proves the theorem. O

4.8 Universality of P(A)

As with the case of 7PVA(A), we can show that no set of operations from which + is derivable
supplies 7P3(A) with the structure of a free algebra generated by A.

Theorem 8 Let Q0 be a set of operations on elements of 7P3(A) such that + s a deriwed
operation. Then 7P3(A) 1s not the free ordered (), -algebra generated by A.

Proof. Consider two posets: A = {z,y,2} and A' = {z',y',2'}. In A, z,y X z and z and y
are incomparable. A’ is a chain: @' Xy’ <X 2'. Define f: A — A’ by f(z) =2, f(y) = y’ and
f(z) = 2. Clearly, f is monotone.

Assume that there exists a signature (), such that for any poset B, <7P3(B),Q+> is the
free 0, algebra generated by B. Then we would have a monotone +-homomorphism f* :
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P3(A) — P(A') such that f*((w z)) = (z',2'), f*((y,9)) = (v,¢) and f7((2,2)) = (', 2
Then we have f*((zy, {z,y})) = f*((=, )I+§jt/,y)) (=',2)+(v',y') = («',y') and [7((y, 2))

).
() + (22)) = Why) + (2 2) = (¥, R

8

Since f* is monotone and (z,zy) < (z,z), we obtain f*((z,zy)) = («',z'). Similarly,
f((zy,zy)) = (',2'). Then (2, ) (zy,2y)) = fH((z,2y) + (y,2y)) = (¢',2') +
I ((y,zy)). Since (y,zy) < (v,y), fT((y,zy)) can be either (y',y’) or (z’, ) (z',2'). The

equality above then tells us that f*((y, my)) = (2',2).

Now we use these values of f* to calculate (y',2') = f*((y,2)) = fT((y,zy) + (y,2)) =
I ((y,zy))+ f((y,2)) = (&', 2") + (¥, 2') = (¢, 2'). This contradiction shows that f: A — A’
can not be extended to a monotone +-homomorphism between 7P3(A) and 7P3(A') and hence
P3(A) is not a free Q,-algebra generated by A. O

’-\|| IA

4.9 Universality of P¥(A) (scones)

A scone algebra is an algebra (Se, +, %, e) where + is a semilattice operation with identity e, *
is a left normal band operation, + and * distribute over each other, the absorption laws hold
and exz — e.

In other words, a scone algebra is an “almost distributive lattice” — commutativity of one
of the operations (x) is replaced by the law of the left normal bands.

Similarly to the case of P3(A), one can use the operations of the scone algebras to define
the order relation on them. The following is immediate from the equational theory of the scone
algebras.

Lemma 2 In a scone algebra, -y = ¢ xy + y * ¢ is a semilattice operation. O

The order on scone algebras will be defined by z <y iff z -y = =.

The operation 4+ and the constant e are interpreted as for snacks. The operation * is
interpreted as

(U, L) * (V, M) = (U,max*{min(LU M) | L € L, M € M}).

Now it can be seen that for - defined in lemma 2, (U, L) - (V, M) coincides with the meet

operation - given for snacks in subsection 4.6. In particular, for this interpretation of the

operations, the interpretation of the ordering is C}.

We shall give two different characterization of PP?*(A) as scone algebras, one generated by
A and the other by ATA. For this, we need two different definitions of admissibility.

Let (Se,+, *, e) be a scone algebra. A monotone map f: ATA — Scis called admissible if
F(a, 1) % f(o,m) = Fluym) * f(w, 1) and f(u,)* e = f(u,m) * .

A monotone function f : A — Sc from a poset A to a scone algebra Sc is called scone-
admassible if, for any two consistent pairs « Ty; and z Ty, such that z,y; < z;,7 = 1,2, the
following holds:

(f(z) x e+ f(z1)) * f(y1) * fly2) = (F(=2) x e + f(22)) * £(y1) * f(y2)-
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Theorem 9 1) 7P3A(A) 1s the free scone algebra generated by AT A with respect to the admissible
maps.

2) 7P3A(A) 1s the free scone algebra generated by A with respect to the scone-admissible maps.

3) Let Qs be a set of operations on scones such that +,* and e are derived operations. Then
P> (A) is not the free ordered Qg,-algebra generated by A. O

Proof of part 1. We shall verify the distributivity laws in the proof of algebraic character-
ization of the salads in the next subsection. Distributivity laws for scones then follow from
the observation that the second components of (U, L) - (V, M) and (U, L) * (V, M) coincide.

Equation 4) is immediate. Thus, P¥(A) is a scone algebra.

We must show that for any scone algebra Sc and an admissible map f : ATA — Se, there
exists a unique scone homomorphism f7 : 7P3’\(A) — Sc such that fT on® = f. We need some
some facts about the scone algebras. In what follows, f : AT A — Sc is an admissible map.
The first equation for admissibility can be rewritten as f(u,l) * f(v,m) = f(u,l) * f(w,m) =
f(u,m) x f(v,1). The easy proofs of 1)-8) below are omitted.

1) + is monotone with respect to the ordering given by -.
2) - distributes over +.

3)Ifa<b, thenaxe <bxe.

4) f(z,y) + f(2,9) < f(z,y).

5) If a < b, then f(a,a)* e+ f(b,b) xe = f(a,a)*e.

6) If a < b and btz, then f(z,a) * f(b,b) = f(z,a).

7) For any atb, f(a,b) * f(b,a) < f(a,b).

8) If a < b, then f(b,b) * f(a,a) = f(b,a).
Let S = (U, L) be a scone over A. Since tTUNTL; # 0 for all L; € L, there exists a pair (u;, lii)

for every j such that uiTlii. Let ¢(j) and k(j) be some indices such that u’i(j)Tli(j)' Then S
can be represented as

(E4) S= Y nuu)xe+ Y (0 (wi, i) * @ (L, 1))

welU Ljec leL;

Recall that we use ® for repeated applications of *, and that summation over @) is the identity.
We will never need product over the empty index set for all antichains in the second component
are nonempty. Moreover, (E4) does not depend on how the pairs (i(7), k(7)) are chosen.

Using (E4), define

(E5) FH8) =3 fluu) xe+ > (Fluigy i) * @ FL 1)

welU Ljec leL;

Our first goal is to verify that f* is well-defined, that is, it does not depend on how the
pairs i(7),k(j) are chosen. To save space, denote @y, f(I,1) by L. First observe that any
number of applications of f to a consistent pair (u,l) for [ € L; can be put after f(ui(j),li(j))
because, by admissibility, f(u;(;), li(j)) * fu,l) = fluig), li(j)) « f(1,1) and * is idempotent. To
finish the proof of well-definedness, it is enough to show that the following equation holds:
flu,u)xe+ f(u',u')xe+ f(u,l)* L= flu,u)xe+ f(u',u')xe+ f(u',l') L where u,u’ € U and
[, € L. By distributivity, this reduces to showing that f(u,u)*e+ f(u/,v')xe+ f(u, )xf(I',l') =
fu,u)xe+ f(u',u')xe+ f(u',I') = f(I,1). Because of the symmetry in this equation, it is enough
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to prove
fu,u) xe+ f(u',u')xe+ fu,l)« f(I',I) < flu,u) xe+ f(u',u) xe+ f(u', ') x f(I,1)

Denote f(u,u)* e+ f(u',u') *xe by p, f(u,l)* f(I',l') by g and f(u',l') * f(I,1) by r. We must
show g+ p < r+p. First, we prove p < r. First observe that if a < b, then axe < b*c. Indeed,
(axe)-(bxc) = axe+bxe = axe by the same argument as in 5). Thus, we must show p < f(u,1).
Caleulate p- £(u, 1) = (f(u, ) + F(u,u!)) e F(a 1) = (F(u ) + F(ul, ) e, 1) + (1)
(Flur) + F(u, ) € = (F(urw) + F(u0)) 5 e+ D) 5 0 = Flusu) 5 e + flua)+e = p
Thus, p < r. Similarly, we can show that p <gq.

To prove g + p < r + p, calculate, using 2), (¢ +p)(r +p) =rq+rp+gp+ p. Since p<r
and p < g, we obtain (¢ + p)(r + p) = rq + p. By monotonicity of +, we have rg + p < g + p.
Assume we prove g+ qr = gr; theng+p=qg+qg+p < g+ qr+p=gr+ p. Hence, it remains
to show g+ g*xr +r*xqg = g*r + r x q. Calculate the left hand side: g+ g*xr+r xq =
Pl d) = FT) + Flud) = F0 )« F ) 5 FLD) + FE) 5 F(1D) % flu, D) * (1) = (by
admissibility of f) = f(u,l) « f(I',l') + f(u,l) = f(I',I') + f(&',I') * f(I,I) = g*r 4+ 7% q by
idempotency of 4. This finishes the proof of well-definedness.

Our next goal i1s to show, as we did for snacks, that if we drop max and min in defining
operations on scones, (E5) remains true. This makes it easier to prove that f* is a homomor-
phism.

First observe that if u € U and v & u, then U xe = U UvU U vxe (we use the notation U
as a shorthand for Y,y f(u,u)). This follows immediately from 5).

Consider the L-part. In order to show that for I’ = 1 € L, the corresponding summand of
(E5) remains the same if f(I',1') is added, we must show f(u, lo)xf(I,1)xf(I',l') = f(u,lo)xf(l,1).
The left hand side is equal to f(u,lo)* f(I,1)*f(I,1') and by 6) f(I,0)xf(I,I') = f(I,1). Therefore,
the left hand side is equal to f(u,ly) = f(l,1).

Finally, it must be shown that adding M C* L € £ does not change the value of the right
hand side of (E5). Assume u € U, m € M and [ € L are such that m <[ and u1! (we can
find such because of the consistency condition and M C! L). Let a = L and b = M. We must
show f(u,l)*a+ f(u,m)*b= f(u,l) xa (it was already shown that it does not matter which
consistent pair is chosen in the representation (E5)). Let ¢’ = f(u,l) *xa and b’ = f(u,m) *b.
First, a'-b' = (f(u,l)* f(u,m)+ f(u,m)* f(u,l))xaxb= (f(u,l)- f(u,m))xa*xb= f(u,m)*axbd.
Since L C! M and f(c,c) * f(d,d) = f(d,c) for d = c by 8), we obtain a’ - b’ = f(u,m)*b =1V
Hence b/ < @’ and o’ + b < a’ by 1). To prove the reverse inequality, o’ < a’ + ¥, calculate
a-(a+b)=a+ (- -V)=a+dxb+V=xa = f(u,l)*xa+ f(u,l) * fluym)*axb+
f(u,m) * f(u,l) * a * b. By admissibility, f(u,l) * f(u,m) = f(u,m) * f(u,l). Therefore,
a-(d+V)=f(u,l)xa+ f(u,l)*a* f(u,m)*b=da +a +xb =d'. Thus, a’ < a’'+ b and this
finishes the proof that the summand corresponding to M C! L can be added to (E5).

Now we are ready to prove that f* is a homomorphism. First, f(0,0) =exe+e=ce.

Let S = (U, L;) and S; = (V, M). Writing expression (E5) for f+(S; + S2) we can use
U UV as the first component and £ U M as the second. We know that it does not matter
how we pick an element from U U V to be consistent with some element of a set from £ U M.
For every L € L choose uz € U which is consistent with some l;, € L and similarly for every
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M € M choose vy € V which is consistent with some mas € M. Then we have

f (S1+82) = Z f(u,u) *B-I-Z (ur,ln) *L )+ Z UM,mM)*M):f+(Sl)+f+(82)

ueUuUV LeL Mem

Clearly, this also holds if either £ or M or both are empty.

Let ar, = f(u,l) « L, ey = f(v,m) = M where utl, vitm,ve V,uec U, leLeL
andm € M € M. Let b= Uxeand d = V xe. Then fH(81) * f7(S2) = (Zreclar +
b)) * (Xmemlenr +d)) = Xrcememlar xesr +ap xd +bxcpyr + bxd). Since d = V xe,
ap *d = ap, xe and ag, xcpyr + ap, xd = ap xcpr + ag * e = ag * cpy. Similarly, bxd = b xe.
Since b = U xe, b = bxe. Therefore, bxcyy = bxe = band bxd = b*e = b. Therefore,
FH(S1) * f1(S2) = Xrecmeml(ar * car) + b. Consider ag, * cpr. Since f(v,m) occurs inside the
expression, by admissibility it can be changed to f(m,m). Therefore, ar *xcpr = f(u,l) * L«M.
Thus,

FHS)*fH(S) = b+ ) Flu, )« L« M =

LeL,Mem

3 flu,u)xe+ 3 Flu, )« N = fH(S;%8,)

uel Ne{LUM|LeL,MeM}

Now, to finish that proof that f* is a homomorphism, it is enough to show that f*(S;) *
F1(S2) = (81 % S2) if one of the components is empty. Assume £ = (. Then the equation
follows from z * e xy = z * e and the fact that S; * Sy = S;. If M = 0, then f(S1) * f1(S:2) =
(Uxed+Ypee flun, )« L)« Vse = Uxe+Spcp flup, ln)xe=Uxe = fHU,0) = f1(5,%S,).
Thus, f* is a homomorphism.

The uniqueness of f* follows from (E4) and well-definedness of (E5). Finally, f*(n'(z,y)) =
f(z,z) xe+ f(z,y) * fly,y) = f(z,y) xe+ f(z,y) = f(z,y). This shows f+ on®’ = f. Part 1

is proved.

Proof of part 2. We must prove that for any scone algebra Sc and a scone-admissible map
f : A — Sc, there exists a unique scone homomorphism f* such that f* on = f. Define
ps: ATA — Sc by

or((z,y)) = (f(z) xe+ f(2))* fly) ifz,yzz

It follows from the definition of scone-admissibility that ¢ is well-defined. That is, if z,y <

21,21, then (f(2)xe-+F(21)) = (1) = (F(2) e+ F(22)) = F(@)*(y) = (/&) we+F(z2)) <L (0)=F(0) =
(f(z) * e+ f(21)) * f(y) and hence the value of ¢;((z,y)) does not depend on the choice of
z2rz,y.

Let A: A — A7 A be given by A(a) = (a,a). Note that o 0 A = f: @s((z,2)) =
(f(z) x e+ f(z)) * f(z) = f(z) xe + f(z) = f(z).

Claim. ¢y is admissible (according to definition before this theorem).

Before we prove this, let us show how the theorem follows from the claim. Consider this
diagram:
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Since ¢y is admissible and 5" o A = 5, we can find a homomorphism f* such that f* on =
ftontoA = pso0A = f. Assume f~ is another homomorphism P¥(A) — Sc such that
f-on = f. Consider (z,y) € ATA, z,y X 2. Then n'(z,y) = (n(z) * e +n(z)) *n(y). Hence,
7~ (1'(2,9)) = (F(2) * e + £(2)) * £{y) = 1((z,y)) which shows that £~ 0" = 7. Then, by

claim 2 and part 1, we obtain f~ = f* and thus there is a unique homomorphic extension of
f.

Proof of the claim. First, we must show ¢f((z,y1)) x e = os((z,y2)) * e if z,y; 3 2; and
z,Y2 3 2. From the properties of scone algebras, it follows that axe+bxe = axe if a < b. Since
f(®) < f(21), we obtain p4((x, y1))xe = (f(z)*e+f(21))xf (y1) xe = f(z)xe+f(21)xe = f(z)xe.
Similarly, p7((z,12)) * e = f(2) x e = p4((2,91)).

For the second condition in the definition of admissibility, assume u,l < z,; and v,m

Tym. Moreover, let u,m < @y and w,l 3 z,. We must show ¢f((u,l)) * ps((v,m))
of((u,m)) * ps((w,l)). Observe that b > ¢ implies a * b* ¢ = a * ¢ in a scone algebra. Hence,

F(@u)*f(2ym)*f(m) = f(zw)*f(m). Moreover, as we saw already, f(u)xe+ f(zu)*e = f(u)xe.

Now we calculate:

es((u, 1)) * ps((v,m)) = (f(u) x e + f(zu
(f(w) xe+ f(zw
(F(u) x e+ f(@w) * f(@om)) * F(I) x f(m) = (f

Similarly,

Il A

) F(1) % (f(v) x e + f(@om)) * f(m) =
xe+ fzu) * f(zom)) x (1) x f(m) =
(u) x e+ fzw)) x F(1) x f(m)

~— S

pr((w,m)) xs((w, 1)) = (F(u) + f(zum)) = f(1) * f(m)
Now the desired equality follows from the scone-admissibility of f. This proves the claim and
part 2.

Proof of part 3. Let z,y X zin A. Then ((z,z)*(0,0)+ (2, 2))*(y,y) = (z,y). Now consider
the following poset A = {z,y, z,v}. In this poset z,y < 2, ¢,y < v and {z,y} and {z,v} are
antichains. Consider the scone algebra Sc¢; = (B, +, *, e) whose carrier is a four-element chain
p1 > pz > p3 > ps. We interpret + as minimum of two elements, * as maximum, and e = p;.
It is easy to see that Se; is a scone algebra (in fact, it is a distributive lattice).

Define f : A — B as follows: f(z) = p1, f(v) = p2, f(z) = p3 and f(y) = ps. Suppose that
f can be extended to a homomorphism f* : P*(A) — Sc. Then

F((29)) = fH((n(=) x e+ f(2)) xn(y)) =
(f(z) x e+ f(2)) * f(y) = max{min{max{p:, ps},pr},Pa} = p1
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On the other hand,

F((29)) = fH((n(=) x e+ f(v)) xm(y)) =
(f(z) xe+ f(v)) * fy) = max{min{max{pi, ps},ps},pa} = Ps

Hence, p; = ps, which contradicts the definition of B. This shows that f can not be extended
to a homomorphism of scone algebras. This proves part 3 and theorem 9. O

4.10 Universality of P’(4)

A salad algebra (Sd,+,-,0,0) is an algebra with two semilattice operations + and - and two
unary operations 0 and < such that the following equations hold:

z-(y+2)=z-y+e--=.

OOz = O

The binary operations + and - are interpreted as for snacks, and the unary operations O and
< are interpreted as for P?(A). The order relation is defined as for the snacks. That is, ¢ < y
iffc-y=e.

Define 0Sd = {0z | z € Sd} and OSd = {Cz | ¢ € Sd}. Some useful properties of salad

algebras are summarized in the following proposition.

Proposition 4 Given a salad algebra Sd, the distributivity law =z +yz = (¢ + y)(z + z) holds.
Consequently, +, O and < are monotone. In addition, the following holds:

(i) Oz <z < Ow.

(i) OSd is a distributive lattice.

(iii) 4+ and - coincide on OSd.

(iiil) OOz = OOy,

Proof. Using 2) and distributivity law 1) calculate (z +y)(z+2) = (Oz+ Oy + Oz +Oy)(Oz +
Oz4Cz+<Cz)=(byl)and 6)) =z + 0y +0z4+ Oz + Oz - Oy + Oz - Oz + Oy - Cz = (by
7)) =0z + Oy + Oz 4+ Oz + Oy - Oz, Similarly, z 4+ yz = Oz + Oz + (Qy 4 Oy)(Oz + $z) =
Oz + Oz 4+ Oy + Oz + Oy - Oz, Hence, (2 + y)(z + 2) = z + yz. Now monotonicity of +
follows from the distributivity laws. That O and <& are monotone, follows from 4) and 6). To
prove (i), calculate z - Oz = (Oz + Oz)0z = Oz 4+ Oz - Oz = Oz + Oz = Oz. Moreover,
r-Or = (0 4+ C2)Oz =0z -Oz + Oz =0z + Oz = z.

(i) and (iii) follow immediately from the definitions.

(iii) By 7), Oz < &Oy; hence OOz < OOy and by symmetry OOz = OOy, Similarly,
OOz = OCy. Define e, = OOz and eg = OOz, The equations above show that e and eg are
well-defined. Now calculate e +2z = COz+z = OOz + Ozt 2 = O(Oztz)+2 = Otz = .
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Similarly, eg + 2 = 00z + 2 = 00z + Uz + 2 = O(Cz + 2) + ¢ = Oz + ¢ = z. Thus, both eo

and eq are identities for +. Therefore, e, = e¢ + en = en. O

This proposition tells us that we can give the following equivalent definition of a salad
algebra: A salad algebra is a distributive bisemilattice (Sd, +,-) on which a projection O and
a closure & are defined such that 0Sd is a semilattice, >Sd is a lattice, = Oz + Oz and
Ve e 0SdVy € OSd: z <y.

Theorem 10 7P0(A) 1s the free salad algebra generated by A.

Proof. We first verify that 7P0(A) is a salad algebra. We need to check the distributivity law
and 7); all others are straightforward. Let S; = (U, £),S> = (V, M) and S3 = (W, N). Our
goal is to show &1 - (Sy + S3) = S1 - Sz + S1 - Ss. The first components of the left hand and the
right hand sides coincide. It this case it is easier to work with filters rather than antichains —
it allows us to drop max and min operations. In particular, it is enough to show that

{NMLUK)|[Le L,LKe MUN} =
{tLm|Lyy € {LUMI|L € L,M € M}}| J{tLn|Ly € {LUNI|L € L,N € N'}}

Let C be an element of the left hand side, i.e. C = (L U K). Without loss of generality,
K € M. Then C is in the right hand side. Conversely, if C is in the right hand side, say
C =1Ly for Lyy = LU M, then C = (L U M) and therefore is in the left hand side. This
shows the equality above. Now, taking minimal elements for each filter and applying max* to
both collections would give us second components of the lhs and the rhs of the distributivity
equation, which therefore are equal.

Now we prove 7), that is, O(U, L) - O(V, M) +O(U, L) = O(U, L). The first components of
both sides are ). The second component of the left hand side is max!(£LUmax*{min(LUM)|L €
L, M € M}). Since min(L U M) C! L, this expression is equal to max!L = £. Hence, 7) holds.
Thus, P°(A) is a salad algebra.

Now we show that 7P0(A) is free. That is, for every monotone map f from A to a salad
algebra Sd there exists a unique salad homomorphism f7 : 7P0(A) — Sd such that fton = f.

Given a salad S = (U, £),
(B6) § =0 nw)+o Y I

uelU LeLllel

To see that this also works for empty components, observe that Oe = $e = e. Now, given
monotone f: A — Sd, define

18 =03 f)+0 3 I1f0

uelU LeLllel

We have: fT(n(z)) = fT((z,{z})) = Of(z) + Of(z) = . Now we must show that f* is a
homomorphism. First, it follows immediately from the properties of O and < and the fact
that e = OOz = OOy is the identity for + (see proposition 4) that f+(0S) = Of*(S) and
FH(O8) = CfF(S).
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Assume X C! Y| Y # ), and let z, be an element in X below y € Y. Then

O fl=)- B fly) =00 fl@)+ D fy) =0 flz) + 0 (fly) + f(zy)) =

0 %f(m) + 0 g(f(y) - flzy)) =0 E;If(w) +0 gf(my) =0 E;If(m)

Therefore, if X and Y are equivalent with respect to C!, 0¥ cx f(z) = O ey f(y). Our
next goal is to show that Oll.ex f(2) + Ollyey F(y) = Ollyey f(y) f Y # 0. Since X C'Y,
we have [[,ex f(2) < [lyey f(y) and then the equation above follows from 7). Finally, let

' -z € X. Then f(z2') > f(z) and [I,ex f(z) = f(&') - [loex f(2).
These three observations show that max and min operations can be disregarded when one

writes an expression for f* on S; + S, or S; - Sy. Therefore, for S; = (U, £) and S, = (V, M),
A& A+S) =0 >, fle) +OQ IO+ D2 I £f(m)) = F5(S) + £7(S2)

zcUUV LeLllel MeMmeM

To calculate f*(S;-Ss), observe that Y,c; Oz - Y 7 Oy = Yierjer Ozi - Oyj = Y Oy
and this is also true if I = () because e - Oy = e. Therefore,

FS8:-8&) =@ fw)+O X I1FW)- @ X f@)+< > ]I f(m) =

uelU LeLleL veV MeMmeM
0> fw)-0> f)+ @ fv)-< > 1I f(m)) +
uelU veV veV MeMmeM
O f)- X IO+ (X TLF0) -0 X I f(m)) =
veV LeLleL LeLleL MeMmeM
0> f)+0> f)+© > (10 II f(m) =
uelU veV LeL lelL meM
MeMm
0 o X T M) = ()5S
zeULV LeL yeLUM
MeMm
Thus, f* is a homomorphism. Its uniqueness follows from (E6). Theorem is proved. O

Summing up, there are four kinds of operations naturally associated with the approximation
constructs: union operations (like +), pairwise union operations (like -), skewed versions of the
above (like ® and *) and modal operations (like O and <).

4.11 Relationship between the approximations

In this subsection we study the relationship between the four previously known approximations:
mixes, sandwiches, scones, and snacks. Others may be included as well, but this will make
diagrams incomprehensible, so we limit our attention to the examples that motivated this study.
We also show that we can view all four as instances of the most general construction: salads
'Po(-). We will explain that by their “complexity” the approximation constructs “decrease” as

Salads — Scones — Snacks — Sandwiches — Mixes
and algebras as

Salads — Scones — Snacks — Mixes
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Relationship between algebras. The general technique we use is the following. Given an
algebra (A, 1), let ' be a subset of  and Q" a set of derived operations. Let ©® = (2 LQ")UQ".
Then A can be considered as a ©-algebra which is called ©-reduct of (A,Q). We denote a map
that takes an Q-algebra (A, (1) and returns the ©-algebra (A, ©) by ¢77°.

For reductions for the algebras from the previous section, we use the same superscripts as
for the approximation constructs themselves, except that we use index f (family) for P*’s. For
example, a snack reduct of a scone will be denoted by V7.

Definition. a) Given a salad algebra Sd = (A, +,-,0,0), define its reducts as follows:

Scone reduct p??3(Sd) = (A, +,,¢) where z xy = z - Oy and e = OO,
Snack reduct p?2V#(Sd) = (A, +, -, e) where e = OOz,

Mix reduct ¢®?Y(Sd) = (A, +,0, e) where e = OO,
b) Given a scone algebra Sc = (A, +,*, e), define its reducts as follows:

Snack reduct ¥ ?V#(Sc) = (A, +,-,€) wherez -y =z xy +y*z.

Mix reduct ¢ 2¥(Sc) = (A, +,0, ) where Oz = z * e.

c) Gwen a snack algebra Sn = (A, +,-,e), define its mix reduct »"#>¥(Sn) as (A, +,0,¢€)
where Oz =z - €.

Our first goal is to show that the concepts above are well-defined, i.e. that a mix reduct is a
mix algebra, a scone reduct is a scone algebra etc. We then proceed to prove path independence.
That is, it does not matter if we perform reduction from one algebra to another directly or via
a number of steps.

Proposition 5 The reducts above are well-defined.

Proof sketch. We give the proof that p?2¥(Sd) is a scone algebra; others can be proved in
a similar fashion. That e is the identity for + was already proved. Distributivity of * over + is
obvious. We must show the other distributivity law: a4+ z*y = (a+ ) * (a +vy). To prove this,
calculate a+za = a+(Oz+<C2)(Oa+<Ca) = a+0z-Oa+0z4+0a+Cz-Ca = a+0z+Oz-Oa =
a+(0z+C2)Ca = ata-Ca. Now, atzxy = at2-Oy = (a+z)(a+Cy) = atzata-Oy+e-Oy =
atz-Cata-Oytez-Oy = (a+z)(Ca+y) = (a+z)*(a+y). This proves distributivity. That
% is a left normal band operation is obvious. We have exz = OO0z -Oz = O(0Oz-z) = Oz =e.
Finally, z4zxy = z+(0z+0z)-Oy = 24 02+02-Oy = 2+024+Cz+02-Oy = 2+ 02+ = @.
Therefore, p?*(5d) is a scone algebra. O

The path independence result can be formalized as follows.

Theorem 11 The following diagram commutes (where the arrow from Sd to Sn is "> and
the arrow from Sc to Miz is ¥ 27):
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The proof of this theorem is given by straightforward calculations, and is omitted here.

Embeddings. The reductions above correspond to the embeddings of the approximation
constructs. Assume that a poset A is given and P’ and P” are two approximation constructions
such that P’ is “higher” than P” in the hierarchy shown in the beginning of the section. Then
there is a reduction ¢ that takes P'(A) and makes it an algebra in the signature corresponding
to P". Depending on the generating poset for P”(A), the subalgebra of ¢(P’'(A)) generated by
either n(A) or n'(A) is P"(A). Moreover, this construction is “path independent” in the sense
of theorem 11. To formalize it, we use the notation

rPI(A) M’i rPII(A) or rPI(A) [nT(A)] 0 SO rPII(A)

The meaning of these arrows is: Take P’(A) and consider it as an algebra corresponding to

P" (by means of ). Then its subalgebra generated by n(A) (or 7(A)) is P"(A).

Theorem 12 In the following diagram all arrows are well-defined and the diagram commutes:

(A)
\ P(4)

L T (A) o Y

[77(A)] 0 " p

P°(A

[n(A)] 0 "7

\{
»

PY(A P¥(4)




The arrows not shown on the diagram are:
(A 0 g™ PYA) = PYA)  [(A) o g™ PO(A) = PA(A)
A0 g™ PRA) S PYUA) [ (A) o g PR(A) 5 P(A)
[1(A)] 0 ™17 - P™(A) — PY(A)

Proof. Full proof requires a lot of calculations, so we only sketch it here. First observe that
all definitions of new operations for reductions agree with their interpretation. For example,
given two scones (U, £) and (V, M) in P> (A), the value of (U, L) - (V, M) in oY1 (P (A))
is (U,L) * (V,M)+ (V, M) * (U,£) = (min(U U V), max*{L U M|L € L, M € M}), which is
indeed the infimum operation in PY(A). The verification that other reductions agree with the
operations on approximations is also straightforward. Now representations of sandwiches (E1),
snacks (E3), scones (E4) and mixes as

(E7) (U,L) =03 n(u) + > n(l)
uel leL
tell us that all arrows are well-defined. Commutativity follows in a straightforward way from

the representations (E1), (E3), (E4), (E7) and theorem 11. O

5 Programming with approximations

In this section we consider programming with approximations. As we explained before, we want
to make the approximation constructs first class citizens in a query language. In particular, we
want to view them as polymorphic type constructor. That is, for every object type ¢ there is
a new type t miz such that [t miz] = P([t]) and a new type t scone such that [t scone] =
P> ([t]) and so on.

We turn the available universality properties and operations naturally associated with the
approximation constructs (see section 4) into programming syntax. We then show that lan-
guages thus obtained have a number of drawbacks. In an attempt to overcome their problems,
we look at the semantic connection between approximations and sets and or-sets, that sug-
gests an encoding of the approximation constructions. We use the encodings and the language
or L NRA of [25] to show how a number of typical problems can be solved.

Encoding approximations in the type system with or-sets gives us more than a purely
theoretical result. There exists a system called OR-SML [15], which is a set of libraries on top
of Standard ML that implement the types of complex objects and or-sets and some features
of a database programming language. We can use the encoding and then program some basic
algorithms for querying independent databases in a working systems. Preliminary results of
some experiments in this direction can be found in [15].

In this section we shall make use of the nested relational algebra, N'RA, introduced in
subsection 2.2. Recall that A’/RA’s basic operators are the equality test, conditional if-then-
else, record formation and projection, set union, cartesian product, singleton formation and the
operation ezt that extends a function from elements of a set to the whole set, cf. [8, 7]. Instead
of ext, one can use map(f) that maps f over all elements of a set, together with u that flattens
a set of sets (that is, takes union of elements), see [8].
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fun  f7(0,0) = 6() fun  f*
flz

|
u(f+(M1);f+(M2)) | fr u(f
h(f*(M)) | S) = h(f
)

Figure 4: Structural recursion on mixes (left) and sandwiches (right
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5.1 Using universality properties

We consider only mixes and sandwiches for illustration. Since mixes possess a universality
property, we can define structural recursion on them. Similarly, structural recursion can be
defined on sandwiches, but the second clause must be different since sandwiches are generated

by A1 A rather than A. See figure 4.

Structural recursion on mixes and sandwiches has a number of parameters: in addition
to f, they include e,u and h prescribing its action in all possible cases of constructing a new
mix/sandwich. As in the case of sets, one might ask if, by setting these parameters in such a
way that they do not obey the laws of the equational theory, one may write ill-defined programs.
This is indeed the case.

Proposition 6 [t is undecidable whether the structural recursion on mizes or sandwiches is
well-defined for a given choice of e,u and h.

Proof. Consider a special case when f*[e, u, h] is restricted to mixes of form (U, () and h = id.
Then f7 is equivalent to the structural recursion on sets, whose well-definedness is undecidable,
see [4]. The proof for other constructs is similar. O

The solution that worked for sets was to impose syntactic restrictions on the general form
of structural recursion. In the case of mixes a similar restriction yields the following construct:
miz_ext(f) def FT(0,0), f,+,0] provided f sends elements of type t to s miz. In this case
miz_ext(f) is a function of type t miz — s miz.

However, this alone does not eliminate the need to verify preconditions in the case when
we use the ordered semantics. Assume that comparable elements have not been deleted from
a pair of sets that represents a mix. That is, a mix (U, L) is represented by a pair (U, L;)
such that U = min U; and L = max L;. Note that such a pair (Uy, L;) is not unique for (U, L).
Thus, one would expect that whenever a function f can be applied to (Uy, L), it is the case
that f(Ui, L1) yields a representation of f(U, L). But this is not always the case.

To explain why, we use a simpler case of nested relations. As we have just seen, structural
recursion on sets can be simulated with mixes of form (U, (), and thus A’RA can be considered
as a sublanguage of the language induced by the construct miz_ezt in the same way as N'RA is
induced by ext.

Recall that sets are ordered by C”, see subsection 2.1. The way to force sets into antichains
is to keep their maximal elements. Indeed, X C" Y iff max X " max Y, and the semantics of X
and max X coincide. Now assume X; and X, of type {t} are such that max X; = max X, = X.
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Let f be of type s — t. Since map is a part of NRA, it would be desirable if map(f)(X;) and
map(f)(X2) yield sets Y; and Y, that represent Y = map(f)(X) in the sense that maxY; =
max Y, = Y. However, this happens if and only if f is monotone with respect to the order
on objects [22]. Thus, monotonicity is needed for well-definedness in the case of antichain
semantics.

Theorem 13 If sets are ordered by C°, then it is undecidable whether the semantics of an
expression in the nested relational algebra is a monotone function.

Proof. Assume that monotonicity is decidable. Given two NRA functions f,g : {s} — ¢,
define a new function ¢ : {s} — {bool} as ¢(z) := iof ¢ = 0 then {true} else if f(z) =
g(z) then {true} else {false}. Then f and g coincide iff f(0) = g(0) and ¢ is monotone. Thus
having a test for monotonicity would give us equality test for functions of type {s} — ¢t. But
such functions include all functions definable in the relational algebra, and it is known (cf. [1])
that equality of those is undecidable. a

We can observe the same phenomenon for mixes and other approximations, based on their
reduction to nested relations by means of “forgetting” of one of the components. Therefore,
turning universality properties into syntax, we encounter a number of problems. First, most
operations used in the universality properties for approximations are not as intuitive as union,
intersection and so on. Second, all approximations have different equational characterizations,
and therefore there are several forms of structural recursion and as many sets of the ext prim-
itives. If a language contains all of them, it is going to be too complicated to comprehend.
Finally, verification of preconditions is big problem that can not be taken care of by the com-
piler as the preconditions are undecidable — even for the ezt operations when the ordered model
is used. Therefore, we need a unifying framework for programming with approximations.

5.2 Using or-sets

Or-sets are sets of disjunctive possibilities [17, 25]: an or-set (1,2,3) denotes an integer which
is 1, or 2 or 3. A language or L NRA was proposed in [25]. Its type system includes, in addition
to sets and records, the or-set type constructor (t). Its expressions include those in the nested
relational algebra and an or-set analog for each set operation. In addition, there is an operation
a: {(t)} — ({t}) which essentially converts a conjunctive normal form into disjunctive normal
form by picking one element from each or-set in the input. For example, a({(1,2),(2,3)}) =
({1,2},{1,3},{2},{2,3}). For technical convenience, we also include operations that convert
sets into or-sets and vice versa.

Recall that or-sets are ordered by C!, see subsection 2.1 and [25]. Thus, we can define an
order relation for every object type ¢, provided such a relation <j is given for every base type

b:

¢ RECORD: [l = @1,...,0n = 2n] <pitr,tnitn] [ = Y1, 00 = yn) ff 20 <o oy, -0,
Ln Stn yn-

¢ SET: X <(3n Vif X <Y. Thatis, Ve € XTIy Y : z <, y.
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o OR-SET: X <y Y if X <! Y. Thatis, Yy € Y3z € X : = <, y.

Recall that the approximation constructs are ordered by C* or C%, and these orderings can

be compactly represented as Cf x T and C! x(C*)*. This suggests the following encoding of
the approximation constructs with sets and or-sets:

Approximations Encoding
t miz, t sand and similar (t) x {t}
t snack, t scone and similar | (¢) x {(t)}

It can be immediately seen from this encoding that the orderings on the encodings of objects
of types t miz,t snack etc are precisely the orderings associated with those approximation
constructs. Moreover, there is a close semantic connection between or-sets and approximations
that further justifies this connection. This connection makes use of two semantic functions
for objects with or-sets (cf. [25]) and we omit it here and refer the reader to [22] for technical
details.

To show that this encoding is useful for programming with approximations, denote by
Loz, Lsand, - - - the language obtained from the restricted form of structural recursion (that is,
ext) for the mixes, sandwiches etc (that is, for the constructs for which a universality property
was established).

Theorem 14 Assume that each base type b comes equipped with an order relation <, and a
test for consistency 1y,. Then, using the encoding of approzimation constructs with sets and
or-sets, the following can be expressed in or LNRA.

1. All operations on approzimations arising from the universality properties.

2.  Orderings on approzimations and tests for the consistency conditions.

3. All languages L, for all approzimation constructs for which universality properties were found.

Proof sketch. To prove 1 and 2, note that T and C" are first-order definable and the Buneman
orderings are compositions of those. Thus, they are definable in or LA'RA. It is an easy exercise
to see that all operations on approximations that arise from the universality properties are
definable. Moreover, the function that converts all objects into antichain by taking maximal
elements for sets and minimal elements for or-sets is also definable in or L VRA.

For 3, we consider mixes as an illustration. By f, we shall denote the antichain analog of a
function f, that is, f followed by converting of its output into an antichain-based object. Denote
the first and second projections by m; and w5 . For all set operations, there are operations with
prefix or that act similarly on or-sets. For f : ¢ — s miz, where s miz is now abbreviation for
(s) x {s}, we have

miz_ext(f) = AU, L).(or_u,(or-map, (71 0 f)(U)), pa(map,(m2 0 f)(L))) : t miz — s miz

Mix singleton is defined as n_miz(z) = (orn,n); the type of n_miz is s — s miz. The proof
for other constructions is similar. The functions converting sets into or-sets and vice versa
are needed for the multi-element lower approximations. In fact, they are needed to define the
converse to ay. O
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While the problem that monotonicity of expressions is undecidable remains for or LA'RA,
we believe that this language is more suitable for programming with approximations than the
collection of languages L,. First, its type system is much simpler, and so are the primitives. It
is still possible to write ill-defined programs, but using the primities of or L V'RA this appears
to be less likely than with primitives such as miz_ext(f). Second, the number of primitives of
or LN'RA is small, and we do not need all primitives ext_x as they can be encoded. Again, this
makes programming easier. Finally, each expression of or LARA is well defined. The problem
of non-well-definedness does not go away completely: we can have an or L AN'RA expression into
which an ill-defined program in one of the languages L, is translated. However, this problem
no longer concerns the main programming primitives of the language.

Example: removing anomalies and promotion in sandwiches

As an example of using the encoding with sets and or-sets, let us show how two of the algorithms
from [5] can be implemented. As an additional benefit of encoding approximations with other
datatypes, we demonstrate that we can handle data anomalies.

Assume that a query is asked, and it returns a sandwich approximation for another query.
However, this answer fails to satisfy the consistency condition of a sandwich. For instance, in
the TA example we may get two relations:

‘ Name ‘ Salary ‘ Room ‘ ‘ Name ‘ Salary ‘ Room ‘
Employees: | John | 15K 1 CS1: | John 1 76
Mary | 12K L Michael L 320

They fail to satisfy the consistency condition of a sandwich because Michael is not an employee.
Hence, as the first step, we eliminate this anomaly to force these relations into a sandwich. In
what follows, we use functions such as select, cartprod, Boolean connectives in conditions and
so on. We also use one level of A-abstraction. As follows from [8], all of these are definable in

NRA.

To remove anomalies, we only leave those elements in CS1 that are consistent with some ele-
ment of Employee. First, define the function that selects the subset of element of X compatible
with z:

compatible = Az, X).select(Az.zT2)(X)

Then the function remove_anomaly keeps elements of the lower approximation that are com-
patible with the upper:

remove_anomaly = A(U, L).(U, select(Az.—eq(D, compatible(z,U)))(L))

The idea of the promotion operation of [5] was illustrated in the Introduction by extracting
a mix from a sandwich. For each element of the lower approximation, as much information as
possible is derived about it by using the upper approximation. To do this, we need functions
performing order-theoretic join and meet (least upper and greatest lower bounds). We assume
that such operations are given for base types. Then they can be derived for all types [6, 22].
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Assume that we have them in the form of functions join, meet : t x t — (t). The result of
join(z,y) is (z Vy) if z V y is defined and () otherwise, and similarly for meet(z,y). Define

big-meet = idV[{), A(z,y).or_ext(Az.meet(m,(2), m2(2))) (cartprod(z,y))]

Here id*[e,u] is structural recursion on or-sets with parameters e,u and id. This function
calculates the meet of all elements in an or-set.

To define the promotion operation, for each [ in the lower approximation L, find the set U
of all elements in U consistent with I, and calculate A(IVu|u € U;) to infer as much information
about [ as possible. This is done by using

promote’ = A(U, L).(U, a(map(Al.big_meet(or_ext(Az.join(z,1))))(L)))

This function, when applied to (U, L) returns the new lower approximation in the form
({lLi},...,{ln}) instead of {li,...,l,}. Thus, the operation promote can now be defined as
A(U, L).p(or_to_set(promote' (U, L))).

Applying promote to the relations Employees and CS1 gives us the new lower approximation
that consists of one record [John, 15K, 76]. Thus, it tells us that John from office 76 is a TA
with salary 15K, and Mary with salary 12K could be a TA. Hence the result is an approximation
in the sense of Lipski [27, 28]: we have the set of “for sure” answers and the set of “maybe”
answers.

6 Conclusion

Previous papers on approximate answers to queries against independent databases ([5, 13, 29,
31]) do not address two important problems, which are required for a general theory. First,
we need a classification of models. In each of the above mentioned papers, only one or two
models are considered, even though it is clear they do not cover all possible situations. The
second problem is programming with the approximation constructs. In its rudimentary form
this problem was considered in [5], which proposed the promote operation, but no general
principles were known.

Our goal was to address these two problems. Let us briefly summarize what has been
achieved.

e Using the approach to partial information based on representing partiality via orders on
objects (cf. [5, 21, 22]), we have given formal models of approximate answers to queries
and classified them, arriving at ten possible constructs.

o We have explained a new approach to query language design, based on turning univer-
sality properties into syntax, thus obtaining the introduction and elimination operations
for the data types. To apply this approach to approximations, we need the operations
naturally associated with them. To find such operations, we have characterized most of
the approximation constructs via their universality properties.

It must be emphasized that, in contrast to datatypes such as sets, bags and lists, finding
universality properties for approximation is a nontrivial algebraic problem. Moreover, we
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have obtained results of a new kind saying that some of the constructs do not possess
those properties.

o We have looked at the languages arising from the universality properties of approxima-
tions, and showed that they have three major limitations: the operations are rather hard
to grasp, there are too many of them and the compiler cannot verify all preconditions
for well-definedness. To overcome these problems, we suggested using or-sets to encode
approximations, and showed how the language from [15, 25] can be used to answer some
typical queries.

Despite the fact that a straightforward application of the data-oriented approach did not
lead to a practical language, we still regard the work on universality of approximations as
very useful. After all, those properties gave us the operations naturally associated with
the constructs, and enabled us to prove theorem 14 which is the best justification for
using or L N'RA to program with approximations.

A number of open problems remain. For two constructs no universality results are known, and
we believe that negative results can be proved. We believe that additional optimizations can be
found for standard procedures for querying independent databases. That is, the implementation
shown in this paper is not the most efficient one, and this may influence the design of a language
that deals with approximations. The last two items are more speculative. First, it may be
interesting to see what (if any) are the connections between our work and recent work [10, 11]
on approximating recursive datalog programs with nonrecursive ones. Second, we have shown
that some modal operations are naturally associated with approximations. Modal operations
have been used in the context of incomplete information in databases, for example, by [25, 33]
to describe conjunctive and disjunctive sets by means of modal connectives, and in [20] to
provide semantics of constraints. Whether there are any connections between [20, 33] and our
work, remains to be seen.
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