
Models of Approximation in DatabasesLeonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USAemail: libkin@bell-labs.comAbstractPartial information in databases can arise when information from several databases iscombined. Even if each database is complete for some \world", the combined databaseswill not be, and answers to queries against such combined databases can only be approx-imated. In this paper we describe various situations in which a precise answer cannotbe obtained for a query asked against multiple databases. Based on an analysis of thesesituations, we propose a classi�cation of constructs that can be used to model approxi-mations.The main goal of the paper is to study several formal models of approximations andtheir semantics. In particular, we obtain universality properties for these models of ap-proximations. Universality properties suggest syntax for languages with approximationsbased on the operations which are naturally associated with them. We prove univer-sality properties for most of the approximation constructs. Then we design languagesbuilt around datatypes given by the approximation constructs. A straightforward ap-proach results in languages that have a number of limitations. In an attempt to overcomethose limitations, we explain how all the languages can be embedded into a languagefor conjunctive and disjunctive sets from [25], and demonstrate its usefulness in queryingindependent databases. We also discuss the semantics of approximation constructs andrelationship between them.1 IntroductionThe idea of using approximate answers to queries against databases with partial informationhas been known in the database literature for more than ten years. In his classical papers,Lipski [27, 28] suggests the use of two approximations to answer queries Q for which a preciseanswer cannot be found. The lower approximation to Q consists of those objects for which onecan conclude with certainty that they belong to the answer to Q. The upper approximation toQ consists of those objects for which one can conclude that they may belong to the answer toQ. However, it was not until ten years later that it was observed by Buneman, Davidson andWatters [5] that those pairs of approximations may not only be regarded as the results of1

query evaluation, but may also be used as a representation mechanism for certain kinds ofpartial data. Moreover, this kind of partiality is di�erent from traditional models such as nullvalues and disjunctive information. If a query is asked against several databases, the combineddatabase may not be complete even if each database is complete for some \world". Hence,incompleteness shows up in the form of an answer to query, rather than (or in addition to)incompleteness of the stored data as in the classical models. Let us give some examples.Example: Querying independent databasesSimple approximations. Consider the following problem. Assume that we have access totwo relations in a university database. These relations, Employees and CS1 (for teaching thecourse CS1), are shown below.Employees: Name Salary RoomJohn 15K ?Ann 17K ?Mary 12K ?Michael 14K ? CS1: Name Salary RoomJohn ? 76Michael ? 320Assume that our query asks to compute the set TA of teaching assistants. Suppose thatonly TAs can teach CS1 and that every TA is a university employee. To make the exampleeasier to understand, we make an assumption that the Name �eld is a key. We use nulls ?to make both relations have the same set of attributes. Let us outline how the TA query canbe answered. Since every person in CS1 is a TA, CS1 gives us the certain part of the answer.Moreover, every TA is an employee, hence �nding people in Employees who are not representedin CS1 gives us the possible part of the answer to the TA query.The pair of relations CS1 and Employees is called a sandwich (for TA), cf. [5]. The Em-ployees relation is an upper bound: every TA is an Employee. The CS1 relation is a lowerbound: every entry in CS1 represents a TA. We are looking for the set TA { something that'sin between; hence the name. Notice that the records in CS1 and Employees are consistent:for every record in CS1, there is a record in Employees consistent with it. That is, they arejoinable (in the sense of [6, 35]) and their join can be de�ned. For example,John 15K ? _ John ? 76 = John 15K 76Note that taking this join makes sense only under the assumption that Name is a key.Hence, a sandwich (for a query Q) is a pair of relations U and L such that U is an upperapproximation to Q, L is a lower approximation to Q, and U and L are consistent.Assume that a pair of consistent relations U and L is given. What is the semantics ofthe sandwich (U;L)? That is, what is the family of possible answers to Q that U and Lapproximate? To answer this question, we appeal to the idea of representing partial objects aselements of ordered sets. In a graphical representation, ordered sets will be shown as trianglesstanding on one of their vertices. That vertex represents the minimal, or bottom element. Theside opposite to that vertex represents maximal elements. In our interpretation the order means2

\\\\\\\\ ��������

ZZZJJJJJ �����U L� � �Sandwich JJJJJJJJ

AAAAA �����AAA UL� � � �Mix SSSSSSSS��������BBB ���AAAA ���� AA ��L1U L2� � �Scone SSSSSSSS������������CCCC �� ���JJJUL1 L2� � � �SnackFigure 1: Models of approximations and their semantics\being less partial," or \being more informative". Maximal elements correspond to completedescriptions, i.e. those that do not have any partial information at all.For the graphical representation of sets, we depict each set X as a segment, together withall the elements that are above one element of X. In �gure 1, each set X is thus shown as atrapezoid \standing" on the segment representing the elements of X.The picture of a sandwich (U;L) is the leftmost one in �gure 1. The semantics of a sandwichis a family of sets such as the one denoted by three bullets in the picture. Such sets X satisfytwo properties:� Every element l of the lower approximation L approximates an element of X. That is,for every element l 2 L, there is an element x 2 X such that l � x.� Every element x of X is approximated by an element of the upper approximation U . Thatis, for every x 2 X, there exists u 2 U such that u � x.Note that in the example shown in �gure 1, L is assumed to have two elements, each of thembeing under an element shown as a bullet. Elements shown as bullets are in turn above someelements of U . Therefore, (U;L) satis�es the consistency condition, i.e. it is a sandwich.Under the assumption that the Name �eld is a key, one can replace certain nulls in relationsCS1 and Employees by corresponding values taken from the other relation. The reason is thatcertain tuples are joinable, and corresponding joins can be taken to infer missing values. Onesuch join was shown above. Since Name is a key, we know that there is only one John and weassume that the same John is represented by both databases. Hence we infer that he is in theo�ce 76 and his salary is 15K. Similarly for Michael we infer that he is in the o�ce 320 andhis salary is 14K.We can regard the newly constructed relations as another approximation for TA. But thisone satis�es a much stronger consistency condition than sandwiches: every record in the lowerapproximation is at least as informative as some record in the upper approximation. Such apair is called a mix. An example of a mix is shown in �gure 1. Mixes were introduced in[13] as an alternative approximation construct, whose properties are generally easier to studythan properties of sandwiches because of its simpler consistency condition in which no joins areinvolved.Semantics of mixes is de�ned in exactly the same way as semantics of sandwiches: welook at sets that represent all elements of the lower approximation and whose elements are3

representable by the upper approximation. In Figure 1, the set shown by four bullets is anexample.Approximating by many relations. Let us consider a more complicated situation. As-sume now that CS1 has two sections: CS11 and CS12, and each section requires a teachingassistant. Assume that we have a pool of prospective TAs for each section that includes thosegraduate students who volunteered to TA for that section. Suppose that the selection of TAshas been made, and those selected have been entered in the database of employees, while thedatabase of prospective TAs remained unchanged. This situation is represented by an examplebelow: EmployeesName Salary RoomJohn 15K ?Ann 17K ?Mary 12K ?Michael 14K ? CS11Name Salary RoomJohn ? 76Jim ? ? CS12Name Salary RoomMichael ? 320Helen ? 451Since all the selections have been made, at least one of prospective TAs for each section is nowa TA, and therefore there is a corresponding record in Employees for him or her. That is, ineach of the subrelations of CS1, at least one entry is consistent with the Employees relation.Let us summarize the main di�erence between this construction and sandwiches or mixes.1. The lower approximation is no longer a single relation but a family of relations.2. The consistency condition does not postulate that all elements in the lower approximationare consistent with the upper approximation, but rather that there exists an element ineach of the subrelations of the lower approximation that is consistent with the upper.Such approximations are called scones, cf. [31]. We shall denote the lower approximation by Land its components by L1, L2 etc. The graphical representation of a scone with two-element Lis shown in Figure 1.The semantics of a scone is a family of sets X that satisfy the following two properties.First, for every set in the lower approximation, one of its elements approximates an element ofX. That is, for every set L 2 L, there exists l 2 L and x 2 X such that l � x. Second, everyelement of X is approximated by some element of the upper approximation. That is, X liesin the trapezoid standing on U ; or, for every x 2 X, there exists u 2 U such that u � x. Anexample from Figure 1 is the set denoted by three bullets. Observe that the second propertyis exactly the same for scones as it is for sandwiches and mixes, while the �rst one re
ects thedi�erence in the structure of scones and sandwiches.Now let us look at the data represented by CS11 and CS12. Assuming that the Name �eldis a key, one can do some preprocessing before any queries are asked. There is no entry forJim in Employees. Hence, Jim could not have been chosen as a possible TA for a section ofCS1. Similarly, Helen can be removed from CS12. Having removed Jim and Helen from CS11and CS12, we can infer some of the null �elds as we did before in order to obtain a mix froma sandwich. In the new approximation that we obtain, the condition expressing consistency is4

much stronger than the condition used for scones. In fact, all elements in CS11 and CS12 havebecome elements of Employees. Taking into account that some entries can be nulls, we see thatthe new consistency condition says that every element of every set in the lower approximationis at least as informative as some element of the upper approximation. Such constructions arecalled snacks [29, 31, 19]. The reason for this name is that they were initially thought of { notquite correctly, as we shall show { as \many sandwiches," hence snacks.The graphical representation of a snack with a two-element L is given in Figure 1. Thesemantics of snacks is de�ned precisely as the semantics of scones. For example, in Figure 1 thefour-bullet set is in the semantics of (U; fL1; L2g). Thus, it is only the consistency conditionthat makes scones di�erent from snacks.Finally, what if we have arbitrary data coming from two independent databases that maynot be consistent? For instance, there may be anomalies in the data that violate variousconsistency conditions. We need a model that does not require any consistency condition atall. Such a model was �rst introduced in [22]. Since it is in essence \all others put together,"it is called a salad.One may ask why we consider lower approximations given by a family of sets, while all upperapproximations are just sets. The reason is simple: if upper approximations were allowed tobe families of sets, then taking the union of all the elements in the family we would obtainan equivalent approximation. For example, assume that a generalized sandwich of the form(fU1; U2g; L) is now permitted. The semantics of such a sandwich is the family of all sets X thatare approximated by L from below, and such that each element in X is above either an elementof U1 or an element of U2. But this is the same as the sandwich (U1 [U2; L). Henceforth, theupper approximation is always a single set.Goals of the paper and organization. The main problem that we address in this paper isbuilding the general theory of approximate answers to queries. In particular, we want to makeapproximate answers �rst class citizen objects in a query language. Towards that goal, we focuson the following questions.� What are the formal models of approximations? Is it possible to classify those modelsaccording to some general principle?� Do approximation constructs correspond to (a combination of) known datatypes?� How can we program with approximations?Note that the problems of approximation have been studied by the datalog community;see, for example, [10, 11]. There are, however, major di�erences between the problems that areaddressed. In papers like [10, 11] information is complete, and using approximations reducesthe complexity of query evaluation. For example, upper and lower envelopes are de�ned asdatalog programs whose result would always be superset (subset) of a given program P . If P isa recursive program, envelopes are usually sought in the class of conjunctive queries. Secondly,approximating relations are usually de�ned as subset or superset.In our approach the reason for approximating is incompleteness of information. Approxima-tions arise as the best possible answers to queries that one can get, and not as the best answers5

that can be computed within a given complexity class. Moreover, our notions of approximationsare much more sophisticated than simple subsets and supersets.The paper is organized in follows. In section 2 we present preliminary results necessaryto describe our approach. First we explain an approach to databases with partial informationthat treats database objects as subsets of some partially ordered space of descriptions. Themeaning of the ordering is \being more informative". This approach is based on [6, 18, 21].One of its important features is that it allows one to abstract from a concrete data model(e.g. relational, complex object) as it can be used with a variety of models [6, 21]. Then weexplain a \data-oriented" paradigm for query language design [9]. This approach is based onincorporating operations naturally associated with datatypes into a query language [8]. To�nd such operations, it is necessary to describe the semantic domains of those datatype viauniversality properties.In section 3 we use the ordered semantics to give formal models of approximations andclassify them.The main part of the paper is section 4 in which we show that most of the constructs possessuniversality properties. This tells us what are the important operations on approximations.Obtaining universality properties is an easy task for most datatypes (such as sets, bags, andlists). However, here we encounter a novel situation in which obtaining these properties isdi�cult. Moreover, we obtain results of a new kind, saying that some constructs do not possessuniversality properties.In section 5 we discuss programming with approximation. We apply the data-orientedparadigm to descriptions of approximations obtained in section 4 and discuss problems withusing this approach. One problem is the undecidability of certain preconditions that need tobe checked to ensure well-de�nedness of programs. As a solution to this problem, we suggestan encoding of approximation constructs with or-sets [17, 25, 33] and explain how the languagefor or-sets [25] is suitable for programming with approximations. In fact, a system based onthis language [15] has been used in the problems of querying independent databases.2 Preliminaries2.1 Partial objects and ordered setsMost models of partiality of data can be represented via orderings on values [3, 16, 12]. InA general approach to the treatment of partial information in the context of ordered sets isdeveloped in [6, 21, 25]. Here we present the basics of that approach.First, elements of base types are ordered. For example, if there is only one null value ?,then the ordering is given by letting ? be less than any nonpartial value v. In an approachwith three kinds of nulls { no information ni, existing unknown un and nonexisting ne { theordering is given by ni < un < v and ni < ne. For more examples, see [3, 6, 22].Complex objects, or nested relations, are constructed from the base objects by using therecord and the set type constructors. Hence, one has to lift an order to records and sets. Liftingto records is done componentwise. For example, [Name: Joe;Age:?] � [Name: Joe;Age: 28].6

But it is not immediately clear how to lift an order to sets. This problem also arises in thesemantics of concurrency, where a number of solutions have been proposed [14]. Here weconsider two approaches, which turn out to be suitable for our problems. Given an ordered sethA;�i, its subsets can be ordered by the Hoare ordering v[(generalized subset) or the Smythordering v] (generalized superset):X v[Y , 8x 2 X:9y 2 Y: x � y X v] Y , 8y 2 Y:9x 2 X: x � yEarlier work on representing partiality via orders did not consider the problem of choosingthe right ordering. Recently, a theory for deciding which order is suitable for which collec-tion was developed [25, 22]. It turns out that v[is suitable for sets1 and v] is suitable foror-sets [17]. Or-sets, denoted by the angle brackets, are sets of exclusive possibilities, i.e.[Name: Joe;Age:h25; 27i] says that Joe is 25 or 27 years old.Orderings suggest a natural approach to the semantics of partiality: an object may de-note any other object that is above it. For example, [Name: Joe;Age:?] denotes the setf[Name: Joe;Age:n] j n 2 Ng. Hence, we de�ne the semantic function for the databaseobjects of the same domain D as [[o]] = fo0 2 D j o0 � og. This semantics leads to an impor-tant observation. Since sets are ordered by v[, then for any set X we have [[X]] = [[maxX]],where maxX is the set of maximal elements of X. For any or-set X we have [[X]] = [[minX]],where minX is the set of minimal elements of X. Elements of maxX and minX are not com-parable; such subsets of ordered sets are called antichains. Therefore, this ordered semanticssuggests that the database objects are represented as antichains in certain posets, cf. [6, 21].2.2 Data-oriented programmingIn this subsection we give an overview of the data-orientation as a paradigm for programminglanguage design (cf. Cardelli [9]) and demonstrate one instance of this approach: a languagefor sets.It was observed in [9] that while traditional programming languages are mostly algorithmicand procedure-oriented, database languages require more emphasis on data. Databases aredesigned using some data models, e.g. relational, complex object, etc. To make it possible toprogram with data, it is necessary to represent the concept of a data model in a programminglanguage. The best way to do it is to use type systems. This often allows static type-checkingof programs which is particularly important in handling large data as run-time errors arevery costly. To make sure that the type system is not too restrictive and does not limitthe programmer's freedom, some form of polymorphism can be allowed. We allow all typeconstructs to be polymorphic, e.g. a set type constructor can be applied to any type, a producttype constructor can be applied to any pair of types etc. For example, for a language forcomplex objects, types are given by the grammar t ::= b j [l1 : t; : : : ; ln : t] j ftg, where branges over base types. We often use pair types which are a special case of records: instancesof type t� s are pairs (x; y) where x has type t and y has type s.1Technically speaking, this is true only if we believe in the open world assumption. For closed worlds, thePlotkin ordering [14] should be used. However, the nature of lower approximations, for which the set orderingwill be used, suggests the open world assumption, so we consider only the Hoare ordering in this paper.7

[[t]] �- h[[C(t)]];
i@@@@@f RhX;
i?f+ [[t]] �- h[[C(t)]];
i@@@@@f Rh[[C(s)]];
i?ext (f)Figure 2: Structural recursion and extIt was suggested in [9] that one use introduction and elimination operations associated witha type constructor as primitives of a programming language. The introduction operations areneeded to construct objects of a given type whereas the elimination operations are used fordoing computations over them. For example, record formation is the introduction operationfor records, and projections are the elimination operations.Databases work with various kinds of collections. One approach (cf. [8, 4]) to �nd theintroduction and elimination operations for those collections is to look for operations naturallyassociated with them. To do so, one often characterizes the semantic domains of collection typesvia universality properties, which suggest what the introduction and the elimination operationsare.Assume that we have a collection type constructor (like sets, bags etc.) that we denote byC(�) and a type t. Let [[t]] denote the semantic domain of type t and [[C(t)]] denote the semanticdomain of type C(t) of collections of elements of type t. By universality property we mean thatthe following is true about [[t]] and [[C(t)]]. It is possible to �nd a set
 of operations on [[C(t)]]and a map � : [[t]] ! [[C(t)]] such that for any other
-algebra hX;
i and a map f : [[t]] ! Xthere exists a unique
-homomorphism f+ such that the �rst diagram in �gure 2 commutes.If we are successful in identifying � and
, then we can make them the introduction opera-tions. The reason is that now any object of type C(t) can be constructed from objects of typet by �rst embedding them into type C(t) by means of �, and then constructing more complexobjects using the operations from
.The elimination operation is given by the universality property. In fact, the general elimi-nation operation is a higher-order operation that takes f as an input and returns f+.At this point, let us see what these operations are for sets. The semantic domain of ftg isthe �nite powerset of elements of t, that is, P�n([[t]]). For any set X, its �nite powerset P�n(X)is the free semilattice generated by X. That is, the operations of
 are ; and [and � is thesingleton formation: �(x) = fxg. We consider [and � as polymorphic operations: [has typeftg � ftg ! ftg and � has type t! ftg.To include the elimination operation f+ in a language, we must specify a constant and abinary operation that play the role of the operations of
 on the range of f+. That is, f+ isin fact a parameterized family of functions. Assume that e plays the role of the constant andu plays the role of the binary operation. The operation that takes f into f+ is the following8

fun f+[e; u](;) = ej f+[e; u](fxg) = f(x)j f+[e; u](A[B) = u(f+[e; u](A); f+[e; u](B))This operation f+ is often called structural recursion [8]. Notice that if we include it as aquery language primitive, there is no guarantee that e and u will satisfy the same equationsas ; and [. But if e and u do not supply the range of f+ with the structure of a semilat-tice, then f+ may not be well-de�ned. For example, if e is 0, f is �x:1, and u is +, thenf+[e; u](f1g) = f+[e; u](f1g [f1g), thus implying 1 = 2.To overcome this problem, originally noticed in [4], one can require that e be interpretedas ; and u as [. Generally, the simplest way to ensure well-de�nedness of f+ is to require thathX;
i be h[[C(s)]];
i for some type s. Thus, we obtain the second diagram in �gure 2.The unique completing homomorphism is called ext(f), the extension of f . Its semantics inthe case of sets is ext(f)fx1; : : : ; xng = f(x1)[: : :[f(xn) (that is, it \extends" f to sets.) Thisfunction is well-de�ned. Using ext together with �, ;, [, projections and record formation,conditional and the equality test gives us precisely the nested relational algebra [8] but thepresentation is nicer than the standard ones, such as in [34]. This approach to the languagedesign has proved extremely fruitful in the solution of some open problems (e.g. [26]) and thedevelopment of languages for other collection types (e.g. [25, 24]). In order to apply it to theapproximation constructs, we need formal models of them as well as the universality propertiesfor these models.The diagrams above are constructions well known in universal algebra and category theory.The �rst one says that [[C(t)]] is the free
-algebra generated by [[t]], or, equivalently, establishesan adjunction between the category of
-algebras and the category where the semantic objectslive. The second diagram represents going from that adjunction to the Kleisli category of itsmonad [2]. Using monads as the basis for the query language design has been advocated in[8, 7]. The languages thus obtained come equipped with an equational theory, and also admitan easy-to-use comprehension syntax [7].3 Formal models of approximationsIn this section we reexamine the approximation constructs by applying the idea of representingdatabase objects with partial information as elements of certain ordered sets. By giving theirformal models, we make it possible to elevate the intuitive notion of approximate answers to �rstclass citizens in a query language. Further towards that goal, we show that the approximationconstructs are instances of partial information themselves, and as such can be ordered. We alsodiscuss the formal semantics of the approximation constructs.We shall need the notion of consistency in posets: two elements x; y 2 A are consistent(written x " y) if there exists z 2 A such that x; y � z. In the case of records, consistentmeans joinable (as in [35].) We shall use "X for fy j y � x; some x 2 Xg and #X forfy j y � x; some x 2 Xg. We shall call "X and #X �lters and ideals (principal, if X is asingleton). 9

3.1 De�nition and classi�cation of approximationsRecall that a sandwich is given by an upper approximation U and a lower approximation Lwhich satisfy the following consistency condition: for every u 2 U , there is an l 2 L such thatu and l are consistent. Representing objects in approximating sets as elements of some posets,we can formally de�ne sandwiches:De�nition 1 (cf. [5].) Given a poset hA;�i, a sandwich over A is a pair of �nite antichains(U;L) satisfying the following consistency condition: 8l 2 L 9u 2 U : u" l (i.e. 9X : L v[X;U v] X). The set U is usually referred to as the upper approximation and L as the lowerapproximation. The family of all sandwiches over A is denoted by P 8̂ (A) (the reason for thisnotation will be seen shortly).The consistency condition for mixes says that every element in the lower approximation isat least as informative as some element of the upper. Hence, we obtainDe�nition 2 (cf. [13].) Given a poset hA;�i, a mix over A is a pair of �nite antichains (U;L)satisfying the following consistency condition: 8l 2 L 9u 2 U : u � l (i.e. U v] L.) Thefamily of all mixes over A is denoted by P8(A).In a scone, the lower approximation is a family of sets (relations), and the consistencycondition says that for each set in the lower approximation, at least one element is consistentwith an element of the upper. HenceDe�nition 3 (cf. [31].) Given a poset hA;�i, a scone over A is a pair (U;L) where U is a�nite antichain, and L = fL1; : : : ; Lkg is a family of �nite nonempty antichains which is itselfan antichain with respect to v]. That is, Li 6v] Lj if i 6= j. Scones satisfy the consistencycondition: 8L 2 L 9l 2 L 9u 2 u : u"l (i.e. 8L 2 L : "L \ "U 6= ;). The family of all sconesover A is denoted by PP 9̂ (A).Snacks are obtained from scones exactly as mixes are obtained from sandwiches: by usingthe assumption about keys, additional information is inferred. Thus, the consistency conditionis similar to that of mixes.De�nition 4 (cf. [29, 31, 19].) Given a poset hA;�i, a snack over A is a pair (U;L) where Uis a �nite antichain, and L = fL1; : : : ; Lkg is a family of �nite nonempty antichains which isitself an antichain with respect to v]. A snack is required to satisfy the consistency condition:8L 2 L 8l 2 L 9u 2 u : u � l (i.e. 8L 2 L : U v] L). The family of all snacks over A isdenoted by PP8(A).Now let us look at these constructs again. One can see that there are three main parametersthat may vary and give rise to new constructs.1. The lower approximation is either a set or a set of sets.2. The consistency condition is of form 10

Ql 2 L 9u 2 U C(u; l) for simple lower approximations and8L 2 L Ql 2 L 9u 2 U C(u; l) for multi-set lower approximations,where Q is a quanti�er (either 8 or 9) and C(u; l) is a condition that relates u and l.3. The condition C(u; l) is either u � l or u"l.Thus, we have eight constructions since each of the parameters { the structure of the lowerapproximation, the quanti�er Q and the condition C(u; l) { has two possible values. Forconstructs with a simple lower approximation we use notation P, for constructs with multi-setlower approximation we use PP. The rest is indicated in the superscript whose �rst symbolis the quanti�er Q, that is, 8 or 9. If the condition is u " l, then the second symbol in thesuperscript is ^ (to indicate that there is an element above u and l); otherwise, if C(u; l) isu � l, no second symbol is used. We have seen the need for constructs with no consistencycondition, in order to deal with inconsistencies. For two such constructs we shall use just onesuperscript ;.Summing up, we have ten possible constructs, which are shown in the table below. Forexample, we denote the family of sandwiches over A by P 8̂ (A), mixes by P8(A), snacks byPP8(A) etc. type of consistency condition (quanti�er{condition)L-part 8 u � l 8 u"l 9 u � l 9 u"l no conditionone set P8 (mix) P 8̂ (sandwich) P9 P 9̂ P;family of sets PP8 (snack) PP8̂ PP9 PP9̂ (scone) PP;3.2 Ordering approximationsWe introduce two orderings vB and vBf on the approximation constructs. The ordering vB isused for the constructs with a single set in the lower approximation (those denoted by P) andvBf is used for the constructs with a family of sets in the lower approximation (denoted by PP).These are called the Buneman orderings [6, 13] and are de�ned as follows:(U;L) vB (U 0; L0) i� U v] U 0 and L v[L0(U;L) vBf (U 0;L0) i� U v] U 0 and 8L 2 L 9L0 2 L0 : L v] L0Compactly, vB=v] � v[and vBf=v] �(v])[. The index f in vBf indicates that the orderingdeals with families of sets in the lower approximations.Claim. The approximations are ordered by the Buneman orderings. 2We refer the reader to [22] for the rationale behind this claim. It is justi�ed by proving theresults similar to those proved in [25, 22, 24] for sets, or-sets and bags. That is, a family ofelementary transformations is introduced, such that each transformation makes the approxi-mation more precise. Then it is shown that vB and vBf correspond to the transitive closure ofsuch transformations. We also notice that the Buneman orderings were used in [5, 13].Thus, when we consider approximation constructs P i(A) and PP i(A), where i 2f8;9; 8̂ ; 9̂ ; ;g, we assume that they are ordered by vB and vBf respectively.11

The approximation constructs are similar to (and, in fact, motivated by) the powerdomainconstructions used extensively in programming language theory, cf. [14]. We can turn each ofthe approximation constructs P into a powerdomain as follows. Given a domain D, apply Pto the poset of the compact elements of D, and take the ideal completion of the result. Severalpapers [6, 31, 19] adopt this approach and work with powerdomains. We do not believe thatusing powerdomains is justi�ed in the present context, as the ideal completion helps us modelrecursive datatypes, and we do not use recursive datatypes in this paper. However, should thisbecome necessary, all the results that follow can easily be generalized to powerdomains, alongthe line of [13].3.3 Semantics of approximationsTo understand the semantics of the approximation constructs, we use the example from theintroduction. For sandwiches and mixes, we assumed that a set TA is approximated by Em-ployees and CS1 if every record in CS1 represents (is less than) a record in TA and every recordin TA is represented by (is greater than) a record in Employees. In other words, CS1 v[TAand TA v] Employees.For scones and snacks, where CS1 was subdivided into a family of relations CS1i, weassumed that at least one element from each CS1i represents an element in TA. That is, TAv] Employees, and for all i, there exists an element in CS1i that represents an element of TA.In other words, "CS1i \ "TA 6= ;.To formalize this, we introduce two semantic functions for the constructs with one- andmulti-element lower approximations:[[(U;L)]] = fX 2 P�n(A) j U v] X and L v[Xg[[(U;L)]] = fX 2 P�n(A) j U v] X and 8i : "Li \X 6= ;gThe semantics of mixes and sandwiches has been studied in [5] and [13]. Here we concentrateon the constructs with the multi-element L-part.Proposition 1 (see also [29]) If S1 and S2 are two snacks, then S1 vBf S2 i� [[S2]] � [[S1]].Proof. Let S1 = (U;L) and S2 = (V;M). Prove the 'if ' part �rst. Assume [[S2]] � [[S1]]. Pickarbitrarily an element mM from each M 2 M. Then V 0 = V [fmM jM 2 Mg 2 [[S2]] andtherefore V 0 2 [[S1]] which means U v] V 0 v] V . Hence, U v] V .If M = ;, then L = ; because otherwise ; 2 [[S2]] but ; 62 [[S1]]. Hence, in this caseS1 vBf S2. Assume M 6= ; and S1 6vBf S2; then 9L8M 9m 2 M 8l 2 L : l 6� m. Let L 2 L bea set for which the statement above is true; then, selecting appropriate m for each M 2 M weobtain a set Q such that Q\M 6= ; for all M 2 M and 8l 2 L8q 2 Q : l 6� q. In other words,"L\Q = ;. On the other hand, Q 2 [[S2]] � [[S1]] and therefore "L \Q 6= ; for all L 2 L. Thiscontradiction shows S1 vBf S2.To show the 'only if ' part, assume S1 vBf S2 and Q 2 [[S2]]. Then U v] V v] Q and, givenL 2 L, there exist M 2 M such that "M � "L and therefore Q \ "L 6= ;. Thus Q 2 [[S1]]. 212

Unfortunately, this is no longer true for scones. If A = f?;>; a; b; cg is a poset with ?and > the bottom and the top elements, and fa; b; cg being incomparable, then for two sconesS1 = (a; fbg) and S2 = (a; fcg) we have ff>g; fa;>gg = [[S1]] = [[S2]], but S1 and S2 areincomparable.However, there is a very close connection between the semantics of scones and snacks andtheir ordering. In some sense, the family of snacks over A is the maximal subclass of scones overA on which the semantics and the orderings agree. To formulate this rigorously, let S1 4 S2i� [[S2]] � [[S1]]. Then 4 is a preorder and the induced equivalence relation is denoted by "4.Recall that a poset is called bounded complete [14] if any pair of consistent elements has a leastupper bound.Proposition 2 For a bounded complete poset A, hPP 9̂ (A);4i="4 �= PP8(A).Proof. If A is bounded complete, then for two �nite sets U and L the set min("U \ "L) isalso �nite. Hence, we de�ne : PP 9̂ (A) ! PP8(A) by ((U;L)) = (U; fmin("U \ "L)gjL 2 L).Clearly, [[S]] = [[(S)]] and ((S)) = (S). According to proposition 1, (S) is the only snackin the "4-equivalence class of S. Moreover, is monotone because, if U v] V and L v] M ,then min("L \ "U) v] min("M \ "V). This �nishes the proof of the proposition. 2The following result follows directly from the de�nitions.Proposition 3 Given S 2 PP;(A), [[S]] 6= ; i� S 2 PP 9̂ (A). 2Summing up, scones are the maximal class of approximation constructs with multi-set L-partthat has well-de�ned semantics, and snacks are the maximal subclass of scones over on whichthe semantics and the orderings agree.4 Universality properties of approximationsNow that we formalized the notion of approximation and found a number of models to representthem, we are about to prove the main technical results of this paper. These results describemost formal models of approximations via their universality properties, or show the absencethereof. As was explained in subsection 2.2, this makes the approximation constructs �rstclass citizens in a query language, provides query language primitives to work with them andsuggests a query language syntax.Due to the nature of the approximation constructs, the characterization theorems andequational theories below are rather involved. For the reader who wants to understand the
avorof the results and then move on to section 5 dealing with query languages for approximations,we included a short subsection below that summarizes the results of this section.4.1 The
avor of the results and summaryLet us give a quick overview of the universality results. The desired result is to obtain the�rst diagram in �gure 3, where �(x) = (fxg; fxg) for P i(A) and �(x) = (fxg; ffxgg) for13

PPi(A). That is, every monotone map f can be extended to a monotone homomorphism f+.Unfortunately, this is not always possible for the following reason. Let x"y, where x; y 2 A.Then Sxy = (fxg; fyg) is a sandwich and Sxy = (fxg; ffygg) is a scone. If P 8̂ (A) or PP 9̂ (A)were free algebras generated by A, there would be a way to construct Sxy and Sxy from thesingletons �(�). But this way must use the information about consistency in A and thereforecan not be \universal"!Therefore, we shall settle for less. Namely, we make the generating poset convey theinformation about consistency in A. We de�ne the consistent closure of A asA"A = f(a; b) j a 2 A; b 2 A; a"bgThe consistent closure of A can be embedded into P i(A) and PP i(A) (where i 2 f9̂ ; 8̂ g) bymeans of the functions �"(x; y) = (fxg; fyg) and �"(x) = (fxg; ffygg). Since A"A interactsin a certain way with the structure of approximations, we shall seek results like the one in thesecond diagram in �gure 3. In this case we say that P i(A) or PPi(A) is freely-generated by A"Awith respect to the class C of monotone maps.The results of this section are summarized in the following table. For each constructwith u � l used in the consistency condition (with one exception) we �nd a free algebracharacterization. For constructs with u"l used in the consistency condition, we show that theydo not arise as free algebras generated by the poset itself, but do arise as free constructionsgenerated by A"A (with respect to a restricted class of map). We use dna (does not apply)for constructions based on the u � l consistency condition with A"A as the generating poset.Notice that there are still three ni null values { these questions remain open. Nonnull entriesgive the name of an algebra and refer to the subsection where the result is to be found.type of consistency condition (quanti�er{condition)L-part; generator 8 u � l 8 u"l 9 u � l 9 u"l no conditionone set; A mix (4.2) ne (4.3) bi-LNB (4.4) ni bi-mix (4.5)one set; A"A dna mix (4.3) dna ni dnafamily of sets; A snack (4.6) ne (4.7) ne (4.8) ne (4.9) salad (4.10)family of sets; A"A dna ni dna scone (4.9) dnadna = does not apply; ne = non-existent; ni = no information (unknown)For our characterizations, we need two kinds of algebras de�ned in [32]. A bisemilatticehB;+; �i is an algebra with two semilattice operations, i.e. idempotent, commutative andassociative. It is called distributive if both distributive laws hold. A left normal band hB; �i isan algebra with an idempotent associative operation � such that x � y � z = x � z � y.We shall use four kinds of operations on the approximation constructs. The union-likeoperations will satisfy the laws of semilattices. An example of such operation is (U;L)+(V;M) =(min(U [V);max(L[M)) on mixes or sandwiches. The unary (modal) operations will be usedto ignore one of the components of an approximation; for example, we shall use the operation2(U;L) = (U; ;) on mixes. We shall also make use of \skewed" union operations that satisfythe left normal band laws. An example of such operation is (U;L)� (V;M) = (min(U [V); L)on elements of P9(A). For approximations PP i(A), we shall also use pairwise union operations14

A � �- hP i(A) or PPi(A);
iQQQQQQQQQf shA;
i?9!f+ A"A � �"- hP i(A) or PP i(A);
iQQQQQQQQQf in C shA;
i?9!f+Figure 3: Universality resultsthat take component-wise unions of the sets in the lower approximation. For details, see section4.6.For the rest of the section we use the following notation. To distinguish orderings onalgebras and their generating posets, we use � for the former and - for the latter. In proofs weoften omit the set brackets fg when we deal with singletons. In particular, by fxg we mean afamily of sets that consists of one singleton. We occasionally omit commas separating elementsof sets, writing xyz for fx; y; zg.4.2 Universality of P8(A) (mixes)De�ne a mix algebra [13] hM;+;2; ei as an algebra with a partially ordered carrier M , onemonotone binary operation + and one monotone unary operation 2. hM;+; ei is a semilatticewith identity e, and in addition the following equations must hold:1) 2(x+ y) = 2x+2y.2) 22x = 2x.3) 2x � x.4) x+2x = x.5) x+2y � x.To make P8(A) a mix algebra, interpret the ordering as vB. For the operations, (U;L) +(V;M) = (min(U [V);max(L [M)), 2(U;L) = (U; ;) and e = (;; ;).Theorem 1 ([13]) P8(A) is the free mix algebra generated by A. 24.3 Universality of P 8̂ (A) (sandwiches)First, we present a negative result.Theorem 2 For no
 is P 8̂ (A) the free ordered
-algebra generated by A.Proof. Assume that there exists a set of operation
 such that P 8̂ (A) the free ordered
-algebra generated by A for any poset A. Let A = fx; y; zg be an antichain and A0 = fx0; y0; z0gbe a poset such that x0; y0 - z0 and x0 6- y0, y0 6- x0. Let f : A ! P 8̂ (A0) be de�ned byf(a) = (a0; a0); a 2 A. Now the assumed universality property tells us that f can be extended15

to a monotone
-homomorphism f+ : P 8̂ (A) ! P 8̂ (A0). Let S 2 P 8̂ (A0). Since P 8̂ (A0)is the free
-algebra generated by A0, we can �nd a term t in the signature
 such thatS = t(�(x0); �(y0); �(z0)). Since �(x0) = f(x) = f+(�(x)) and similarly for y0 and z0, we obtainS = f+(t(�(x); �(y); �(z))) = f+(S0) for some S0 2 P 8̂ (A). Therefore, f+ is onto.De�ne P 8̂:xy(A) as the set of elements of P 8̂ (A) which are not under (x; x) or (y; y). Itis easy to check that P 8̂:xy(A) includes the following: (z; z), (xz; z), (yz; z), (z; ;), (xz; xz),(yz; yz), (xy; xy), (xyz; xz), (xyz; yz), (xyz; xy), (xyz; z). Similarly, de�ne P 8̂:x0y0(A0) as the setof elements of P 8̂ (A0) which are not under (x0; x0) or (y0; y0). These are: (x0; y0), (y0; x0), (x0y0; z0),(z0; x0y0), (x0; z0), (z0; x0), (y0; z0), (z0; y0), (z0; ;), (z0; z0). Since f+ is monotone, we derive thatits restriction on P 8̂:xy(A) must be an onto map from a subset of P 8̂:xy(A) to P 8̂:x0y0(A0). Observethat in P 8̂:xy(A) the only element that is not above (xyz; z) is (z; ;). Hence, if f+((xyz; z)) =S 2 P 8̂:x0y0(A0), then f+(P 8̂:xy(A)� f(z; ;)g) is a subset of the principal �lter of S in P 8̂:x0y0(A0).However, P 8̂:x0y0(A0) has four minimal elements: (x0; y0), (y0; x0), (x0y0; z0) and (z0; ;) which showsthat f+ cannot be an onto monotone map between P 8̂:xy(A) and P 8̂:x0y0(A0). This contradictionshows that P 8̂ (A) can not be obtained as the free
-algebra generated by A. 2However, we can overcome this by using the consistent closure and mix algebras with thesame interpretation of operations. Let M be a mix algebra. A monotone map f : A"A! Mis called sandwich-admissible if f(x; y) + f(z; y) � f(x; y) and 2f(x; y) = 2f(x; z).Theorem 3 P 8̂ (A) is the free mix algebra generated by A "A with respect to the sandwich-admissible maps.Proof. Throughout this proof, by admissible we mean sandwich-admissible. We omit an easyveri�cation that P 8̂ (A) is a mix algebra. Now we must show that, given a mix algebra M andan admissible map f : A"A!M , there exists a unique mix homomorphism f+ : P 8̂ (A) !Msuch that the following diagram commutes:A"A � �"- hP 8̂ (A);+;2; ei@@@@@f RhM;+;2; ei?9!f+Let us �rst list a number of useful properties of admissible maps f : A"A!M .1) Assume v - u and u"l. Then f(u; l) + f(v; l) = f(v; l).2) Assume p % l, v"l and q"p. Then f(v; l) + f(q; p) = 2f(v; v) + f(q; p).3) If l - m, then f(v; l) + f(q;m) = 2f(v; v) + f(q;m).4) Assume v - u. Then f(v; l) = f(u; l) +2f(v; v).5) If v % u, then 2f(u; u) +2f(v; v) = 2f(v; v).6) Assume u"l and v"l. Then f(v; l) +2f(u; u) = f(v; l) +2f(u; u) + f(u; l).Let S = (U;L) be a sandwich over A with U = fu1; : : : ; ung and L = fl1; : : : ; lkg. Since S is asandwich, for every lj 2 L there exists uij 2 U such that lj"uij . Let I � [n]� [k] be the set of16

pairs of indices such that (i; j) 2 I , ui"lj. Then(E1) S = X(i;j)2I �"(ui; lj) +2 nXi=1 �"(ui; ui)From now on we assume that summation over an empty set is the identity for the +operation. It shows that (E1) holds even if one of the components of a sandwich is empty.Using representation (E1), de�ne f+ for an admissible f : A"A!M as follows:(E2) f+(S) = X(i;j)2I f(ui; lj) +2 nXi=1 f(ui; ui)Let us show that f+ is a homomorphism. Prove that f+ is monotone �rst. Let S1 = (U;L)and S2 = (V;M) be two sandwiches such that S1 vB S2, that is, U v] V and L v[M .Let S = (U;M). Observe that S is a sandwich. Therefore, the proof of f+(S1) � f+(S2) iscontained in the following two claims.Claim 1: f+(S1) � f+(S).Proof of claim 1: If L = ;, then the claim follows easily from (E1), admissibility andequation 4 of mix algebras. For L 6= ;, since L v[M , there is a sequence of sets L0 =L;L1; : : : ; Ln = M such that each Li � L[M and either Li+1 = max(Li[l) or Li+1 = max((Li�L0)[l) where l0 - l for all l0 2 L0, see proposition 3 of [25]. Then each (U;Li) is a sandwich. Wemust show f+(U;Li) � f+(U;Li+1). Consider the �rst case, i.e. Li+1 = max(Li [l). To verifyf+(U;Li) � f+(U;Li+1) in this case, it is enough to show 2f(u; u) + f(u; l) � 2f(u; u) if u"land, if there is an element l0 2 L such that l0 � l, then f(u0; l0) + f(u; l) +2f(u; u) � f(u0; l0) +2f(u; u) if u0"l0. The former is easy: 2f(u; u)+f(u; l) = 2f(u; l)+f(u; l) = f(u; l) � 2f(u; u).The latter follows from monotonicity of +: f(u; l) +2f(u; u) � 2f(u; l) = 2f(u; u).Consider the second case, i.e. Li+1 = max((Li � L0) [l). Assume u " l. Then u " l0 forany l0 2 L0. Therefore, any summand f(u; l) in (E2) for (U;Li+1) is bigger than f(u; l0) in(E2) for (U;Li). Now suppose there is l0 2 L0 such that u0 " l0 but u0 is not consistent withl. If l is consistent with some u 2 U , then u " l0. Therefore, to �nish the proof of claim1, we must show that f(u0; l0) + f(u; l0) � f(u; l). But this follows from admissibility of f :f(u0; l0) + f(u; l) � f(u; l0) � f(u; l). Claim 1 is proved.Claim 2: f+(S) � f+(S2).Proof of claim 2: Again, we assume non-emptiness, since for empty sets the proof of claim2 readily follows from (E1). Given a sandwich (W;N) and n 2 N , let wn be arbitrarily chosenelement of W such that wn"n. Then, given an admissible function f , f+(W;N) de�ned by (E2)equals Pn2N f(wn; n)+2Pw2W f(w;w). To prove this, assume that there are two elements w1and w2 in W consistent with n 2 N . Then we must show f(w1; n) + f(w2; n) +2f(w1; w1) +2f(w2; w2) = f(w1; n)+2f(w1; w1)+2f(w2; w2). That the left hand side is less than the righthand side follows from admissibility. On the other hand, f(w1; n)+2f(w1; w1)+2f(w2; w2) =f(w1; n)+2f(w2; n)+2f(w1; w1)+2f(w2; w2) � f(w1; n)+f(w2; n)+2f(w1; w1)+2f(w2; w2)which proves our claim.Now, to prove claim 2, consider S2 = (V;M) and let vm be an element of V consistent withm 2 M and um be an element of U under vm. Then um"m. Also, let uv be an element of U17

under v 2 V . Then 2Pu2U f(u; u) = 2Pv2V f(uv; uv)+2Pu6=uv f(u; u) � 2Pv2V f(uv; uv) �2Pv2V f(v; v). Now, by the claim proved above, f+(S) = Pm2M f(um;m)+2Pu2U f(u; u) �Pm2M f(vm;m)+2Pv2V f(v; v) = f+(S2) which �nishes the proof of claim 2 and monotonicityof f+.Now we demonstrate that f+ preserves the operations of the signature of the mix algebras.Since 2 distributes over +, 2f+(S) = P(i;j)2I 2f(ui; lj) + Pi2f(ui; ui). Since 2f(ui; lj) +2f(ui; ui) = 2f(ui; ui), we obtain 2f+(S) = Pni=12f(ui; ui) = f+(2S). Moreover, since2e = e, this also holds when one of components is empty. In addition, f+(;; ;) = e.That f+ is a +-homomorphism easily follows from (E2) when one of the components isempty. So in the rest of the proof we assume that the second components of all sandwiches arenot empty.Let S1 = (U;L), S2 = (V;M). Let S = S1 +S2 = (W;N). Consider a pair (ui; lj) such thatui 2 U , lj 2 L and ui"lj. There are three cases: this pair is either present in the representation(E1) of S or ui % vk for some vk 2 V \min(U [V) or lj - mk 2 M \max(L [M).Consider the second case. We have vk"lj. Assume lj - p and p 2 N . We know that p"q forsome q 2 W . Since f(vk; lj)+f(q; p)+2f(vk; vk) = f(q; p)+2f(v; v) by 2), we obtain f+(S) =f+(S) + f(vk; lj). Furthermore, since 2f(vk; vk) + f(ui; lj) + f(vk; lj) = 2f(vk; vk) + f(vk; lj)by 1), we have f+(S) = f+(S) + f(vk; lj) + f(ui; lj).Consider the third case. Assume ui is greater or equal than some v 2 W and mk " q forq 2 W . Then f(v; lj)+f(q;mk) = 2f(v; v)+f(q;mk) by 3), and hence f+(S) = f+(S)+f(v; lj).Since f(v; lj) = f(u; lj) +2f(v; v) by 4), we obtain f+(S) = f+(S) + f(ui; lj).Assume that u % v. Since 2f(u; u) + 2f(v; v) = 2f(v; v) by 5), we obtain f+(S) =f+(S) +2f(ui; ui) for any ui.All this shows that f+(S) can be rewritten as f+(S1) + f+(S2) + X where X is a sum ofsome elements of form f(ui;mj) or f(vi; lj). Consider a pair (ui;mj) such that ui"mj. Thereexists vk such that vk "mj. Since f(vk;mj) + 2f(ui; ui) = f(vk;mj) + 2f(ui; ui) + f(ui;mj)by 6), the summand f(ui;mj) can be safely removed from X. Thus, any summand can beremoved from X and f+(S) = f+(S1) + f+(S2). Therefore, f+ is a homomorphism.The uniqueness of f+ follows from (E1). Since f+(�"(x; x)) = f(x; x) +2f(x; x) = f(x; x),we have f+ � �" = f . The theorem is proved. 24.4 Universality of P9(A)An algebra hB;�; �i is called a bi-LNB algebra if:1) � and � are left normal band operations.2) All distributive laws between � and � hold.3) a� (b � c) = a� b.4) (a � b)� b = (b � a)� a.This de�nition does not include any notion of order, because the ordering on carriers of bi-LNBalgebras can be de�ned from its operations. 18

Lemma 1 In a bi-LNB algebra de�ne a � b i� b � a = a � b. Then � is a partial order.Moreover, � and � are monotone with respect to �.Proof. First, let us show that b�a = a� b implies a� b = a and b�a = b. If a� b = b�a, thenb�a = b�a�b= b�(b�a) = b�b�a= b�b = b. Moreover, a = a�a = a�a�b= a�b�a= a�b.Because of idempotency, � is re
exive. To prove transitivity, let a � b and b � c. We mustshow a � c = c� a. Calculate c� a = c � b� a� b = (c� b) � b� a = b � c � b� a = b � c� a =(b�a)�(c�a) = a�b�c�a�b�a = a�b�c�a = a�b�c�a�b�c = a�b�c. On the other hand,a � c = (a� b) � c � b= a � c � b� b� c� b= a � c � b� b= (a� b) � (c� b)b= a � b � c � b= a � b � c.Hence, c� a = a � c and a � c. Finally, if a � b and b � a, then a� b = a and b � a = b. Hence,b = b � a = a� b = a, which �nishes the proof that � is a partial order.Assume that a � b. To see that a�c � b�c, calculate (a�c)�(b�c) = a�b�a�c�c�b�c =a � b� a� c = b� a� c = (b� c)� (a� c). Similarly, � is monotone in its second argument.To show a � c � b � c, calculate a � c � b � c = (a� b) � c = b � a � c = b � c � a � c. Similarly,c � a� c � b = c � (a� b) = c � b � a = c � a � c � b. Hence, � is monotone. 2From now on, bi-LNB algebras are treated as ordered algebras with the order relation beingde�ned as in lemma 1. The operations � and � on P9(A) as interpreted as follows:(U;L)� (V;M) = (min(U [V); L) and (U;L) � (V;M) = (U;max(L [M)):Theorem 4 P9(A) is the free bi-LNB algebra algebra generated by A.Proof. We leave it to the reader to prove that P9(A) satis�es all equations of the bi-LNDalgebras under the given interpretation of � and � and that S1 vB S2 i� S1 �S2 = S2�S1. Wemust show that for any bi-LNB algebra B and any monotone map f : A ! B, there exists aunique homomorphism f+ such that f+ �� = f . Observe that if (U;L) 2 P9(A), then U;L 6= ;.Given (U;L) 2 P9(A), we can �nd u 2 U and l 2 L such that u1 - l1. Then, using P� forrepeated applications of �, and N for repeated applications of �, we can see that(U;L) = Xu2U� �(u) � �(u1) � �(l1) �Ol2L �(l)if in the summation over elements of U the �rst summand is below an element of L. Now, givena monotone f from A into an algebra B, de�ne f+ : P9(A) ! B as follows:f+(U;L) = Xu2U� f(u) � f(u1) � f(l1) �Ol2L f(l)In this representation any number of expressions of form f(u0) � f(l0), where u0 - l0, can beadded after f(u1)�f(l1). Since f(u0) � f(l0), we have f(u0)�f(l0) = f(l0), and f(l0) is subsumedby Nl2L f(l).Denote f(u1) � : : : � f(un) by ~U for U = fu1; : : : ; ung and f(l1) � : : : � f(lk) by L̂ forL = fl1; : : : ; lkg. Then f+((U;L)) = ~U �f(ui1)�: : :�f(uim)�L̂ for any number of uij 's which areunder some elements of L. To show that f+ is well-de�ned, we must prove that its value does notchange if we pick a di�erent �rst summand in ~U as long as it is below an element of L. It su�cesto prove the following. Let ui � li, i = 1; 2. Then (f(u1)�f(u2))�L̂ = (f(u2)�f(u1))�L̂. This19

can be further reduced to proving (f(u1)�f(u2))�f(l1)�f(l2) = (f(u2)�f(u1))�f(l1)�f(l2).Again, we calculate(f(u1)� f(u2)) � f(l1) � f(l2) = f(u1) � f(l1) � f(l2)� f(u2) � f(l1) � f(l2) =(f(l1)� f(u1)) � f(l2)� (f(l2)� f(u2)) � f(l1) =f(l1) � f(l2)� f(l2) � f(l1)� f(u1) � f(l2)� f(u2) � f(l1)Similarly,(f(u2)� f(u1)) � f(l1) � f(l2) = f(l2) � f(l1)� f(l1) � f(l2)� f(u1) � f(l2)� f(u2) � f(l1)Now the desired equality follows from the equality (a � b)� (b � a) = (b � a)� (a � b) which istrue in all bi-LNB algebras.Our next goal is to show that any number of nonminimal elements can be added to U andany number of nonmaximal elements can be added to L and that it does not change the valueof f+. That is, writing expressions for f+, we may disregard min and max operations.Assume that u - u0 and u0 is added to U . There are two cases. If f(u0) is not the �rstsummand in U[u0 gU [u0; thenf(u) �f(u0) = f(u), so we may disregard f(u0). It is also possiblethat f(u0) can be used in the expression for f+ between ~U and L̂, in which case it can also bedisregarded as, if it is below some l, then f(u0)�f(l) = f(l). Finally, consider the case when f(u0)is the �rst summand. It is only possible if u - u0 - l for some l 2 L. To prove that f(u0) can bedropped and replaced by f(u) in this case, we must show (f(u0)�f(u))�f(l) = f(u)�f(l). Sincef(u) � f(u0) and f(u0)�f(u) = f(u)�f(u0), we obtain (f(u0)�f(u))�f(l) = f(u)�f(u0)�f(l) =f(u) � f(l) � f(u0) = f(u) � f(l).If l0 - l is added to L, f(l0) does not change the value of f+ as f(l)�f(l0) = f(l). Therefore,we may disregard all max and min operations in expressions for f+.At this point we are ready to show that f+ is a homomorphism. Its uniqueness will followfrom the representation of elements of P9(A) from singletons and well-de�nedness of f+. LetS1 = (U;L) and S2 = (V;M). Let u1 - l1 and v1 - m1 for u1 2 U; l1 2 L; v1 2 V;m1 2M . Then f+(S1) � f+(S2) = P� v2V (f+(S1) � f(v) � f(v1) � M̂). For two vi and vj, considerf+(S1) � f(vi) � f(v1) � M̂ and f+(S1) � f(vj) � f(v1) � M̂ . Since L 6= ;, they are the same,because a� b�a�c= a� b is a derivable equality. Hence, f+(S1)�f+(S2) = f+(S1)�f(v1)�M̂ .Since v1 - m1, we have f(m1) � f(v1) = f(m1) and hence x � f(v1) � M̂ = x � M̂ for any x.Thus, f+(S1) � f+(S2) = ~U � f(u1) � L̂� M̂ = ~U � f(u1) �L[M dL [M = f+(S1 �S2). Therefore,f+ is a �-homomorphism.Now consider f+(S1)�f+(S2). From the equational theory, we immediately have f+(S1)�f+(S2) = (~U � f(u1) � L̂)� ~V . Furthermore, since (a� c) � b = a � b� c � b = a � b� c, we havef+(S1)� f+(S2) = (~U � ~V) � f(u1) � L̂ = U[V gU [V �f(u1) � L̂ = f+(S1)� f+(S2). Thus, f+is a homomorphism. This proves Theorem 4. 24.5 Universality of P;(A)An algebra hB;�;+;2;3i is called a bi-mix algebra if hB;+;2i is a mix algebra, x = 2x+3xand hB;+;3i is a dual mix algebra. By this we mean that 3 is a closure, that is, 3 is monotone,20

3x � x, 33x = 3x and 3(x+ y) = 3x+3y, and in addition x+ 3x = x and x+3y � x.We interpret the operations +;2 and e on P;(A) in the same way as we interpreted themfor the mix algebras. For the new operation 3, de�ne 3(U;L) = (;; L).Theorem 5 P;(A) is the free bi-mix algebra generated by A. 2We omit the proof of this theorem, which is very similar, but somewhat simpler, than theproof of theorem 10.4.6 Universality of PP8(A) (snacks)As we have said before, snacks and mixes are the only two constructs for which universalityresults are known. For snacks, in the totally unordered case it was �rst obtained more than 20years ago, see [30]. Later it was extended to the ordered case in [31]; however, the equationaltheory used in [31] is slightly di�erent. We now formulate the result and sketch the proof.A snack algebra is a distributive bisemilattice hB;+; �; ei with added identity for +. Thatis, x + e = e + x = x. Each semilattice operation gives rise to an ordering. We alwaysconsider bisemilattices as algebras ordered by the � meet-semilattice operation. That is, x � yi� x � y = x.The operations are interpreted as follows:(U;L) + (V;M) = (min(U [V);max](L [M))(U;L) � (V;M) = (min(U [V);max]fmin(L [M) j L 2 L;M 2 Mg);where max] means family of maximal elements w.r.t. v]. For this interpretation of � on PP8(A),the ordering on PP8(A) coincides with vBf , see [31]. The constant e is interpreted as (;; f;g).Theorem 6 (see also [30, 31]) PP8(A) is the free snack algebra generated by A.Proof sketch. First, PP8(A) is a snack algebra [31]. We have to show that for any snackalgebra Sn and a monotone map f : A ! Sn, there exists a unique snack homomorphismf+ : PP8(A) ! Sn that extends f .Given a snack S = (U;L) where U = fu1; : : : ; ung and L = fL1; : : : ; Lkg, Li = fli1; : : : ; likig,we have(E3) S = (nYi=1 �(ui))e+ kXi=1 kiYj=1 �(lij)Then, if a monotone f : A! Sn is given, de�ne f+ : PP8(A) ! Sn by f+(S) = (Qni=1 f(ui))e+Pki=1Qkij=1 f(lij). Clearly, f+(;; ;) = e and f+(�(x)) = f(x) �e+f(x) = f(x). It is fairly routineto show that f+ is the unique homomorphic extension of f . 221

4.7 Universality of PP 8̂ (A)We have seen that the union-like operation +, that takes the component-wise union of twoapproximation constructs, is present in all characterizations obtained so far. One can also seethat all ten approximation constructs are closed under this operation. Thus, it is natural torequire that + be among the operations associated with approximations. However, no such setoperations can be found for PP8̂ (A).Theorem 7 Let
+ be a set of operations on elements of PP 8̂ (A) such that + is a derivedoperation. Then PP8̂ (A) is not the free ordered
+-algebra generated by A.Proof. Assume that there exists a set of operation
+ such that P 8̂ (A) the free ordered
-algebra generated by A for any poset A and + is a derived operation. Let A = fx; y; zgbe an antichain and A0 = fx0; y0; z0g be a poset such that x0; y0 - z0 and x0 6- y0, y0 6- x0. Letf : A! PP8̂ (A0) be de�ned by f(a) = (a0; a0); a 2 A. Now the assumed universality propertytells us that f can be extended to a monotone
+-homomorphism f+ : PP8̂ (A) ! PP8̂ (A0).Let S 2 PP8̂ (A0). Since PP8̂ (A0) is the free
+-algebra generated by A0, we can �nd a termt in the signature
+ such that S = t(�(x0); �(y0); �(z0)). Since �(x0) = f(x) = f+(�(x)) andsimilarly for y0 and z0, we obtain S = f+(t(�(x); �(y); �(z))) = f+(S0) for some S0 2 PP8̂ (A).Therefore, f+ is an onto +-homomorphism.Using the fact that f+ is a +-homomorphism, we �nd f+((xy; fx; yg)) = f+((x; x) +(y; y)) = (x0; x0) + (y0; y0) = (x0y0; fx0; y0g) and f+((xz; fx; zg)) = f+((x; x) + (z; z)) = (x0; x0) +(z0; z0) = (x0; z0). Similarly, f+((yz; fy; zg)) = (y0; z0). De�nePP8̂0 (A) = PP8̂ (A)� #f(x; x); (y; y); (xy;fx; yg); (xz; fx; zg); (yz; fy; zg)g andPP8̂0 (A0) = PP8̂ (A0)� #f(x0; x0); (y0; y0); (x0y0; fx0; y0g); (x0; z0); (y0; z0)gSince f+ maps PP 8̂ (A) � PP8̂0 (A) into PP8̂ (A0) � PP 8̂0 (A0), there must be an onto map from asubset of PP8̂0 (A) onto PP 8̂0 (A0). Now we can �nd that PP 8̂0 (A) = f(xyz; fx; y; zg); (z; z); (z;;)gand PP 8̂0 (A0) = f(z0; z0); (z0; fx0; y0g); (z0; x0); (z0; y0); (z0; x0y0); (z0; ;); (x0y0; z0)g. Therefore, thereis no map from a subset of PP8̂0 (A) onto PP8̂0 (A0). This contradiction proves the theorem. 24.8 Universality of PP9(A)As with the case of PP8̂ (A), we can show that no set of operations from which + is derivablesupplies PP9(A) with the structure of a free algebra generated by A.Theorem 8 Let
+ be a set of operations on elements of PP9(A) such that + is a derivedoperation. Then PP9(A) is not the free ordered
+-algebra generated by A.Proof. Consider two posets: A = fx; y; zg and A0 = fx0; y0; z0g. In A, x; y - z and x and yare incomparable. A0 is a chain: x0 - y0 - z0. De�ne f : A ! A0 by f(x) = x0; f(y) = y0 andf(z) = z0. Clearly, f is monotone.Assume that there exists a signature
+ such that for any poset B, hPP9(B);
+i is thefree
+ algebra generated by B. Then we would have a monotone +-homomorphism f+ :22

PP9(A) ! PP9(A0) such that f+((x; x)) = (x0; x0); f+((y; y)) = (y0; y0) and f+((z; z)) = (z0; z0).Then we have f+((xy; fx; yg)) = f+((x; x)+(y; y)) = (x0; x0)+(y0; y0) = (x0; y0) and f+((y; z)) =f+((y; y) + (z; z)) = (y0; y0) + (z0; z0) = (y0; z0).Since f+ is monotone and (x; xy) � (x; x), we obtain f+((x; xy)) = (x0; x0). Similarly,f+((xy; xy)) = (x0; x0). Then (x0; x0) = f+((xy; xy)) = f+((x; xy) + (y; xy)) = (x0; x0) +f+((y; xy)). Since (y; xy) � (y; y), f+((y; xy)) can be either (y0; y0) or (x0; y0) or (x0; x0). Theequality above then tells us that f+((y; xy)) = (x0; x0).Now we use these values of f+ to calculate (y0; z0) = f+((y; z)) = f+((y; xy) + (y; z)) =f+((y; xy))+ f+((y; z)) = (x0; x0) + (y0; z0) = (x0; z0). This contradiction shows that f : A! A0can not be extended to a monotone +-homomorphism between PP9(A) and PP9(A0) and hencePP9(A) is not a free
+-algebra generated by A. 24.9 Universality of PP 9̂ (A) (scones)A scone algebra is an algebra hSc;+; �; ei where + is a semilattice operation with identity e, �is a left normal band operation, + and � distribute over each other, the absorption laws holdand e � x = e.In other words, a scone algebra is an \almost distributive lattice" { commutativity of oneof the operations (�) is replaced by the law of the left normal bands.Similarly to the case of P9(A), one can use the operations of the scone algebras to de�nethe order relation on them. The following is immediate from the equational theory of the sconealgebras.Lemma 2 In a scone algebra, x � y = x � y + y � x is a semilattice operation. 2The order on scone algebras will be de�ned by x � y i� x � y = x.The operation + and the constant e are interpreted as for snacks. The operation � isinterpreted as (U;L) � (V;M) = (U;max]fmin(L [M) j L 2 L;M 2 Mg):Now it can be seen that for � de�ned in lemma 2, (U;L) � (V;M) coincides with the meetoperation � given for snacks in subsection 4.6. In particular, for this interpretation of theoperations, the interpretation of the ordering is vBf .We shall give two di�erent characterization of PP 9̂ (A) as scone algebras, one generated byA and the other by A"A. For this, we need two di�erent de�nitions of admissibility.Let hSc;+; �; ei be a scone algebra. A monotone map f : A"A! Sc is called admissible iff(u; l) � f(v;m) = f(u;m) � f(w; l) and f(u; l) � e = f(u;m) � e.A monotone function f : A ! Sc from a poset A to a scone algebra Sc is called scone-admissible if, for any two consistent pairs x " y1 and x " y2 such that x; yi � zi; i = 1; 2, thefollowing holds:(f(x) � e+ f(z1)) � f(y1) � f(y2) = (f(x) � e+ f(z2)) � f(y1) � f(y2):23

Theorem 9 1) PP 9̂ (A) is the free scone algebra generated by A"A with respect to the admissiblemaps.2) PP 9̂ (A) is the free scone algebra generated by A with respect to the scone-admissible maps.3) Let
Sc be a set of operations on scones such that +; � and e are derived operations. ThenPP9̂ (A) is not the free ordered
Sc-algebra generated by A. 2Proof of part 1. We shall verify the distributivity laws in the proof of algebraic character-ization of the salads in the next subsection. Distributivity laws for scones then follow fromthe observation that the second components of (U;L) � (V;M) and (U;L) � (V;M) coincide.Equation 4) is immediate. Thus, PP 9̂ (A) is a scone algebra.We must show that for any scone algebra Sc and an admissible map f : A"A! Sc, thereexists a unique scone homomorphism f+ : PP 9̂ (A) ! Sc such that f+ � �" = f . We need somesome facts about the scone algebras. In what follows, f : A"A ! Sc is an admissible map.The �rst equation for admissibility can be rewritten as f(u; l) � f(v;m) = f(u; l) � f(w;m) =f(u;m) � f(v; l). The easy proofs of 1){8) below are omitted.1) + is monotone with respect to the ordering given by �.2) � distributes over +.3) If a � b, then a � e � b � e.4) f(x; y) + f(z; y) � f(x; y).5) If a - b, then f(a; a) � e+ f(b; b) � e = f(a; a) � e.6) If a - b and b"x, then f(x; a) � f(b; b) = f(x; a).7) For any a"b, f(a; b) � f(b; a) � f(a; b).8) If a - b, then f(b; b) � f(a; a) = f(b; a).Let S = (U;L) be a scone over A. Since "U \"Lj 6= ; for all Lj 2 L, there exists a pair (ui; ljki)for every j such that ui" ljki. Let i(j) and k(j) be some indices such that ui(j)" ljk(j). Then Scan be represented as(E4) S = Xu2U �"(u; u) � e+ XLj2L(�"(ui(j); ljk(j)) �Ol2Lj �"(l; l))Recall that we use
 for repeated applications of �, and that summation over ; is the identity.We will never need product over the empty index set for all antichains in the second componentare nonempty. Moreover, (E4) does not depend on how the pairs (i(j); k(j)) are chosen.Using (E4), de�ne(E5) f+(S) = Xu2U f(u; u) � e+ XLj2L(f(ui(j); ljk(j)) �Ol2Lj f(l; l))Our �rst goal is to verify that f+ is well-de�ned, that is, it does not depend on how thepairs i(j); k(j) are chosen. To save space, denote Nl2L f(l; l) by L̂. First observe that anynumber of applications of f to a consistent pair (u; l) for l 2 Lj can be put after f(ui(j); ljk(j))because, by admissibility, f(ui(j); ljk(j)) � f(u; l) = f(ui(j); ljk(j)) � f(l; l) and � is idempotent. To�nish the proof of well-de�nedness, it is enough to show that the following equation holds:f(u; u)� e+f(u0; u0)� e+f(u; l)� L̂ = f(u; u)� e+f(u0; u0)� e+f(u0; l0)� L̂ where u; u0 2 U andl; l0 2 L. By distributivity, this reduces to showing that f(u; u)�e+f(u0; u0)�e+f(u; l)�f(l0; l0) =f(u; u)�e+f(u0; u0)�e+f(u0; l0)�f(l; l). Because of the symmetry in this equation, it is enough24

to provef(u; u) � e+ f(u0; u0) � e+ f(u; l) � f(l0; l0) � f(u; u) � e+ f(u0; u0) � e+ f(u0; l0) � f(l; l)Denote f(u; u) � e+ f(u0; u0) � e by p, f(u; l) � f(l0; l0) by q and f(u0; l0) � f(l; l) by r. We mustshow q+p � r+p. First, we prove p � r. First observe that if a � b, then a� e � b� c. Indeed,(a�e)�(b�c) = a�e+b�e = a�e by the same argument as in 5). Thus, we must show p � f(u; l).Calculate p �f(u; l) = (f(u; u)+f(u0; u0))� e �f(u; l) = (f(u; u)+f(u0; u0))� e�f(u; l)+f(u; l)�(f(u; u) + f(u0; u0)) � e = (f(u; u) + f(u0; u0)) � e + f(u; l) � e = f(u; u) � e + f(u0; u0) � e = p.Thus, p � r. Similarly, we can show that p � q.To prove q + p � r + p, calculate, using 2), (q + p)(r + p) = rq + rp + qp+ p. Since p � rand p � q, we obtain (q + p)(r + p) = rq + p. By monotonicity of +, we have rq + p � q + p.Assume we prove q + qr = qr; then q + p = q + q + p � q + qr + p = qr+ p. Hence, it remainsto show q + q � r + r � q = q � r + r � q. Calculate the left hand side: q + q � r + r � q =f(u; l) � f(l0; l0) + f(u; l) � f(l0; l0) � f(u0; l0) � f(l; l) + f(u0; l0) � f(l; l) � f(u; l) � f(l0; l0) = (byadmissibility of f) = f(u; l) � f(l0; l0) + f(u; l) � f(l0; l0) + f(u0; l0) � f(l; l) = q � r + r � q byidempotency of +. This �nishes the proof of well-de�nedness.Our next goal is to show, as we did for snacks, that if we drop max and min in de�ningoperations on scones, (E5) remains true. This makes it easier to prove that f+ is a homomor-phism.First observe that if u 2 U and v % u, then ~U � e = U [v gU [v�e (we use the notation ~Uas a shorthand for Pu2U f(u; u)). This follows immediately from 5).Consider the L-part. In order to show that for l0 % l 2 L, the corresponding summand of(E5) remains the same if f(l0; l0) is added, we must show f(u; l0)�f(l; l)�f(l0; l0) = f(u; l0)�f(l; l).The left hand side is equal to f(u; l0)�f(l; l)�f(l; l0) and by 6) f(l; l)�f(l; l0) = f(l; l). Therefore,the left hand side is equal to f(u; l0) � f(l; l).Finally, it must be shown that adding M v] L 2 L does not change the value of the righthand side of (E5). Assume u 2 U , m 2 M and l 2 L are such that m � l and u" l (we can�nd such because of the consistency condition and M v] L). Let a = L̂ and b = M̂ . We mustshow f(u; l) � a+ f(u;m) � b = f(u; l) � a (it was already shown that it does not matter whichconsistent pair is chosen in the representation (E5)). Let a0 = f(u; l) � a and b0 = f(u;m) � b.First, a0 �b0 = (f(u; l)�f(u;m)+f(u;m)�f(u; l))�a�b= (f(u; l)�f(u;m))�a�b= f(u;m)�a�b.Since L v] M and f(c; c) � f(d; d) = f(d; c) for d % c by 8), we obtain a0 � b0 = f(u;m) � b = b0.Hence b0 � a0 and a0 + b0 � a0 by 1). To prove the reverse inequality, a0 � a0 + b0, calculatea0 � (a0 + b0) = a0 + (a0 � b0) = a0 + a0 � b0 + b0 � a0 = f(u; l) � a + f(u; l) � f(u;m) � a � b +f(u;m) � f(u; l) � a � b. By admissibility, f(u; l) � f(u;m) = f(u;m) � f(u; l). Therefore,a0 � (a0 + b0) = f(u; l) � a+ f(u; l) � a � f(u;m) � b = a0 + a0 � b0 = a0. Thus, a0 � a0 + b0 and this�nishes the proof that the summand corresponding to M v] L can be added to (E5).Now we are ready to prove that f+ is a homomorphism. First, f+(;; ;) = e � e+ e = e.Let S1 = (U;L1) and S2 = (V;M). Writing expression (E5) for f+(S1 + S2) we can useU [V as the �rst component and L [M as the second. We know that it does not matterhow we pick an element from U [V to be consistent with some element of a set from L [M.For every L 2 L choose uL 2 U which is consistent with some lL 2 L and similarly for every25

M 2 M choose vM 2 V which is consistent with some mM 2M . Then we havef+(S1 +S2) = Xu2U[V f(u; u) � e+XL2L(f(uL; lL) � L̂) + XM2M(f(vM ;mM) � M̂) = f+(S1) + f+(S2)Clearly, this also holds if either L or M or both are empty.Let aL = f(u; l) � L̂, cM = f(v;m) � M̂ where u " l, v "m, v 2 V , u 2 U , l 2 L 2 Land m 2 M 2 M. Let b = ~U � e and d = ~V � e. Then f+(S1) � f+(S2) = (PL2L(aL +b)) � (PM2M(cM + d)) = PL2L;M2M(aL � cM + aL � d + b � cM + b � d). Since d = ~V � e,aL � d = aL � e and aL � cM + aL � d = aL � cM + aL � e = aL � cM . Similarly, b � d = b � e.Since b = ~U � e, b = b � e. Therefore, b � cM = b � e = b and b � d = b � e = b. Therefore,f+(S1) � f+(S2) = PL2L;M2M(aL � cM) + b. Consider aL � cM . Since f(v;m) occurs inside theexpression, by admissibility it can be changed to f(m;m). Therefore, aL � cM = f(u; l)� L̂ �M̂ .Thus, f+(S1) � f+(S2) = b+ XL2L;M2Mf(u; l) � L̂ � M̂ =Xu2U f(u; u) � e+ XN2fL[M jL2L;M2Mgf(u; l) � N̂ = f+(S1 � S2)Now, to �nish that proof that f+ is a homomorphism, it is enough to show that f+(S1) �f+(S2) = f+(S1 � S2) if one of the components is empty. Assume L = ;. Then the equationfollows from x � e � y = x � e and the fact that S1 � S2 = S1. If M = ;, then f+(S1) � f+(S2) =(~U �e+PL2L f(uL; lL)� L̂)� ~V �e = ~U �e+PL2L f(uL; lL)�e = ~U �e = f+(U; ;) = f+(S1 �S2).Thus, f+ is a homomorphism.The uniqueness of f+ follows from (E4) and well-de�nedness of (E5). Finally, f+(�"(x; y)) =f(x; x) � e+ f(x; y) � f(y; y) = f(x; y) � e+ f(x; y) = f(x; y). This shows f+ � �" = f . Part 1is proved.Proof of part 2. We must prove that for any scone algebra Sc and a scone-admissible mapf : A ! Sc, there exists a unique scone homomorphism f+ such that f+ � � = f . De�ne'f : A"A! Sc by 'f ((x; y)) = (f(x) � e+ f(z)) � f(y) if x; y - zIt follows from the de�nition of scone-admissibility that 'f is well-de�ned. That is, if x; y -z1; z2, then (f(x)�e+f(z1))�f(y) = (f(x)�e+f(z1))�f(y)�f(y) = (f(x)�e+f(z2))�f(y)�f(y) =(f(x) � e + f(z1)) � f(y) and hence the value of 'f ((x; y)) does not depend on the choice ofz % x; y.Let � : A ! A " A be given by �(a) = (a; a). Note that 'f � � = f : 'f((x; x)) =(f(x) � e+ f(x)) � f(x) = f(x) � e+ f(x) = f(x).Claim. 'f is admissible (according to de�nition before this theorem).Before we prove this, let us show how the theorem follows from the claim. Consider thisdiagram: 26

A � - A"A �"- PP 9̂ (A)@@@@@'f R Sc?9!f+Since 'f is admissible and �" � � = �, we can �nd a homomorphism f+ such that f+ � � =f+ � �" � � = 'f � � = f . Assume f� is another homomorphism PP 9̂ (A) ! Sc such thatf� � � = f . Consider (x; y) 2 A"A, x; y - z. Then �"(x; y) = (�(x) � e + �(z)) � �(y). Hence,f�(�"(x; y)) = (f(x) � e+ f(z)) � f(y) = 'f ((x; y)) which shows that f� � �" = 'f . Then, byclaim 2 and part 1, we obtain f� = f+ and thus there is a unique homomorphic extension off . Proof of the claim. First, we must show 'f ((x; y1)) � e = 'f((x; y2)) � e if x; y1 - z1 andx; y2 - z2. From the properties of scone algebras, it follows that a�e+b�e = a�e if a � b. Sincef(x) � f(z1), we obtain 'f((x; y1))�e = (f(x)�e+f(z1))�f(y1)�e = f(x)�e+f(z1)�e = f(x)�e.Similarly, 'f ((x; y2)) � e = f(x) � e = 'f((x; y1)).For the second condition in the de�nition of admissibility, assume u; l - xul and v;m -xvm. Moreover, let u;m - xum and w; l - xwl. We must show 'f((u; l)) � 'f((v;m)) ='f((u;m)) � 'f ((w; l)). Observe that b � c implies a � b � c = a � c in a scone algebra. Hence,f(xul)�f(xvm)�f(m) = f(xul)�f(m). Moreover, as we saw already, f(u)�e+f(xul)�e = f(u)�e.Now we calculate:'f((u; l)) � 'f ((v;m)) = (f(u) � e+ f(xul)) � f(l) � (f(v) � e+ f(xvm)) � f(m) =(f(u) � e+ f(xul) � e+ f(xul) � f(xvm)) � f(l) � f(m) =(f(u) � e+ f(xul) � f(xvm)) � f(l) � f(m) = (f(u) � e+ f(xul)) � f(l) � f(m)Similarly, 'f((u;m)) � 'f ((w; l)) = (f(u) + f(xum)) � f(l) � f(m)Now the desired equality follows from the scone-admissibility of f . This proves the claim andpart 2.Proof of part 3. Let x; y - z in A. Then ((x; x)� (;; ;)+(z; z))� (y; y) = (x; y). Now considerthe following poset A = fx; y; z; vg. In this poset x; y - z, x; y - v and fx; yg and fz; vg areantichains. Consider the scone algebra Sc1 = hB;+; �; ei whose carrier is a four-element chainp1 > p2 > p3 > p4. We interpret + as minimum of two elements, � as maximum, and e = p1.It is easy to see that Sc1 is a scone algebra (in fact, it is a distributive lattice).De�ne f : A! B as follows: f(z) = p1; f(v) = p2; f(x) = p3 and f(y) = p4. Suppose thatf can be extended to a homomorphism f+ : PP 9̂ (A) ! Sc. Thenf+((x; y)) = f+((�(x) � e+ f(z)) � �(y)) =(f(x) � e+ f(z)) � f(y) = maxfminfmaxfp1; p3g; p1g; p4g = p127

On the other hand, f+((x; y)) = f+((�(x) � e+ f(v)) � �(y)) =(f(x) � e+ f(v)) � f(y) = maxfminfmaxfp1; p3g; p2g; p4g = p2Hence, p1 = p2, which contradicts the de�nition of B. This shows that f can not be extendedto a homomorphism of scone algebras. This proves part 3 and theorem 9. 24.10 Universality of PP;(A)A salad algebra hSd;+; �;2;3i is an algebra with two semilattice operations + and � and twounary operations 2 and 3 such that the following equations hold:1) x � (y + z) = x � y + x � z.2) x = 2x+3x.3) 2(x+ y) = 2x+2y = 2x �2y = 2(x � y).4) 3(x+ y) = 3x+3y.5) 3(x � y) = 3x �3y.6) 2x �3y = 2x.7) 3x �3y +3x = 3x.8) 33x = 3x.9) 22x = 2x.The binary operations + and � are interpreted as for snacks, and the unary operations 2 and3 are interpreted as for P;(A). The order relation is de�ned as for the snacks. That is, x � yi� x � y = x.De�ne 2Sd = f2x j x 2 Sdg and 3Sd = f3x j x 2 Sdg. Some useful properties of saladalgebras are summarized in the following proposition.Proposition 4 Given a salad algebra Sd, the distributivity law x+ yz = (x+ y)(x+ z) holds.Consequently, +, 2 and 3 are monotone. In addition, the following holds:(i) 2x � x � 3x.(ii) 3Sd is a distributive lattice.(iii) + and � coincide on 2Sd.(iiii) 23x = 32y.Proof. Using 2) and distributivity law 1) calculate (x+y)(x+z) = (2x+2y+3x+3y)(2x+2z +3x+3z) = (by 1) and 6)) = 2x+2y +2z +3x+3x �3y +3x �3z +3y �3z = (by7)) = 2x+2y +2z +3x +3y �3z. Similarly, x+ yz = 2x+3x + (2y +3y)(2z +3z) =2x + 3x + 2y + 2z + 3y � 3z. Hence, (x + y)(x + z) = x + yz. Now monotonicity of +follows from the distributivity laws. That 2 and 3 are monotone, follows from 4) and 6). Toprove (i), calculate x � 2x = (2x + 3x)2x = 2x + 3x � 2x = 2x + 2x = 2x. Moreover,x �3x = (2x+3x)3x = 2x �3x+3x = 2x+3x = x.(ii) and (iii) follow immediately from the de�nitions.(iiii) By 7), 2x � 32y; hence 32x � 32y and by symmetry 32x = 32y. Similarly,23x = 23y. De�ne e3 = 32x and e2 = 23x. The equations above show that e3 and e2 arewell-de�ned. Now calculate e3+x = 32x+x = 32x+3x+x = 3(2x+x)+x = 3x+x = x.28

Similarly, e2 + x = 23x+ x = 23x+2x+ x = 2(3x+ x) + x = 2x+ x = x. Thus, both e3and e2 are identities for +. Therefore, e3 = e3 + e2 = e2. 2This proposition tells us that we can give the following equivalent de�nition of a saladalgebra: A salad algebra is a distributive bisemilattice hSd;+; �i on which a projection 2 anda closure 3 are de�ned such that 2Sd is a semilattice, 3Sd is a lattice, x = 2x + 3x and8x 2 2Sd 8y 2 3Sd: x � y.Theorem 10 PP;(A) is the free salad algebra generated by A.Proof. We �rst verify that PP;(A) is a salad algebra. We need to check the distributivity lawand 7); all others are straightforward. Let S1 = (U;L);S2 = (V;M) and S3 = (W;N). Ourgoal is to show S1 � (S2 + S3) = S1 � S2 + S1 � S3. The �rst components of the left hand and theright hand sides coincide. It this case it is easier to work with �lters rather than antichains {it allows us to drop max and min operations. In particular, it is enough to show thatf"(L [K)jL 2 L;K 2 M[Ng =f"LM jLM 2 fL [M jL 2 L;M 2 Mgg[f"LN jLN 2 fL [N jL 2 L; N 2 NggLet C be an element of the left hand side, i.e. C = "(L [K). Without loss of generality,K 2 M. Then C is in the right hand side. Conversely, if C is in the right hand side, sayC = "LM for LM = L [M , then C = "(L [M) and therefore is in the left hand side. Thisshows the equality above. Now, taking minimal elements for each �lter and applying max] toboth collections would give us second components of the lhs and the rhs of the distributivityequation, which therefore are equal.Now we prove 7), that is, 3(U;L) �3(V;M) +3(U;L) = 3(U;L). The �rst components ofboth sides are ;. The second component of the left hand side is max](L[max]fmin(L[M)jL 2L;M 2 Mg). Since min(L[M) v] L, this expression is equal to max]L = L. Hence, 7) holds.Thus, PP;(A) is a salad algebra.Now we show that PP;(A) is free. That is, for every monotone map f from A to a saladalgebra Sd there exists a unique salad homomorphism f+ : PP;(A) ! Sd such that f+ � � = f .Given a salad S = (U;L),(E6) S = 2Xu2U �(u) +3XL2LYl2L�(l)To see that this also works for empty components, observe that 2e = 3e = e. Now, givenmonotone f : A! Sd, de�nef+(S) = 2Xu2U f(u) +3XL2LYl2L f(l)We have: f+(�(x)) = f+((x; fxg)) = 2f(x) + 3f(x) = x. Now we must show that f+ is ahomomorphism. First, it follows immediately from the properties of 2 and 3 and the factthat e = 23x = 32y is the identity for + (see proposition 4) that f+(2S) = 2f+(S) andf+(3S) = 3f+(S). 29

Assume X v] Y , Y 6= ;, and let xy be an element in X below y 2 Y . Then2Xx2X f(x) �2Xy2Y f(y) = 2(Xx2X f(x) + Xy2Y f(y)) = 2Xx2X f(x) +2Xy2Y (f(y) + f(xy)) =2Xx2X f(x) +2Xy2Y (f(y) � f(xy)) = 2Xx2X f(x) +2Xy2Y f(xy) = 2Xx2X f(x)Therefore, if X and Y are equivalent with respect to v], 2Px2X f(x) = 2Py2Y f(y). Ournext goal is to show that 3Qx2X f(x) +3Qy2Y f(y) = 3Qy2Y f(y) if Y 6= ;. Since X v] Y ,we have Qx2X f(x) � Qy2Y f(y) and then the equation above follows from 7). Finally, letx0 % x 2 X. Then f(x0) � f(x) and Qx2X f(x) = f(x0) �Qx2X f(x).These three observations show that max and min operations can be disregarded when onewrites an expression for f+ on S1 + S2 or S1 � S2. Therefore, for S1 = (U;L) and S2 = (V;M),f+(S1 + S2) = 2 Xx2U[V f(x) +3(XL2LYl2L f(l) + XM2M Ym2M f(m)) = f+(S1) + f+(S2)To calculate f+(S1 � S2), observe that Pi2I 2xi �Pj2J 3yj = Pi2I;j2J 2xi �3yj = Pi2I 2xiand this is also true if I = ; because e �3y = e. Therefore,f+(S1 � S2) = (2Xu2U f(u) +3XL2LYl2L f(l)) � (2Xv2V f(v) +3 XM2M Ym2M f(m)) =(2Xu2U f(u) �2Xv2V f(v)) + (2Xv2V f(v) �3 XM2M Ym2M f(m)) ++(2Xv2V f(v) �3XL2LYl2Lf(l)) + (3XL2LYl2L f(l) �3 XM2M Ym2M f(m)) =2Xu2U f(u) +2Xv2V f(v) +3 XL2LM2M(Yl2L f(l) � Ym2M f(m)) =2 Xx2U[V f(x) +3 XL2LM2M Yy2L[M f(y) = f+(S1) � f+(S2)Thus, f+ is a homomorphism. Its uniqueness follows from (E6). Theorem is proved. 2Summing up, there are four kinds of operations naturally associated with the approximationconstructs: union operations (like +), pairwise union operations (like �), skewed versions of theabove (like � and �) and modal operations (like 2 and 3).4.11 Relationship between the approximationsIn this subsection we study the relationship between the four previously known approximations:mixes, sandwiches, scones, and snacks. Others may be included as well, but this will makediagrams incomprehensible, so we limit our attention to the examples that motivated this study.We also show that we can view all four as instances of the most general construction: saladsPP;(�). We will explain that by their \complexity" the approximation constructs \decrease" asSalads ! Scones ! Snacks ! Sandwiches ! Mixesand algebras as Salads ! Scones ! Snacks ! Mixes30

Relationship between algebras. The general technique we use is the following. Given analgebra hA;
i, let
0 be a subset of
 and
00 a set of derived operations. Let � = (
�
0)[
00.Then A can be considered as a �-algebra which is called �-reduct of hA;
i. We denote a mapthat takes an
-algebra hA;
i and returns the �-algebra hA;�i by '
!�.For reductions for the algebras from the previous section, we use the same superscripts asfor the approximation constructs themselves, except that we use index f (family) for PP i's. Forexample, a snack reduct of a scone will be denoted by '9̂ !8f .De�nition. a) Given a salad algebra Sd = hA;+; �;2;3i, de�ne its reducts as follows:Scone reduct ';!9̂ (Sd) = hA;+; �; ei where x � y = x �3y and e = 32x.Snack reduct ';!8f (Sd) = hA;+; �; ei where e = 32x.Mix reduct ';!8(Sd) = hA;+;2; ei where e = 32x.b) Given a scone algebra Sc = hA;+; �; ei, de�ne its reducts as follows:Snack reduct '9̂ !8f (Sc) = hA;+; �; ei where x � y = x � y + y � x.Mix reduct '9̂ !8(Sc) = hA;+;2; ei where 2x = x � e.c) Given a snack algebra Sn = hA;+; �; ei, de�ne its mix reduct '8f!8(Sn) as hA;+;2; eiwhere 2x = x � e.Our �rst goal is to show that the concepts above are well-de�ned, i.e. that a mix reduct is amix algebra, a scone reduct is a scone algebra etc. We then proceed to prove path independence.That is, it does not matter if we perform reduction from one algebra to another directly or viaa number of steps.Proposition 5 The reducts above are well-de�ned.Proof sketch. We give the proof that ';!9̂ (Sd) is a scone algebra; others can be proved ina similar fashion. That e is the identity for + was already proved. Distributivity of � over + isobvious. We must show the other distributivity law: a+x�y = (a+x)� (a+y). To prove this,calculate a+xa = a+(2x+3x)(2a+3a) = a+2x�2a+2x+2a+3x�3a = a+2x+3x�3a =a+(2x+3x)3a = a+a�3a. Now, a+x�y = a+x�3y = (a+x)(a+3y) = a+xa+a�3y+x�3y =a+x�3a+a�3y+x�3y = (a+x)(3a+3y) = (a+x)�(a+y). This proves distributivity. That� is a left normal band operation is obvious. We have e�x = 32x �3x = 3(2x �x) = 32x = e.Finally, x+x�y = x+(2x+3x)�3y = x+2x+3x�3y = x+2x+3x+3x�3y = x+2x+3x = x.Therefore, ';!9̂ (Sd) is a scone algebra. 2The path independence result can be formalized as follows.Theorem 11 The following diagram commutes (where the arrow from Sd to Sn is ';!8f andthe arrow from Sc to Mix is '9̂ !8): 31

Sd ';!9̂ - Sc@@@@@@@@R	��������Mix';!8? � '8f!8 Sn?'9̂ !8fThe proof of this theorem is given by straightforward calculations, and is omitted here.Embeddings. The reductions above correspond to the embeddings of the approximationconstructs. Assume that a poset A is given and P 0 and P 00 are two approximation constructionssuch that P 0 is \higher" than P 00 in the hierarchy shown in the beginning of the section. Thenthere is a reduction ' that takes P 0(A) and makes it an algebra in the signature correspondingto P 00. Depending on the generating poset for P 00(A), the subalgebra of '(P 0(A)) generated byeither �(A) or �"(A) is P 00(A). Moreover, this construction is \path independent" in the senseof theorem 11. To formalize it, we use the notationP 0(A) [�(A)] � '- P 00(A) or P 0(A) [�"(A)] � '- P 00(A)The meaning of these arrows is: Take P 0(A) and consider it as an algebra corresponding toP 00 (by means of '). Then its subalgebra generated by �(A) (or �"(A)) is P 00(A).Theorem 12 In the following diagram all arrows are well-de�ned and the diagram commutes:PP;(A) [�"(A)] � ';!9̂ - PP9̂ (A)@@@@@@@@@@@@@@@@@R
PPPPPPPPPPPPPPPPPPPPPPPPPPPq	�������������

���� @@@@@@@@[�(A)] � '9̂ !8fR PP8(A))���������������������������	��������[�"(A)] � '8f!8P8(A)[�(A)] � ';!8? � [�(A)] P 8̂ (A)?32

The arrows not shown on the diagram are:[�(A)] � ';!8f : PP;(A) ! PP8(A) [�"(A)] � ';!8 : PP;(A) ! P 8̂ (A)[�(A)] � '9̂ !8 : PP 9̂ (A) ! P8(A) [�"(A)] � '9̂ !8 : PP 9̂ (A) ! P 8̂ (A)[�(A)] � '8f!8 : P 8̂ (A) ! P8(A)Proof. Full proof requires a lot of calculations, so we only sketch it here. First observe thatall de�nitions of new operations for reductions agree with their interpretation. For example,given two scones (U;L) and (V;M) in PP 9̂ (A), the value of (U;L) � (V;M) in '9̂ !8f (PP 9̂ (A))is (U;L) � (V;M) + (V;M) � (U;L) = (min(U [V);max]fL [M jL 2 L;M 2 Mg), which isindeed the in�mum operation in PP8(A). The veri�cation that other reductions agree with theoperations on approximations is also straightforward. Now representations of sandwiches (E1),snacks (E3), scones (E4) and mixes as(E7) (U;L) = 2Xu2U �(u) +Xl2L �(l)tell us that all arrows are well-de�ned. Commutativity follows in a straightforward way fromthe representations (E1), (E3), (E4), (E7) and theorem 11. 25 Programming with approximationsIn this section we consider programming with approximations. As we explained before, we wantto make the approximation constructs �rst class citizens in a query language. In particular, wewant to view them as polymorphic type constructor. That is, for every object type t there isa new type t mix such that [[t mix]] = P8([[t]]) and a new type t scone such that [[t scone]] =PP9̂ ([[t]]) and so on.We turn the available universality properties and operations naturally associated with theapproximation constructs (see section 4) into programming syntax. We then show that lan-guages thus obtained have a number of drawbacks. In an attempt to overcome their problems,we look at the semantic connection between approximations and sets and or-sets, that sug-gests an encoding of the approximation constructions. We use the encodings and the languageor�NRA of [25] to show how a number of typical problems can be solved.Encoding approximations in the type system with or-sets gives us more than a purelytheoretical result. There exists a system called OR-SML [15], which is a set of libraries on topof Standard ML that implement the types of complex objects and or-sets and some featuresof a database programming language. We can use the encoding and then program some basicalgorithms for querying independent databases in a working systems. Preliminary results ofsome experiments in this direction can be found in [15].In this section we shall make use of the nested relational algebra, NRA, introduced insubsection 2.2. Recall that NRA's basic operators are the equality test, conditional if-then-else, record formation and projection, set union, cartesian product, singleton formation and theoperation ext that extends a function from elements of a set to the whole set, cf. [8, 7]. Insteadof ext , one can use map(f) that maps f over all elements of a set, together with � that
attensa set of sets (that is, takes union of elements), see [8].33

fun f+(;; ;) = ej f+(�(x)) = f(x)j f+(M1 +M2) = u(f+(M1); f+(M2))j f+(2M) = h(f+(M)) fun f+(;; ;) = ej f+(�"(x; y)) = f(x; y)j f+(S1 + S2) = u(f+(S1); f+(S2))j f+(2S) = h(f+(S))Figure 4: Structural recursion on mixes (left) and sandwiches (right)5.1 Using universality propertiesWe consider only mixes and sandwiches for illustration. Since mixes possess a universalityproperty, we can de�ne structural recursion on them. Similarly, structural recursion can bede�ned on sandwiches, but the second clause must be di�erent since sandwiches are generatedby A"A rather than A. See �gure 4.Structural recursion on mixes and sandwiches has a number of parameters: in additionto f , they include e; u and h prescribing its action in all possible cases of constructing a newmix/sandwich. As in the case of sets, one might ask if, by setting these parameters in such away that they do not obey the laws of the equational theory, one may write ill-de�ned programs.This is indeed the case.Proposition 6 It is undecidable whether the structural recursion on mixes or sandwiches iswell-de�ned for a given choice of e; u and h.Proof. Consider a special case when f+[e; u; h] is restricted to mixes of form (U; ;) and h = id .Then f+ is equivalent to the structural recursion on sets, whose well-de�nedness is undecidable,see [4]. The proof for other constructs is similar. 2The solution that worked for sets was to impose syntactic restrictions on the general formof structural recursion. In the case of mixes a similar restriction yields the following construct:mix ext (f) def= f+[(;; ;); f;+;2] provided f sends elements of type t to s mix . In this casemix ext (f) is a function of type t mix ! s mix .However, this alone does not eliminate the need to verify preconditions in the case whenwe use the ordered semantics. Assume that comparable elements have not been deleted froma pair of sets that represents a mix. That is, a mix (U;L) is represented by a pair (U1; L1)such that U = minU1 and L = maxL1. Note that such a pair (U1; L1) is not unique for (U;L).Thus, one would expect that whenever a function f can be applied to (U1; L1), it is the casethat f(U1; L1) yields a representation of f(U;L). But this is not always the case.To explain why, we use a simpler case of nested relations. As we have just seen, structuralrecursion on sets can be simulated with mixes of form (U; ;), and thus NRA can be consideredas a sublanguage of the language induced by the construct mix ext in the same way as NRA isinduced by ext .Recall that sets are ordered by v[, see subsection 2.1. The way to force sets into antichainsis to keep their maximal elements. Indeed, X v[Y i� maxX v[maxY , and the semantics of Xand maxX coincide. Now assume X1 and X2 of type ftg are such that maxX1 = maxX2 = X.34

Let f be of type s! t. Since map is a part of NRA, it would be desirable if map(f)(X1) andmap(f)(X2) yield sets Y1 and Y2 that represent Y = map(f)(X) in the sense that maxY1 =maxY2 = Y . However, this happens if and only if f is monotone with respect to the orderon objects [22]. Thus, monotonicity is needed for well-de�nedness in the case of antichainsemantics.Theorem 13 If sets are ordered by v[, then it is undecidable whether the semantics of anexpression in the nested relational algebra is a monotone function.Proof. Assume that monotonicity is decidable. Given two NRA functions f; g : fsg ! t,de�ne a new function � : fsg ! fboolg as �(x) := if x = ; then ftrueg else if f(x) =g(x) then ftrueg else ffalseg. Then f and g coincide i� f(;) = g(;) and � is monotone. Thushaving a test for monotonicity would give us equality test for functions of type fsg ! t. Butsuch functions include all functions de�nable in the relational algebra, and it is known (cf. [1])that equality of those is undecidable. 2We can observe the same phenomenon for mixes and other approximations, based on theirreduction to nested relations by means of \forgetting" of one of the components. Therefore,turning universality properties into syntax, we encounter a number of problems. First, mostoperations used in the universality properties for approximations are not as intuitive as union,intersection and so on. Second, all approximations have di�erent equational characterizations,and therefore there are several forms of structural recursion and as many sets of the ext prim-itives. If a language contains all of them, it is going to be too complicated to comprehend.Finally, veri�cation of preconditions is big problem that can not be taken care of by the com-piler as the preconditions are undecidable { even for the ext operations when the ordered modelis used. Therefore, we need a unifying framework for programming with approximations.5.2 Using or-setsOr-sets are sets of disjunctive possibilities [17, 25]: an or-set h1; 2; 3i denotes an integer whichis 1, or 2 or 3. A language or�NRA was proposed in [25]. Its type system includes, in additionto sets and records, the or-set type constructor hti. Its expressions include those in the nestedrelational algebra and an or-set analog for each set operation. In addition, there is an operation� : fhtig ! hftgi which essentially converts a conjunctive normal form into disjunctive normalform by picking one element from each or-set in the input. For example, �(fh1; 2i; h2; 3ig) =hf1; 2g; f1; 3g; f2g; f2; 3gi. For technical convenience, we also include operations that convertsets into or-sets and vice versa.Recall that or-sets are ordered by v], see subsection 2.1 and [25]. Thus, we can de�ne anorder relation for every object type t, provided such a relation �b is given for every base typeb: � Record: [l1 = x1; : : : ; ln = xn] �[l1:t1;:::;ln:tn] [l1 = y1; : : : ; ln = yn] i� x1 �t1 y1, : : : ,xn �tn yn.� Set: X �ftg Y i� X �[t Y . That is, 8x 2 X9y 2 Y : x �t y.35

� Or-set: X �hti Y i� X �]t Y . That is, 8y 2 Y 9x 2 X : x �t y.Recall that the approximation constructs are ordered by vB or vBf , and these orderings canbe compactly represented as v] � v[and v] �(v])[. This suggests the following encoding ofthe approximation constructs with sets and or-sets:Approximations Encodingt mix ; t sand and similar hti � ftgt snack ; t scone and similar hti � fhtigIt can be immediately seen from this encoding that the orderings on the encodings of objectsof types t mix ; t snack etc are precisely the orderings associated with those approximationconstructs. Moreover, there is a close semantic connection between or-sets and approximationsthat further justi�es this connection. This connection makes use of two semantic functionsfor objects with or-sets (cf. [25]) and we omit it here and refer the reader to [22] for technicaldetails.To show that this encoding is useful for programming with approximations, denote byLmix ;Lsand ; : : : the language obtained from the restricted form of structural recursion (that is,ext) for the mixes, sandwiches etc (that is, for the constructs for which a universality propertywas established).Theorem 14 Assume that each base type b comes equipped with an order relation �b and atest for consistency "b. Then, using the encoding of approximation constructs with sets andor-sets, the following can be expressed in or�NRA.1. All operations on approximations arising from the universality properties.2. Orderings on approximations and tests for the consistency conditions.3. All languages L? for all approximation constructs for which universality properties were found.Proof sketch. To prove 1 and 2, note that v] and v[are �rst-order de�nable and the Bunemanorderings are compositions of those. Thus, they are de�nable in or�NRA. It is an easy exerciseto see that all operations on approximations that arise from the universality properties arede�nable. Moreover, the function that converts all objects into antichain by taking maximalelements for sets and minimal elements for or-sets is also de�nable in or�NRA.For 3, we consider mixes as an illustration. By fa we shall denote the antichain analog of afunction f , that is, f followed by converting of its output into an antichain-based object. Denotethe �rst and second projections by �1 and �2 . For all set operations, there are operations withpre�x or that act similarly on or-sets. For f : t! s mix, where s mix is now abbreviation forhsi � fsg, we havemix ext (f) = �(U;L):(or �a(or mapa(�1 � f)(U)); �a(mapa(�2 � f)(L))) : t mix! s mixMix singleton is de�ned as � mix (x) = (or �; �); the type of � mix is s ! s mix. The prooffor other constructions is similar. The functions converting sets into or-sets and vice versaare needed for the multi-element lower approximations. In fact, they are needed to de�ne theconverse to �a. 236

While the problem that monotonicity of expressions is undecidable remains for or�NRA,we believe that this language is more suitable for programming with approximations than thecollection of languages L?. First, its type system is much simpler, and so are the primitives. Itis still possible to write ill-de�ned programs, but using the primities of or�NRA this appearsto be less likely than with primitives such as mix ext (f). Second, the number of primitives ofor�NRA is small, and we do not need all primitives ext ? as they can be encoded. Again, thismakes programming easier. Finally, each expression of or�NRA is well de�ned. The problemof non-well-de�nedness does not go away completely: we can have an or�NRA expression intowhich an ill-de�ned program in one of the languages L? is translated. However, this problemno longer concerns the main programming primitives of the language.Example: removing anomalies and promotion in sandwichesAs an example of using the encoding with sets and or-sets, let us show how two of the algorithmsfrom [5] can be implemented. As an additional bene�t of encoding approximations with otherdatatypes, we demonstrate that we can handle data anomalies.Assume that a query is asked, and it returns a sandwich approximation for another query.However, this answer fails to satisfy the consistency condition of a sandwich. For instance, inthe TA example we may get two relations:Employees: Name Salary RoomJohn 15K ?Mary 12K ? CS1: Name Salary RoomJohn ? 76Michael ? 320They fail to satisfy the consistency condition of a sandwich because Michael is not an employee.Hence, as the �rst step, we eliminate this anomaly to force these relations into a sandwich. Inwhat follows, we use functions such as select , cartprod, Boolean connectives in conditions andso on. We also use one level of �-abstraction. As follows from [8], all of these are de�nable inNRA.To remove anomalies, we only leave those elements in CS1 that are consistent with some ele-ment of Employee. First, de�ne the function that selects the subset of element of X compatiblewith x: compatible � �(x;X):select (�z:x"z)(X)Then the function remove anomaly keeps elements of the lower approximation that are com-patible with the upper:remove anomaly � �(U;L):(U; select(�x::eq(;; compatible(x;U)))(L))The idea of the promotion operation of [5] was illustrated in the Introduction by extractinga mix from a sandwich. For each element of the lower approximation, as much information aspossible is derived about it by using the upper approximation. To do this, we need functionsperforming order-theoretic join and meet (least upper and greatest lower bounds). We assumethat such operations are given for base types. Then they can be derived for all types [6, 22].37

Assume that we have them in the form of functions join;meet : t � t ! hti. The result ofjoin(x; y) is hx _ yi if x _ y is de�ned and hi otherwise, and similarly for meet (x; y). De�nebig meet � id+[hi; �(x; y):or ext (�z:meet(�1(z); �2(z)))(cartprod(x; y))]Here id+[e; u] is structural recursion on or-sets with parameters e; u and id. This functioncalculates the meet of all elements in an or-set.To de�ne the promotion operation, for each l in the lower approximation L, �nd the set Ulof all elements in U consistent with l, and calculate V(l_uju 2 Ul) to infer as much informationabout l as possible. This is done by usingpromote0 � �(U;L):(U;�(map(�l:big meet(or ext(�z:join(z; l))))(L)))This function, when applied to (U;L) returns the new lower approximation in the formhfl1g; : : : ; flngi instead of fl1; : : : ; lng. Thus, the operation promote can now be de�ned as�(U;L):�(or to set (promote0(U;L))).Applying promote to the relations Employees and CS1 gives us the new lower approximationthat consists of one record [John, 15K, 76]. Thus, it tells us that John from o�ce 76 is a TAwith salary 15K, and Mary with salary 12K could be a TA. Hence the result is an approximationin the sense of Lipski [27, 28]: we have the set of \for sure" answers and the set of \maybe"answers.6 ConclusionPrevious papers on approximate answers to queries against independent databases ([5, 13, 29,31]) do not address two important problems, which are required for a general theory. First,we need a classi�cation of models. In each of the above mentioned papers, only one or twomodels are considered, even though it is clear they do not cover all possible situations. Thesecond problem is programming with the approximation constructs. In its rudimentary formthis problem was considered in [5], which proposed the promote operation, but no generalprinciples were known.Our goal was to address these two problems. Let us brie
y summarize what has beenachieved.� Using the approach to partial information based on representing partiality via orders onobjects (cf. [5, 21, 22]), we have given formal models of approximate answers to queriesand classi�ed them, arriving at ten possible constructs.� We have explained a new approach to query language design, based on turning univer-sality properties into syntax, thus obtaining the introduction and elimination operationsfor the data types. To apply this approach to approximations, we need the operationsnaturally associated with them. To �nd such operations, we have characterized most ofthe approximation constructs via their universality properties.It must be emphasized that, in contrast to datatypes such as sets, bags and lists, �ndinguniversality properties for approximation is a nontrivial algebraic problem. Moreover, we38

have obtained results of a new kind saying that some of the constructs do not possessthose properties.� We have looked at the languages arising from the universality properties of approxima-tions, and showed that they have three major limitations: the operations are rather hardto grasp, there are too many of them and the compiler cannot verify all preconditionsfor well-de�nedness. To overcome these problems, we suggested using or-sets to encodeapproximations, and showed how the language from [15, 25] can be used to answer sometypical queries.Despite the fact that a straightforward application of the data-oriented approach did notlead to a practical language, we still regard the work on universality of approximations asvery useful. After all, those properties gave us the operations naturally associated withthe constructs, and enabled us to prove theorem 14 which is the best justi�cation forusing or�NRA to program with approximations.A number of open problems remain. For two constructs no universality results are known, andwe believe that negative results can be proved. We believe that additional optimizations can befound for standard procedures for querying independent databases. That is, the implementationshown in this paper is not the most e�cient one, and this may in
uence the design of a languagethat deals with approximations. The last two items are more speculative. First, it may beinteresting to see what (if any) are the connections between our work and recent work [10, 11]on approximating recursive datalog programs with nonrecursive ones. Second, we have shownthat some modal operations are naturally associated with approximations. Modal operationshave been used in the context of incomplete information in databases, for example, by [25, 33]to describe conjunctive and disjunctive sets by means of modal connectives, and in [20] toprovide semantics of constraints. Whether there are any connections between [20, 33] and ourwork, remains to be seen.Acknowledgements. I wish to thank Peter Buneman, Carl Gunter, Elsa Gunter, Achim Jung,Paris Kanellakis, Hermann Puhlmann, Anna Romanowska, Moshe Vardi and the reviewers for theircomments and suggestions, and Tim Gri�n for a careful reading of the manuscript.References[1] S. Abiteboul, R. Hull and V. Vianu. \Foundations of Databases", Addison Wesley, 1995.[2] M. Barr and C. Wells, \Category Theory for Computing Science", Prentice Hall, 1990.[3] J. Biskup, A formal approach to null values in database relations, in: \Advances in DataBase Theory", Volume 1, Prenum Press, New York, 1981.[4] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of pro-gramming with sets/bags/lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain,pages 60{75. Springer, 1991.[5] P. Buneman, S. Davidson, A. Watters, A semantics for complex objects and approximateanswers, Journal of Computer and System Sciences 43(1991), 170{218.39

[6] P. Buneman, A. Jung, A. Ohori, Using powerdomains to generalize relational databases,Theoretical Computer Science 91(1991), 23{55.[7] P. Buneman, L. Libkin, D. Suciu, V. Tannen and L. Wong. Comprehension syntax. SIG-MOD Record, 23 (1994), 87{96.[8] P. Buneman, S. Naqvi, V. Tannen and L. Wong. Principles of programming with complexobjects and collection types. Theoretical Computer Science 149 (1995), 3{48.[9] L. Cardelli. Types for data-oriented languages. In Proceedings of EDBT-88 (J.W. Schmidt,S. Ceri and M. Missiko� eds), Springer Lecture Notes in Computer Science, vol. 303,Springer Verlag, 1988.[10] S. Chaudhuri. Finding nonrecursive envelopes for database predicates. In ACM Symposiumon Principles of Database Systems (PODS'93), pages 135{146.[11] S. Chaudhuri and Ph. Kolaitis. Can Datalog be approximated? In ACM Symposium onPrinciples of Database Systems (PODS'94), pages 86{96.[12] G. Grahne, \The Problem of Incomplete Information in Relational Databases", Springer,Berlin, 1991.[13] C. Gunter, The mixed powerdomain, Theoretical Computer Science 103 (1992), 311{334.[14] C. Gunter, \Semantics of Programming Languages", The MIT Press, 1992.[15] E. Gunter and L. Libkin, OR-SML: A functional database programming language fordisjunctive information and its applications. 5th Int. Conf. on Database and Expert SystemsApplications, LNCS 856, Springer Verlag, 1994, pages 641{650.[16] T. Imielinski and W. Lipski. Incomplete information in relational databases. J. ACM31(1984), 761{791.[17] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects | a data model for de-sign and planning applications. In Proc. of the ACM-SIGMOD International Conf. onManagement of Data, Denver, Colorado, May 1991, pages 288{297.[18] A. Jung, L. Libkin and H. Puhlmann, Decomposition of domains, In: Proc. of the Con-ference on Mathematical Foundations of Programming Semantics{91, LNCS 598, SpringerVerlag, Berlin, 1992, pages 235{258.[19] A. Jung and H. Puhlmann, Types, logic, and semantics for nested databases. In: Proc. ofthe Conference on Mathematical Foundations of Programming Semantics{95, ElectronicNotes in Theoretical Computer Science, Elsevier Science Publishers, 1995.[20] K.L. Kwast. A deontic approach to database integrity. Annals Mathematics and Arti�cialIntelligence 9 (1993), 205{238.[21] L. Libkin, A relational algebra for complex objects based on partial information, In LNCS495: Proceedings of MFDBS{91, pages 36{41, Rostock, 1991. Springer-Verlag.[22] L. Libkin. \Aspects of Partial Information in Databases". PhD Thesis, University ofPennsylvania, 1994.[23] L. Libkin. Approximation in databases, In Proc. of Intl. Conf. on Database Theory, pages411{424, LNCS 893, Springer Verlag, 1995.40

[24] L. Libkin and L. Wong, On representation and querying incomplete information indatabases with bags. Information Processing Letters, 56 (4) (1995), 209{214.[25] L. Libkin and L. Wong, Semantic representations and query languages for or-sets, Journalof Computer and System Sciences, 52 (1) (1996), 125{142.[26] L. Libkin and L. Wong, Query languages for bags and aggregate functions. Journal ofComputer and System Sciences, to appear. Extended abstract in ACM Symposium onPrinciples of Database Systems (PODS'94), pages 155{166.[27] W. Lipski, On semantic issues connected with incomplete information in databases, ACMTrans. Database Systems 4 (1979), 262{296.[28] W. Lipski, On databases with incomplete information, J. ACM 28 (1981), 41{70.[29] T.-H. Ngair. \Convex Spaces as an Order-theoretic Basis for Problem Solving", (PhDThesis), Technical Report MS-CIS-92-60, University of Pennsylvania, 1992.[30] J. P lonka. On distributive quasilattices. Fundamenta Mathematicae 60 (1967), 191{200.[31] H. Puhlmann, The snack powerdomain for database semantics, In LNCS 711: MFCS-93,(A. Borzyszkowski ed.), Springer Verlag, 1993, pages 650{659.[32] A. Romanowska and J.D.H. Smith, \Modal Theory: An Algebraic Approach to Order,Geometry and Convexity", Heldermann Verlag, Berlin, 1985.[33] B. Rounds, Situation-theoretic aspects of databases, In Proceedings of Conference onSituation Theory and Applications, CSLI vol. 26, 1991, pages 229-256.[34] H.-J. Schek and M. Scholl, The relational model with relation-valued attributes, Informa-tion Systems 11 (1986), 137{147.[35] C. Zaniolo. Database relations with null values. Journal of Computer and System Sciences28 (1984), 142{166.
41

