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Abstract

Given x € R™ an integer relation for x is a non-
trivial vector m € Z™ with inner product (m,x) =
0.

In this paper we prove the following: Unless
every NP language is recognizable in deterministic
quasi-polynomial time, i.e., in time O(nPeY(1o87))
the £ -shortest integer relation for a given vector
x € Q" cannot be approximated in polynomial
time within a factor of 2'°8 '5_7", where v is an
arbitrarily small positive constant.

This result is quasi-complementary to positive
results derived from lattice basis reduction. A vari-
ant of the well-known L3-algorithm approzimates
for a vector x € Q" the ly-shortest integer relation
within a factor of 22 in polynomial time.

Our proof relies on recent advances in the theory
of probabilistically checkable proofs, in particular
on a reduction from 2-prover I1-round interactive
proof-systems.

The same inapprorimability result is valid for
finding the £ -shortest integer solution for a ho-
mogeneous linear system of equations over Q.

Keywords Approximation algorithm, computa-
tional complexity, integer relations, label cover,
NP-hard, probabilistically checkable proofs, 2-
prover 1-round interactive proof systems.

1 Introduction

Given x = (21,...,2,) € R” an integer relation
for x is a non-trivial vector m = (mq,...,m,) €
Z" satisfying (m,x) = 0, where (-,-) denotes the
Euclidean inner product (m,x) := Y ., m;z;. We
investigate into the following minimization prob-
lems:
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SHORTEST INTEGER RELATION in £,-norm (SIR,)
INSTANCE: A rational vector x € Q™

SOLUTION: A non-zero vector m € Z™ such that

(m,x) =0

MEASURE: The fo-norm ||m||s := maxi<i<n |m;|

of the vector m

SHORTEST SIMULTANEOUS INTEGER RELATION in
£s-norm (SSIR)

INSTANCE: r rational non-zero vectors yy,. ..
QTL

SOLUTION: A simultaneous integer relation m € Z"
for y1,...,y,, i.€., a non-zero vector m € Z" such
that (m,y;)=0,j=1,...,7

MEASURE: The £.,-norm ||m||s 1= maxi<i<n |m]
of the vector m

¥r €

The problem of finding short and shortest in-
teger relations is rather important because it can
be applied to compute minimal polynomials of an
algebraic number, (simultaneous) diophantine ap-
proximations and integer dependencies among real
vectors (see [12, 13, 10]).

Obviously, for a non-zero vector x € Q™ there
are n — 1 linearly independent integer relations.
However, van Emde Boas [16] has shown that the
decision variant of SIR., is NP-complete. For
arbitrary real non-zero x € R" it cannot even be
decided in a very general model of computation
whether there exists an integer relation at all (see
Babai, Just and Meyer auf der Heide [7]).

On the other hand, Hastad, Just, Lagarias and
Schnorr [10] proposed a polynomial time algorithm
which approximates for input x € Q™ the shortest
integer relation in the Euclidean norm (-,-)!/2
within a factor 27/2. An algorithm is said to
approzimate a positive real-valued function opt(-)
within a factor f if on every input I, the value of
its output is within a factor f of opt(I). Thus,
by the result of [10] SIR, can be approximated in
polynomial time within a factor \/n2"/2.

The problem of finding the shortest integer rela-
tion in any £,-norm clearly contains the SHORTEST



VECTOR problem SV, for integral lattices in the
same {p-norm, i.e., the problem of finding for an
integral basis by,...,b, of an additive subgroup
of the Z™, the £,-shortest non-zero linear integral
combination of by,...,b,; its decision variant is
known to be NP-complete for p = co (see [16]).
On the other hand, Arora, Babai, Stern and
Sweedyk [4] have shown that under the widely be-
lieved assumption NP Z QP there exists no poly-
nomial time algorithm approximating the SHORT-
EST VECTOR problem in the /.-norm within
a factor of 210%0'5_7", where « is an arbitrarily
small positive constant. QP denotes the set
of all languages which are recognizable in time
O(nPo¥(°8 ™)) wwhere n is the length of the input.
In our reduction we adapt the proof in [4] to
derive the same inapproximability result for the
SSIR., problem. For the reduction we will use an
equivalent optimization problem, stated as follows.

MIN Z-SOoLUTION OF HOMOGENEOUS LINEAR SYS-
TEM in £oo-norm (MIN HLS,)

INSTANCE: A homogeneous linear system Ax = 0
of r equations in n variables, where A is a rational
r X n matrix and 0 the all-zero vector in R™
SOLUTION: A non-zero vector x € Z™ satisfying
Ax =0

MEASURE: The {o-norm ||X||so := maxi<i<n |Zi| of
the vector x

The inapproximability result established here
adds to the recently derived results on optimization
problems arising from linear systems of equations
(see [2, 1]).

From the problem MIN Z-SOLUTION OF HOMO-
GENEOUS LINEAR SYSTEM in £, -norm we give a
gap-preserving reduction to the problem SHORTEST
INTEGER RELATION in /. ,-norm which implies the
claimed inapproximability result.

2 Preliminaries

We briefly introduce some notation (see [6]):

Definition 1 An optimization problem II is a set
Z C {0,1}* of instances, a set S C {0,1}* of
feasible solutions on input I € 7, and a polynomial
time computable measure m : Z x & — R, , that
assigns each tuple of instance I and solution S, a
positive real number m(1,S), called the value of
the solution S. The optimization problem is to
find, for a given input I € 7 a solution S € § such
that m(Z, S) is optimum over all possible S € S.

If the optimum is minges{m(I,S)} (resp.
maxges{m(I, S)}) we refer to IT as a minimization
(resp. maximization) problem.

Definition 2 For an input I of a minimization
problem IT whose optimal solution has value opt([),

an algorithm A is said to approzimate opt(I) within
a factor f(I) iff

opt(I) < A(I) < opt(I)f(I),
where f(I) > 1 and A(I) > 0.

For exhibiting the hardness of approximation
problems we introduce the following reduction due
to Arora [3].

Definition 3 Let IT and II' be two minimization
problems and p, p' > 1. A gap-preserving reduction
from II to II' with parameters ((c,p),(c',p')) is a
polynomial time transformation 7 mapping every
instance I of II to an instance I' = 7(I) of II' such
that for the optima opt;(I) and opt . (I') of I and
I', respectively, the following holds:

optg(I) <e = optp(I') <
opty(I) >c¢c-p = optyp(I')>c-p,

where ¢, p and ¢/, p' depend on the instance sizes
|I| and |I'|, respectively.

3 Min Pseupo LABEL COVER

In the following G = (V;, V2, E) denotes a bipartite
graph, B a set of labels for the vertices in V; U V5,
and for e € E there exists a partial function II, :
B — B describing the admissible pairs of labels.
Moreover, we assume that G is regular, i.e., every
node of G is incident to the same number of edges.
This property of G is a result of the reduction in
[4] from 3-SAT to MIN PSEunOo LABEL COVER
sketched below. We adapt the notation of [4].

Definition 4 A labelling of G = (V1,V2,E) is a
pair (P1,P2) of functions P; : V; — 2B, i = 1,2,
assigning each vertex in V3 U V5 a possibly empty
set of labels.

Definition 5 Let (P1,P2) be a labelling of G =
(V1,V2, E) and e = (v1,v2), v1 € V1, v2 € V3, an
edge of G. We call e = (vq,v2)

untouched iff Py(v1) = Pa(v2) = 0,

covered iff Py(v1) # 0, Pa(ve) # 0 and for all
labels ba € Po(v2) there exists a label by €
P1(v1) such that II.(by) = bs or

cancelled iff Py(ve) = 0, P1(v1) # 0 and for
every label by € Pi(v;) there exists a label
b} € Py(v1) such that for some label by € B we
have He(bl) = bz and He(bll) = bz.

A labelling (P1,P2) of G = (V1, V5, E) is called a
pseudo-cover of G iff

(1) Uv1EV1,v2€V2 Pl(Ul) U Pz(’Uz) # @ and



(ii) every edge of G is either untouched, covered
or cancelled by the labelling (Py, P2).

Definition 6 The £,-cost of a labelling (P1,P2)
for a graph G = (V1, Vs, E) is defined as

COSt(Pl,PQ) = Eg\}/i |7)1(7)1)|.

Definition 7 MIN Pseupo LABEL COVER
(MIN PSL,)
INSTANCE: A regular bipartite graph G =

(V1, V2, E),aset oflabels B = {1,...,.N}, N € N},
and for every edge e € E a partial function II, :
B — B such that II;1(1) # @ for the distinguished
label 1 € B

SOLUTION: A pseudo-cover (Py,P2) of G
MEASURE: The £.-cost cost(P1, P2) of the pseudo-
cover (P1,P2)

Remark In the above definition we can always
ensure the existence of a pseudo-cover with /.-
cost at most N; we simply let Pa(vs) = {1} for
all v € V5 and Py(v1) = B for all v, € V5.

Lemma 1 ([4]) There exists a quasi-polynomial
time, i.e., O(nP°Y(1°8 ")) transformation T from 3-
SAT to MIN PSEUDO LABEL COVER such that, for
all instances I,

I €3-SAT = 3 pseudo-cover (P1,Pz) of 7(I) :
cost(P1,P2) =1

I ¢3-SaT = V pseudo-cover (P1,P2) of 7(I) :
cost(P1,P2) > log” > N

where 7y is an arbitrarily small positive constant and
N is the size of 7(I).

Remark In their proof Arora et al. [4] use
results of [9, 5] stating that every language in
NP (particularly 3-SAT) has a 2-prover 1-round
interactive proof-system. Roughly speaking, a 2-
prover 1l-round interactive proof-system consists
in one probabilistic polynomial time verifier com-
municating with two computationally unbounded
provers who are not allowed to communicate with
each other. The provers want to convince the
verifier that a given input x belongs to a prespec-
ified language L. The key idea of the reduction
presented in [4] is the translation of the provers’
strategy causing the verifier to accept into an
instance of MIN PSEUDO LABEL COVER using
the specific properties of the 2-prover 1-round
interactive proof-system of [9]. Hereby a large
gap between the acceptance probability in the
case that I € 3-SAT versus the case I ¢ 3-SAT
translates into a large gap between the £, -cost
of the corresponding MIN PSEuDO LABEL COVER
instance in both cases.

4 MIN Z-SOLUTION OF HOMOGENEOUS
LINEAR SYSTEM

Theorem 2 There exists a polynomial time trans-
formation T from MIN PSEUDO LABEL COVER to
MIN Z-SOLUTION OF HOMOGENEOUS LINEAR SYS-
TEM such that, for all instances I and for allp > 1,

optyinpst., () =1 = optyinars., (T()) =1
oPtyrinpsL., (I) > p = obtyiars. (T(1)) > /p-

Proof. From a given MIN PSEUDO LABEL COVER
instance I = (V4,Vs, E,1I,B,N') we construct a
homogeneous linear system of equations Ax = 0
with A an r x n matrix of entries {—1,0,1}, r =
[Vi|N + |E|(N + 1) and n = 2|V1|N + |Vo|N + 1.
For every pair (v,b) withv € ViUV, and b€ B
we define a column vector a, ; € {—1,0,1}" of A
as follows. The first |E|(N + 1) coordinates of a,
are split into |E| blocks of e-projections u.(a, ) —
one (N + 1)-length block for every edge e € E. In
particular, we define for every (vq,b2) € Vo X B

iff e is incident to vo

u.(a ) = b
elQuzba) == 0 otherwise

and for every (vy,b1) € Vi x B

1—en,@s,) iff eisincident to
Ue(Ay, ;) = vy and I, (by) # 0
0 otherwise
where e;, j = 1,...,N, denotes the j*h-unit vec-
tor and 0, 1 the all-zero, all-one vector in RV+1,
respectively.

The definition of the remaining |Vi|N coordi-
nates of a, ; uses the properties of Hadamard ma-
trices. A Hadamard matriz of order £, denoted by
H,, is an ¢ x / matrix with £1 entries such that
HH ;r = (I,. (Hadamard matrices can iteratively
be constructed if ¢ is a power of 2, cf. [14]). The
columns of %H ¢ clearly form an orthonormal ba-

sis. Therefore ||%ng||2 = ||z||2 for every z € Z~.

If z € Z* has at least k non-zero entries we thus
have ||H z| s > Vk.

We may assume that for £ = A there exists a
Hadamard matrix H,; = [hy,...,h] with column
vectors hy of Hy, each of them uniquely identified
with a label b € B. We now split the last |V;|NV
coordinates of a, ; into |V} | blocks of vy -projections
u,, (a,5) — one N-length block for every vertex
v1 € Vi — where the v;-projections for every v €
V1 UV, and b € B are defined as follows

. hy ifv=uv
uy, (avp) = { 0 otherwise

and 0 denotes the all-zero vector in RV . This
definition clearly implies u,, (ay ) = 0 for all v €
V> and all b € B.



T 0 1 0
0 1 0
N+1 €I (b1)| 1 | M.(b1)™-entry 1—en, )| o €| 1 | bih-entry
0 1 0
: (b2=TIc(b1))
0 1 0
e-projection
N hb1 hb1 0
vi-projection
Avy,by Avy,b2

Figure 1: The resulting column vectors due to [4]

|V1|N columns |V2|N columns 1 column |V;|N columns
|B|(N+1) rows [ [Ue(@u,by),- -5 Ue(Ap,by )] cez [ue(ay,p)] B s 1 0
|[V1|N rows ['I.LU1 (av,bl),.. .,uvl(av’bN)]ulegvl 0 0 I\V1|./\f
v 1
Figure 2: The matrix A
(owing lack of space we abbreviated [Ue(ay,p;), .-, Ue(Ay,ppy )] cer =: [Ue(Ayp)]cem )
vEVy (v,b)EVy XB

Moreover, we define the (|V3|N + |V NV + 1)t~
column vector ay as the vector having 1 in each
of the first |E|(N + 1) coordinates and 0 in the
remaining ones.

The remaining |[V4|A column vectors are
€B|(N+1)+i> & = 1,...,|Vi|N where e; denotes the
j™-unit vector in RIVr N+ EIN+1),

The resulting matrix A is shown in the above
Figure 2.

Given a vector y € RVIINHIEIWNHD) et up(y)
denote the vector y restricted to its first |E|(N +1)
coordinates. Let x = ) x,3ug(a,s) be a non-
trivial linear integral combination of the ‘restricted’
column vectors ug(a,). Then, assigning every
vertex v a label b iff 2,5 # 0 defines a labelling
(PX,PX) induced by the vector x. From [4,
Corollary 10] it follows that any such x with
x = aug(ag), @ € Z, induces a pseudo-cover of
(V. V2, E).

Thus, any non-trivial integral solution x of the
homogeneous linear system Ax = 0 induces by its
first |[V1|N + |V2|N coordinates a pseudo-cover of
(Vi1, Va, E) (note that the last |V |V column vectors
of the matrix A have 0-entries in its first |E|(AN +1)
coordinates).

Thus, for the induced pseudo-cover (P¥,PX)
there exists a vertex v; € V; with at least
optyrinpst.. (I) labels assigned. This in turn means
that x has at least optyy;,pgr, () non-zero entries.
By the above properties of the Hadamard matrices
we see that there exists an index i* € {|E|(N +
1)+ 1,...,|E|(WN +1) + |[V1|N} such that

[Vi|NV

Z @i ;25| 2 \/ OPbynpsL,, (I)-
j=1

As x is a solution of Ax = 0 its remaining |V1|N
coordinates are forced to cancel out each of the



sums
V1|V
D @y,
j=1

where ¢ = |E|((N + 1) + 1,...,|E|(N + 1) +

|[V1|N. Hence, any non-trivial integral solution x
of Ax = 0 has one entry, say Z|v, N +|Va|N+1+4j*>
j* €{1,...,|V1|N'} satisfying

lI%]lco > |~T\V1|N+|VZ|N+1+J‘*| > \/ OPtMinPSL.. ().

Now assume optyy,psy_ () = 1. Let (P1,P2)
denote the corresponding labelling. Then the
(2|V1|N + |Va|N + 1)-length vector x given by

Lo;,Pi(vi) = 1 Yo, €V, 1=1,2
Tv; b = 0 vvi (= ‘/;-7
Vb € B\ Pi(vi),
i=1,2
T N+alN+1 = L _
T4 N4 VaN+1+i = —T5 i=1,...,[iN

obviously is a feasible solution of the homogeneous
linear system Ax = 0 satisfying ||x|| = 1.

The reduction from the given instance I of MIN
Pseubo LABEL COVER to the above constructed
matrix A is feasible in time polynomial in the
dimension of A which in turn is polynomial in |1].
Clearly, the above reduction 7 is gap-reserving with

parameters ((1,p), (1,/p)). O

Combining Lemma, 1 and the above Theorem 2
yields the following.

Corollary 1 Approzimating MIN Z-SOLUTION OF
HOMOGENEOUS LINEAR SYSTEM in {o-norm
within a factor of 2108 *™" s almost-NP-hard for
any v > 0.

5 The Final Reduction
5.1 Aggregation

The following lemma implicitely proven by Kannan
[11] establishes a polynomial time reduction from a
system of homogeneous linear equations to a single
equation with identical solution set, provided that
the solutions are bounded.

Lemma 3 Let A be an integral r xn matriz, || Al
the mazimum absolut value of its entries a;j, 1 <
1<r,1<7<n and0 be the r-dimensional all-
zero vector. Then

B,Nn{xeZ"| Ax = 0}

Z i kiaijm]- = 0}

=1 j=1

= BHO{XEZ"

where B, denotes the n-dimensional ball of {-
radius p centered at the origin and k = n||Al|cop +
1.

Proof. Denote the two sets by S, and 57, respec-
tively. Clearly, S, C S;. For proving the reverse
inclusion, suppose that there exists an element x €
S1 not satisfying at least one equation of Ax =
0. Let imax denote the largest index for which
(a;,x) #0. As ||x]|co < p we have

l(ai, x)[ < nl|Afloop =k =1

and since x € S; we must have

i k'(a;,x) = 0.
i=1

By definition of iy,,x this yields

Tmax —

1
Y kian,x) = —kmx(a,,,., %)
=1

with a non-zero right-hand side implying that the
left-hand side is also non-zero. Now the left-hand
side is both a multiple of k*=~ and in absolute value
bounded by kimax — k < k*max — 1, a contradiction
of course proving the lemma. a

5.2 Hardness of Approximating Op-
tima for Integer Relations

By piecing the above results together we now prove
the following.

Theorem 4 Unless NP C QP, there exists
no polynomial time algorithm approrimating the
SHORTEST INTEGER RELATION problem in £ -
norm within o factor of 210%0'5_7", where vy is an
arbitrarily small positive constant.

Proof. We may assume that we are given an in-
stance Iy = (V4, Vs, E,1I,B,N) of MIN PSEUDO
LABEL COVER with the properties shown in Lemma
1. In applying the reduction given in the proof of
Theorem 2 we obtain an instance Iy of MIN Z-
SOLUTION OF HOMOGENEOUS LINEAR SYSTEM.
I, consists of an integral (|[V1|N + |E|(N + 1)) x
(2|V1|N +|Va|N +1) matrix A. For the proof of the
Theorem it thus suffices to have a gap-preserving
reduction from MIN Z-SOLUTION OF HOMOGE-
NEOUS LINEAR SYSTEM to SHORTEST INTEGER
RELATION.

Fixing p > 1 and applying Lemma 3 to the
matrix A with g = /p and k = (2|V;|N +|Va|N +
1)/p + 1 (note that ||Al[o = 1) will do the work.
We obtain an instance, say I3, of SHORTEST INTE-
GER RELATION, consisting in a single equation

Z Z kia,‘jl'j = 0, (*)
i=1 j=1

where r = |Vi|N + |E|(N + 1) and n = 2|1 |N +
[Va|N + 1.



Assume opty;,ars. (I2) > y/p- By Lemma 3 a
solution x of (x) with ||x[|c < /p is also a solution
of Ax = 0, contradicting Theorem 2. Hence, for
every solution x of (*) we must have

optsr., (I3) > /p-

If optyinars. (l2) = 1, again by Lemma 3,
every optimum solution for I, is a witness of
optgig, (Is) = 1.

Thus, we obtain a quasi-polynomial time trans-
formation 7 such that, for all instances I and for
all v > 0,

1

I€3-SAaT = optgr_(7(1))

I ¢3-SAT = optg_(T(1)) > V2ee® 77 7Dl

Therefore, given a polynomial time algorithm ap-
proximating the SHORTEST INTEGER RELATION
problem in f.-norm within a factor of 218°°7"n
for some v > 0 would enable us to decide 3-SAT in
quasi-polynomial time. |

From Theorem 4 we easily conclude the follow-
ing.

Corollary 2 Approrimating SHORTEST INl:)EsGER
RELATION in £og-norm within a factor of 218" '™
is almost-NP-hard for any v > 0.

6 Conclusion

We have shown that under the assumption NP ¢
QP there exists no polynomial time algorithm
approximating STR, within a factor of 2log” 7 ",
where v > 0.

Improving the inapproximability gap to n® for
some § > 0 is a still open problem. It is also de-
sirable to prove the NP-hardness of approximating
SIR . rather than the almost-INP-hardness.

Arora et al. [4] showed also the almost-NP-
hardness of approximating the NEAREST VECTOR
for any £,-norm, the NEAREST CODEWORD and
related problems within a factor of 2108”7 n for
v > 0. The proof relies on a quasi-polynomial
time reduction from the LABEL COVER problem
(see [4, 3]). Using a recent result of Raz [15] the
inapproximability gap can be amplified to 21°8" "
for v > 0. Unfortunately, the underlying technique
(‘parallel repetition’) cannot be applied to the MIN
Pseunpo LABEL COVER problem since the latter
has specific geometric properties inherently given
by the 2-prover 1-round interactive proof-system
of [9] (see also [8]).

Thus, in order to resolve the above open prob-
lems a more direct reduction to SIR. avoiding
MiN PSEuDO LABEL COVER seems promising. This
point requires further study.
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