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Abstract 

The model of bulk-synchronous parallel (BSP) computation is an emerging paradigm of 
general-purpose parallel computing. Originally, BSP was defined as a distributed memory model. 
Shared-memory style BSP programming had to be provided by PRAM simulation. However, this 
approach destroys data locality and therefore may prove inefficient for many practical problems. 
In this paper we present a new BSP-type model, called BSPFCAM, which reconciles shared- 

memory style programming with efficient exploitation of data locality. BSPRAM can be optimally 
simulated by BSP for a broad range of algorithms. We identify some characteristic properties 
of such algorithms: obliviousness, slackness, granularity. Finally, we illustrate these concepts 
by presenting BSPRAM algorithms for butterfly dag computation, cube dag computation, dense 
matrix multiplication and sorting. @ 1998-Elsevier Science B.V. All rights reserved 
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1. Introduction 

The model of bulk-synchronous parallel (BSP) computation (see [27,18-201) is in- 

tended to provide a simple and practical framework for general-purpose parallel com- 

puting. Its main goal is to support the creation of architecture-independent and scalable 

parallel software. The key features of BSP are the treatment of the communication 

medium as an abstract fully connected network, and explicit and independent costing 

of communication and synchronisation. 

Many other communication complexity models have been proposed for parallel com- 

puting. One of the main divisions among the models is by the type of memory or- 

ganisation: distributed or shared. Models based on shared memory are appealing from 
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the theoretical point of view, because they provide the benefits of natural problem 

specification, convenient design and analysis of algorithms, and straightforward pro- 

gramming. For this reason, the PRAM model has dominated the theory of parallel 

computing. However, this model is far from being realistic, since the cost of sup- 

porting shared memory in hardware is much higher than that of distributed memory. 

Consequently, much effort was put into the development of efficient methods for sim- 

ulation of PRAM on more realistic models. 

Unlike PRAM, BSP accurately reflects main design features of most existing parallel 

computers. On the abstract level BSP is defined as a distributed memory model with 

point-to-point communication between the processors. Paper [28] shows how shared- 

memory style programming, with all the associated benefits, can be provided in BSP 

by PRAM simulation. However, this approach does not allow the algorithm designer 

to exploit data locality, and therefore in many cases may lead to inefficient algorithms. 

In this paper we propose a new model, called BSPRAM, which stands between BSP 

and PRAM. BSPRAM is based on a mixture of shared and distributed memory, and 

allows one to specify, design, analyse and program shared-memory style algorithms 

that exploit data locality. The cost models of BSPRAM and BSP are based on the 

same principles, but there are important differences connected with concurrent memory 

access in BSPRAM. The two models are related by efficient simulations for a broad 

range of algorithms. 

We identify some properties of a BSPRAM algorithm that suffice for its optimal sim- 

ulation in BSP. Algorithms possessing at least one of these properties - obliviousness, 

high slackness, high granularity - are abundant in scientific and industrial computing. 

We show the meaning and use of such properties on several examples: butterfly dag 

computation, cube dag computation, matrix multiplication, sorting. In view of our sim- 

ulation results, BSPRAM here plays a role of a methodology for generic BSP algorithm 

design. 

Algorithms presented in this paper, as well as many other BSPRAM algorithms, 

are defined for input sizes that are sufficiently large with respect to the number of 

processors. Apart from simplifying the algorithms, this condition provides slackness 

and granularity necessary for their efficient BSP simulation. A typical form of such 

condition is n >poly(p), where n is the size of the input, p is the number of processors, 

and poly is a low-degree polynomial. Practical problems usually satisfy such conditions, 

unless the number of processors is extremely large. Because of that, we present the 

algorithms in their simplest form, without trying to adapt them for lower values of n. 

Instead, we only note where such optimisation is possible, and give references to papers 

that address this problem. 

For the sake of simplicity, throughout the paper we ignore small irregularities that 

arise from imperfect matching of integer parameters. For example, when we write 

“divide an array of size n into p regular blocks”, the value n may not be an exact 

multiple of p, and therefore the blocks may differ in size by f 1. Such effects need 

not be considered in the abstract description of algorithms, since they can be easily 

accounted for during implementation. 
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2. Historical background 

The last fifty years have seen a tremendous success of sequential computing. As 

pointed out in [27, 18, 191, this was primarily due to the existence of a single model, 

the von Neumann computer, which was simple and realistic enough to serve as a 

universal basis for sequential computing. No such basis existed for parallel computing. 

Instead, there was a broad variety of hardware designs and programming models. 

One of the main traditional divisions among models of parallel programming is the 

organisation of memory: distributed versus shared. Shared memory is much costlier 

to support in hardware than distributed memory. However, shared memory has some 

important advantages: 

l natural problem specification - computational problems have well-defined input and 

output, that are assumed to reside in the shared memory. As a contrast, algorithms 

for a distributed memory model have to assume a particular distribution of input and 

output. This distribution effectively forms a part of the problem specification, thus 

restricting the practical applicability of an algorithm. 

l convenient design and analysis of algorithms - the computation can be described 

at the top level as a sequence of transformations of the global state determined by 

the contents of the shared memory. As a contrast, algorithms for distributed memory 

models have to be designed in terms of individual processors operating on their local 

memories. 

l straightforward programming - the shared memory is uniformly accessible via sin- 

gle address space and two basic primitives: reading and writing. As a contrast, pro- 

gramming for distributed memory models is more complicated, typically involving 

point-to-point communication between processors via the network. 

The computational model most widely used in the theory of parallel computing is 

the Parallel Random Access Machine (PRAM) (see e.g. [5,12,13,18]). The PRAM 

consists of a potentially infinite number of processors, each connected to a common 

memory unit with potentially infinite capacity. The computation is completely syn- 

chronous. Accessing a single value in the memory costs the same as performing an 

arithmetic or Boolean operation on a single value. 

Several variants of PRAM have been introduced. Among them are exclusive read, 

exclusive write PRAM (ERE W PRAM), which requires that every memory cell is 

accessed by not more than one processor in any one step, and concurrent read, con- 

current write PRAM (CRCW PRAM), which allows several processors to access a 

cell concurrently in one step. For CRCW PRAM, a rule for resolving concurrent writ- 

ing must be adopted. One of the possibilities, realised in combining CRCW PRAM 

(see e.g. [5, pp. 690-691]), is to write some specified combination of the values being 

written and (optionally) the value stored previously at the target cell. A typical choice 

of the combining function is some commutative and associative operator such as the 

sum or the maximum of the values. 

Another major model of parallel computation is the circuit model (see e.g. [ 13, 181). 

A circuit is a directed acyclic graph (dag) with terminal nodes labeled as constant, 
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input or output, and nonterminal nodes labeled by arithmetic or Boolean operations. 

Algorithms that can be represented as circuits are oblivious, i.e. perform the same 

sequence of operations for any input (although the arguments and results of individual 

operations may, of course, depend on the inputs). Such algorithms are simpler to 

analyse than non-oblivious ones. Circuits also provide a useful intermediate stage in 

the design of algorithms for PRAM-type models: the problem of designing a circuit 

is separated from the problem of scheduling its underlying dag. For example, while 

the question of an optimal solution to the matrix multiplication problem remains open, 

one can find optimal scheduling for particular circuits representing the standard C3(n3) 

method, or the Strassen’s @(n“‘g7) method. In this paper we study the scheduling 

problem for several classes of dags. 

Both the PRAM and the circuit model are simple and straightforward. However, 

these models do not take into account the limited computational resources of existing 

computers, and therefore are far from being realistic. The first step in making them 

more realistic was to introduce a new complexity measure, eficiency, depending on 

the number of processors used by the algorithm (see [14]). New parallel models were 

gradually introduced to account for resources other than the number of processors. 

Currently, dozens of such models exists; see [16, 17,231 for their survey. Among the 

computer resources measured by these models are, according to [ 161, the number of 

processors, memory organisation (distributed or shared), communication latency, de- 

gree of asynchrony, bandwidth, message handling overhead, block transfer, memory 

hierarchy, memory contention, network topology, and many others. 

Models that include many different resource metrics tend to be too complex. A useful 

model should be concise and concentrate on a small number of crucial resources. One 

of the simplest and most elegant parallel models is the BSP model - see [27, 18, 191 for 

the description of BSP as an emerging paradigm for general-purpose parallel computing. 

The BSP model is defined by a few qualitative characteristics: uniform network topol- 

ogy, barrier-style bulk synchronisation, - and three quantitative parameters: the number 

of processors, communication throughput and latency. The main principle of BSP is 

to regard communication and synchronisation as separate activities, possibly performed 

by different mechanisms. The corresponding costs are independent and compositional, 

i.e. can be simply added together to obtain the total cost. It is easy to extend the BSP 

model to account for memory efficiency as well. 

In this paper we propose a variant of BSP, called BSPRAM, intended to support 

shared-memory style BSP programming. The memory of BSPRAM has two levels: local 

memory of individual processors, and a shared global memory. We compare BSPRAM 

with similar existing models. We then study the relationship between BSPRAM with 

BSP by means of simulation. Let n denote the size of the input to a program. Following 

[28], we say that a model A can optimally simulate a model B when there is a 

compilation algorithm that transforms any program with cost T(n) on B to a program 

with cost O(T(n)) on A. If the compilation algorithm yields a randomised program for 

A, we call the simulation optimal if the expected cost of the randomised program is 

O(T(n)). Sometimes the simulation may be restricted to programs from a particular 
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class. We assume that we are free to define a suitable distribution of the input and 

output data to simulate a shared memory model on a distributed memory one. 

If the described compilation is defined only for a particular class of algorithms, we 

say that A can optimally simulate B for that class of algorithms. We show that BSP 

can optimally simulate BSPRAM for several large classes of algorithms. 

3. The BSP model 

A BSP computer, introduced in [2&28], consists of p processors connected by a 

communication network (see Fig. 1). Each processor has a fast local memory. The 

processors may follow different threads of computation. A BSP computation is a se- 

quence of supersteps (see Fig. 2). A superstep consists of an input phase, a local 
computation phase and an output phase. In the input phase a processor receives data 

that were sent to it in the previous superstep; in the output phase it can send data to 

other processors, to be received in the next superstep. The processors are synchronised 

between supersteps. The computation within a superstep is asynchronous. 

The cost unit is the cost of performing a basic arithmetic operation or a local mem- 

ory access. If for a particular superstep w is the maximum number of local operations 

performed by each processor, h’ (respectively h”) is the maximum number of data 

units received (respectively sent) by each processor, and h = h’ + h”, then the cost of 

the superstep is defined as w + h. g + 1. Here g and I are parameters of the computer. 

Fig. 1. A BSP computer. 

suoerstep superstep superstep 

’ camp ’ comm ’ camp ’ comm camp 

Fig. 2. A BSP computation. 
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The value g is called communication throughput ratio (also sometimes “bandwidth 

inefficiency” or “gap”), the value I - communication latency (also sometimes “syn- 

chronisation periodicity”). We write BSP (p, g, 1) to denote a BSP computer with the 

given values of p, g and 1. The values of w and h typically depend on the number 

of processors p and on the problem size. If a computation consists of S supersteps 

with costs w, + h, . g + 1, 1 <s <S, then its total cost is W + H. g + S. I, where 

W = c,“=, w, is the local computation cost, H = Cf=, h, is the communication cost, 

and S is the synchronisation cost. (We will omit the factors g and 1 when dealing with 

communication and synchronisation separately from local computation.) 

In order to utilise the computer resources efficiently, a typical BSP program should 

regard the values p, g and 1 as configuration parameters. Algorithm design should 

aim to minimise local computation, communication and synchronisation costs for any 

realistic values of these parameters. For most problems, a balanced distribution of 

data and computation work will lead to algorithms that achieve optimal cost values 

simultaneously. However, for some other problems a need to trade off the costs will 

arise. 

An example of a communication-synchronisation tradeoff is the problem of broad- 

casting a single value from a processor: it can be performed with H = S = O(log p) 

by a balanced binary tree, or with H = O(p) and S = 0( 1) by sending the value di- 

rectly to every processor (this was observed in [27]). On the other hand, a technique 

known as two-phase broadcast allows one to achieve perfect balance for the problem 

of broadcasting n > p values from one processor. By dividing the values into p blocks 

of size n/p, scattering the blocks so that each one gets to a distinct processor, and then 

performing total exchange of the blocks, the problem can be solved with H = O(n) and 

S = 0( 1) - this is obviously optimal. Broadcasting of n = pE elements for any constant 

E, 0 <E < 1, can be performed optimally by (1 + 8-l )-phase broadcast. The values are 

scattered so that each one gets to a distinct processor, and each value is broadcast by a 

balanced tree of degree n and height 8-l. Non-leaf nodes of the broadcasting forest are 

partitioned among the processors, so that on each level each processor computes at most 

one node. The communication and synchronisation costs are H = 0(&-l . n) = O(n) and 

s=O(&-1)=0(l). 

Matrix computations provide further examples of problems with and without trade- 

offs: for instance, matrix multiplication can be done optimally in communication and 

synchronisation, but matrix inversion presents a tradeoff between communication and 

synchronisation with a polynomial range of parameters. 

The BSP model does not directly support shared memory, broadcasting or combining. 

These facilities can be obtained by simulating a PRAM on a BSP computer. Such 

simulation is also called automatic mode BSP programming, as opposed to the direct 

mode, i.e. programming with explicit control over communication and synchronisation. 

In order to achieve efficient simulation of a PRAM on a BSP computer, the PRAM 

must have more processors than the BSP computer. For a fixed value of p, we say 

that a PRAM algorithm has slackness 0, if at least op PRAM processors perform 

reading or writing at every step. Note that ap is a lower bound on the number of 
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communicating processors, rather than the actual minimum number, which may de- 

pend on the dynamic behaviour of the algorithm. Slackness measures the “degree of 

communication parallelism” achieved by the algorithm, and is typically a function of 

the problem size n and the number of BSP processors p. 

In the automatic mode, each step of a PRAM is implemented as a superstep, with 

at least g virtual PRAM processors allocated to each of the p BSP processors. Virtual 

processor allocation is equal and non-repeating, but otherwise arbitrary. Paper [28] 

states the following result. 

Theorem 1. An optimal randomised simulation on BSP (p, g, 1) can be achieved for 

(i) any ERE W PRAM algorithm with slackness a 2 log p; 

(ii) any CRC W PRAM algorithm with slackness a > p” for some E > 0. 

Here g and I are assumed to be constant. 

Proof. See [28]. 0 

Memory access in the randomised simulation is made uniform by hashing: each 

memory cell of the simulated PRAM is represented by a cell in the local memory of 

one of the BSP processors, chosen according to some easily computable hash function 

which ensures nearly random and independent distribution of cells. 

The simulation allows one to write PRAM programs for BSP computers and to pre- 

dict their performance accurately. Most practical problems possess the slackness neces- 

sary for efficient simulation. However, the automatic mode does not allow the program- 

mer to exploit data locality, because PRAM processors do not have any substantial local 

memory. For some problems this is insignificant (e.g. multiplication of sparse matrices 

with a random pattern of nonzeros). For many other problems this can be a serious 

drawback. (e.g. multiplication of dense or regularly sparse matrices). Because of that, 

the direct mode of BSP programming is often preferable to the automatic mode. 

The next section aims to reconcile the exploitation of data locality with shared- 

memory style programming, retaining the parameters g and 1 and the bulk-synchronous 

structure of the computation, We introduce a new BSP-type model, called BSPRAM, 

in which the network is implemented as a random-access shared memory unit. The 

new model is designed to combine the best features of both automatic and direct BSP 

programming modes. We present a randomised BSP simulation of BSPRAM, based on 

a suitably adapted concept of slackness. We also describe a deterministic simulation, 

based on additional properties of obliviousness and granularity. 

4. The BSPRAM model 

In the previous section we described two alternative approaches to BSP program- 

ming. The automatic mode (PRAM simulation) enables the shared-memory style BSP 

programming with all its benefits. However, it does not allow one to exploit data 
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Fig. 3. A BSPRAM. 

locality. On the other hand, the direct mode (pure BSP) allows one to exploit data 

locality, but only in a distributed memory paradigm. The aim of this section is to 

introduce a new BSP programming method, allowing both shared-memory style pro- 

gramming and exploitation of data locality. This might be called a “semi-automatic 

mode” of BSP programming. 

The new method is similar to PRAM simulation mentioned in the previous section. 

The key difference is that a BSP superstep is no longer fragmented into independent 

steps of up individual virtual PRAM processors. The structure of computation in the 

local memories of BSP processors is preserved. The simulation mechanism is used to 

model the global shared memory, which in the new model replaces the BSP commu- 

nication network. We call the new computational model BSPRAM. 
Formally, a BSPRAM consists of p processors with fast local memories (see Fig. 3). 

In addition, there is a single shared main memory. As in BSP, the computation proceeds 

by supersteps (see Fig. 2). A superstep consists of an input phase, a local computation 
phase, and an output phase. In the input phase a processor can read data from the main 

memory; in the output phase it can write data to the main memory. The processors are 

synchronised between supersteps. The computation within a superstep is asynchronous. 

Similarly to PRAM, concurrent access to the main memory in one superstep can be 

either allowed or disallowed. In this paper we consider an exclusive-read, exclusive- 

write BSPRAM (EREW BSPRAM), in which every cell of the main memory can 

be read from and written to only once in every superstep, and a concurrent-read, 
concurrent-write BSPRAM (CRCW BSPRAM), that has no restrictions on concurrent 

access to the main memory. For convenience of algorithm design we assume that if a 

value x is being written to a main memory cell containing the value y, the result may 

be determined by any prescribed function f(x, y) computable in time 0 (1). Similarly, 

if values xi , . . . ,x,,, are being written concurrently to a main memory cell containing the 

value y, the result may be determined by any prescribed function f(xi @ . . . ax,, y), 

where @ is a commutative and associative operator, and both f and @ are computable 

in time 0( 1). This corresponds to resolving concurrent writing in PRAM by combining 

(see e.g. [5]). 

The cost of a BSPRAM superstep is defined, similarly to the BSP model, as w + 

h . g+Z. Here w is the maximum number of local operations performed by each pro- 

cessor, and h = h’ + h”. The value of h’ (respectively h”) is defined as the maximum 

number of data units read from (respectively written to) the main memory by each 

processor in the superstep. As in BSP, the values g and I are fixed parameters of the 

computer. We write BSPRAM (p, g, I) to denote a BSPRAM with the given values 
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Fig. 4. A BSPRAM computation. 

of p, g and 1. The cost of a computation consisting of several supersteps is defined 

as W + H. g + S. 1, where W, H and S have the same meaning as in the BSP 

model. 

One of the early models similar to BSPRAM was the LPRAM model proposed in [l]. 

The model consists of a number of synchronously working processors with large local 

memories and a global shared memory. The only mode of concurrent memory access 

considered in [l] is CREW. The model has an explicit bandwidth parameter, which 

corresponds to g in BSP and BSPRAM. There is no accounting for synchronisation cost 

(although it is suggested as a possible extension of the model). Thus, a p-processor 

LPRAM is equivalent (up to a constant factor) to CREW BSPRAM (p, g, 1). 

Another model similar to BSPRAM, called Asynchronous PRAM, was proposed in 

[7] (an earlier version of this model was called Phase PRAM). Like BSPRAM, Asyn- 

chronous PRAM consists of processor-memory pairs communicating via a global shared 

memory. The computation structure is bulk-synchronous, with EREW communication. 

The model charges a unit cost for a global read/write operation, d units for communica- 

tion startup and B units for barrier synchronisation. Thus, a p-processor Asynchronous 

PRAM is equivalent (up to a constant factor) to EREW BSPRAM (p, l,d+B). 

A bulk-synchronous parallel model QSM is proposed in [8] (an earlier version of 

this model was called QRQW PRAM). The model has a bandwidth parameter g. 

A p-processor QSM machine is similar to BSPRAM (p, g, 1) with a special mode 

of concurrent access to the main memory: any k concurrent accesses to a cell cost k 

units. Such a model is more powerful than EREW BSPRAM (p, g, 1 ), but less powerful 

than CRCW BSPRAM (p, g, 1). 

As for PRAM simulation, some “extra parallelism” is necessary for efficient 

BSPRAM simulation on BSP. We say that a BSPRAM algorithm has slackness 0, 

if the communication cost of every one of its supersteps is at least U. We adapt the 

results on PRAM simulation mentioned in the previous section to obtain an efficient 

simulation of BSPRAM. 
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Theorem 2. An optimal randomised simulation on BSP (p, g, I) can be achieved for 

(i) any ERE W BSPRAM (p, g, I) algorithm with slackness o 3 log p; 

(ii) any CRC W BSPRAM (p, g, 1) algorithm with slackness (r 3 pE for some E > 0. 

Proof. Immediately follows from Theorem 1. 0 

Apart from randomised simulation by hashing, in some cases an efficient determinis- 

tic simulation of BSPRAM is possible. We consider two important classes of algorithms 

for which such deterministic simulation exists. 

We say that a BSPRAM algorithm is oblivious, if the sequence of operations ex- 

ecuted by each processor is the same for any input of a given size (although the 

arguments and results of individual operations may depend on the inputs). An oblivi- 

ous algorithm can be represented as a computation of a uniform family of circuits (for 

the definition of a uniform family of circuits, see e.g. [13]). We say that a BSPRAM 

algorithm is communication-oblivious, if the sequence of communication and synchro- 

nisation operations executed by each processor is the same for any input of a given 

size, but no such restriction is made for local computation. 

We say that a set of cells in the main memory of BSPRAM constitutes a granule, 

if in any input (output) phase each processor either does not read from (write to) any 

of these cells, or reads from (writes to) all of them. Informally, a granule is treated 

as “one whole piece of data”. We say that a BSPFL4M algorithm has granularity y if 

all main memory cells used by the algorithm can be partitioned into granules of size 

at least y. Note that both slackness and granularity are lower bounds rather than the 

actual minimum values. Slackness of a BSPRAM algorithm can always be taken to be 

equal or higher than its granularity: u > y. 

Communication-oblivious algorithms and algorithms with sufficient granularity 

for BSPRAM allow optimal deterministic BSP simulation. As we show below, ran- 

domised hashing is not necessary for communication-oblivious algorithms, since their 

communication pattern is known in advance. Therefore, an optimal distribution of 

main memory cells across BSP processor-memory pairs can be found off-line. For 

algorithms with granularity at least p, hashing is not necessary either, since every 

granule can be split up into p equal parts that are evenly distributed across BSP 

processor-memory pairs. This makes all communication uniform. In both cases ran- 

domised hashing is replaced by a simple deterministic data distribution. Moreover, 

for communication-oblivious algorithms with slackness at least p’, and for algorithms 

with granularity at least p, concurrent memory access can be simulated by mecha- 

nisms similar to the two-phase and (1 +s-l )-phase broadcast described in the previous 

section. 

Below we formally state the results on deterministic BSPRAM simulation. 

Theorem 3. An optimal deterministic simulation on BSP (p, g, 1) can be achieved for 

(i) any communication-oblivious ERE W BSPRAM (p, g, I) algorithm; 
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(ii) any communication-oblivious CRC W BSPRAM ( p, g, I) algorithm with slack- 
ness 0 2 pE for some E > 0; 

(iii) any CRCW BSPRAM (p, g, 1) algorithm with granularity y 2 p. 

Proof. (i) Since the communication pattern of a communication-oblivious algorithm is 

known in advance, we only need to show that any computation of EBEW BSPRAM 

(i.e. a particular run of an algorithm) can be performed in BSP at the same asymptotic 

cost. First, we modify each BSPRAM superstep so that each processor both reads and 

writes any main memory cell that it either reads or writes in the original superstep. 

This increases the communication cost of the computation at most by a factor of 2, 

and does not change the synchronisation cost. 

The above modification essentially transforms the computation into a form of mes- 

sage passing, in which main memory cells represent messages, and writing or reading 

a value corresponds to sending or receiving a message. This message-passing version 

of BSPRAM was referred to as “BSP+” in [25]. It differs from the direct BSP mode 

in that a message can be “delayed”, i.e. its sending and receiving may occur in non- 

adjacent supersteps. 

It remains to show that the “delayed” messages can be simulated optimally by nor- 

mal BSP messages. We represent the whole BSPRAM computation by an undirected 

graph. Each superstep is represented by two nodes, one for the input phase and the 

other for the output phase. Messages are represented by edges. Two nodes vi and v2 

are connected by an edge e, if the message represented by e is sent in the output 

phase represented by vi, and received in the input phase represented by ~2. The con- 

structed graph is bipartite, with the two parts representing all input and output phases 

respectively. If an input or output phase has cost h, then the degree of its representing 

node is at most ph. 
It is a well-known fact (see e.g. [2, p. 247]), that for any bipartite graph with 

maximum degree at most p, there is a colouring of its edges with not more than p 
colours, such that all the edges adjacent to the same node are coloured differently. As 

an easy corollary of this, for an arbitrary bipartite graph and an arbitrary p, there is 

a colouring of the edges with not more than p colours, such for an arbitrary h, any 

node of degree at most ph has at most h adjacent edges of of each colour. (This 

can be proved by splitting each node of degree at most ph into h nodes of degree at 

most p.) 
We use the above theorem to colour the computation graph. We then regard the 

colour of each edge as the identifier of a BSP processor that must obtain the corre- 

sponding message from the sending processor, keep it in its local memory for as long 

as necessary, and then transfer the message to the receiving processor. The communi- 

cation and synchronisation costs of the computation are increased at most by a factor 

of 2. 

(ii) The proof is similar to that of (i). The only difference is that, due to con- 

current reading and writing, each message has to be combined from contributions of 

several processors before being sent, and broadcast to several processors after being 
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received. Consider a particular superstep in the computation. By symmetry, we need 

to analyse only the input phase. Simultaneous broadcasting of received messages is 

done by a method which generalises the (1 + s-‘)-phase broadcast technique from 

Section 3. Without loss of generality we assume that the communication cost of the 

considered input phase is h = o = p’, 0 <E < 1. Each message is broadcast by a tree of 

maximum degree h and height at most 8-l (the tree does not have to be balanced). 

The broadcasting forest is partitioned among the processors so that on each level the 

total degree of nodes computed in any processor is at most 2h. Such partitioning can 

be easily obtained by a greedy algorithm. The communication cost of the computation 

is increased at most by a factor of 2&-l, and the synchronisation cost at most by a 

factor of E-‘. 

(iii) Partition each granule into p equal subgranules. For each granule, choose an 

arbitrary balanced distribution of its subgranules across the processors. 

An input phase of the BSPRAM algorithm is simulated by two BSP supersteps. 

In the first superstep a processor broadcasts a request for each granule that it must read. 

Note that since the subgranules of every granule are distributed evenly, all processors 

receive an identical set of requests. In the second superstep a processor satisfies the 

received requests by sending the locally stored subgranules of the requested granules 

to the requesting processors. 

An output phase of the BSPRAM algorithm is simulated by one BSP superstep. 

In this superstep a processor divides each granule that it must write into p subgran- 

ules, and sends to every processor the appropriate subgranules. Having received its 

subgranules, each processor combines any concurrently written data, and then updates 

the locally stored subgranules. 

The communication and synchronisation costs of the computation are increased at 

most by a factor of 2. 0 

On some parallel computers, a direct implementation of the BSPRAM model 

may prove practical. In any case, the proofs of Theorems 2 and 3 show that a BSP 

computer can execute most practical BSPRAM algorithms within a low constant factor 

of their BSPRAM cost. For two important classes of algorithms - communication- 

oblivious algorithms and algorithms with sufficient granularity - the simulation is 

deterministic and particularly simple. The next few sections give examples of such 

algorithms. 

5. Butterfly dag computation in BSPRAM 

The butterfly dag describes the dependence pattern of the Fast Fourier Transform, 

which is one of the most important algorithms in scientific computation. Parallel al- 

gorithms for butterfly dag computation have been proposed in various parallel models 

(see e.g. [5,12]). 
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01234567 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 5. Butterfly dag bpY(l6). 

Formally, the butterfly dug bJy(n) with inputs xi and outputs yi, Ofi<n, contains 

logn+l levels of nodes vf, 0 dk Glogn, Odi<n, such that 

vo takes the input xi, 

vk+’ depends on vi, 
J 

k if i=j or i@j=2k, 

‘i logn produces the output yi, 

(1) 

where i @ j denotes the bitwise x or (exclusive or) operation on the binary representa- 

tions of i and j. Fig. 5 shows the butterfly dag bfEy(l6). 

As observed in [21,27], the butterfly dag can be partitioned in a way suitable for 

bulk-synchronous parallel computation. The computation of a level in bJEy(n) consists 

in $n independent computations of bfly(2). Similarly, the computation of any k con- 

secutive levels consists in n/2k independent computations of bJly(2k). Therefore, the 

butterfly dag computation can be split into two stages, each comprising k logn levels 

and consisting of n’i2 independent tasks. If n is sufficiently large with respect to p, 

each of the two stages can be completed in one superstep. 

Fig. 6 shows the two-superstep computation of bjly( 16). Each superstep consists of 

four independent tasks computing bJy(4). In general, the algorithm is as follows. 

Algorithm 1. Computation of the butter-y dag bJy(n). 

Input: An array x = (xi), 0 d i < n. 

Output: An array y = (vi), 0 d i <n, defined by (1). 

Description. We assume n 2 p2. The computation is performed on EREW BSPRAM 

(p, g, I) and proceeds in two supersteps, each comprising i log n levels. In both super- 

steps, each processor is assigned n’i’/p independent butterfly dags of size n1i2. Data 

are communicated via the main memory. 
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Fig. 6. BSPFLAM computation of bpY(l6). 

Cost analysis. The local computation, communication and synchronisation costs are 

W = O(n log n/p), H = WdP), S=O(l). 

The algorithm is oblivious, with slackness rs = n/p, and granularity y = n/p2. 

Paper [27] considers reducing the required minimum value of n for efficient BSP 

computation of a butterfly dag. 

6. Cube dag computation in BSPRAM 

The cube dag defines the dependence pattern that is characteristic for many scientific 

algorithms. Here we describe a BSPRAM version of the BSP cube dag algorithm from 

[19]. For simplicity, we consider the computation of a three-dimensional cube dag; the 

algorithm for other dimensions is similar. 

The three-dimensional cube dag cube3(n) with inputs x$‘, A$‘, xf’, and outputs 

y$‘, y!:‘, yf), 0 <i, j, k <n, contains n3 nodes z)$, such that 

Vojk, viok, V&O take respectively x$‘,x$‘,xP 

u$ contributes to each of the nodes 

Vi+l,j,k, Vi,j+],k, Vi,j,k+l whenever such node eXktS 

V,-l,j,k, Vi,n-l,k, Vi,j,n-1 produce respectively J$‘, y$‘, yi;” 

(2) 

Fig. 7 shows the cube dag tubes(4). 
The BSP algorithm for computing the dag cubes(n) is given in [19]. In this algorithm, 

the array v = (vi&) is partitioned into p3/2 regular cubic blocks of volume (n/p’/2)3. 
We denote these blocks by &, 0 <i, j, k < p ‘I2 Each block defines a dag isomorphic . 

to cube3(n/p’/2). The algorithm computes a block Vi+l,j+l,k+l as soon as the data from 
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Fig. 7. Cube dag cube3(4). 

Fig. 8. BSPRAM computation of cube3(n). 

its predecessors K,j+l,k+l, h+l,j,k+l and &+l,j+l,k become available. The independent 

blocks computed simultaneously form a “layer”, or “wavefront” of the dag cube3(n). 

Fig. 8 shows a stage in the BSP computation of cubea( The current wavefront is 

shaded. The total number of wavefronts is 3p”* - 2, therefore the computation can be 

completed in O(p”‘) supersteps. 

Algorithm 2. Computation of the cube dag cubes(n) 
Input: Arrays x(l) = ($‘), xc2) = (x$‘), xc3) = (x1;3’), 0 < i,j,k <n. 

Output: Arrays y(l) = ($‘), yc2) = ($), y (3)=(yf’), O<i,j,k<n, defined by (2). 

Description. We assume n > p ‘I2 The computation is performed on EREW BSPRAM . 

(p, g, I) and proceeds in 3p ‘1’ - 2 stages, each comprising a constant number of super- 

steps. In stage s, 0 <s < 3p ‘1’ - 3 the blocks I& with i + j f k = s are computed. The , 

maximum number of blocks computed in any one stage is ip. Data are communicated 

between supersteps via the main memory. 

Cost analysis. The local computation cost is W = 0(n3/p). The computation of a 

block requires the communication (reading from or writing to the main memory) of 
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0(n2/p) values on the surface of the block. Therefore, the communication cost of each 

stage is h = O(n2/p). The total communication cost is H = h. p”’ = O(n2/p1”). The 

synchronisation cost is S=O(P’/~). The algorithm is oblivious, with slackness and 

granularity 0 = y = n2/p. 

7. Matrix multiplication in BSPRAM 

In this section we describe a BSPRAM algorithm for one of the most common prob- 

lems in scientific computation: dense matrix multiplication. We deal with the problem 

of computing the matrix product XY = Z, where X = (xv), Y = (yjk), Z = (zik) are ar- 

bitrary it x n matrices. 

This problem is of great importance, and, despite its simple formulation, of enormous 

theoretical complexity. Since the groundbreaking paper by Strassen [24] much work has 

been done on the complexity of sequential matrix multiplication. However, no lower 

bound asymptotically better than the trivial G(n2) has been found; nor there is any 

indication that the current O(n2.376) algorithm from [4] is close to optimal. 

We aim at parallelising the standard @(n3) method without using fast matrix mul- 

tiplication techniques. The method consists in the straightforward computation of the 

family of bilinear forms 

n 

zik = c XijYjk, 1 <i,k<n. (3) 
j=l 

Following (3), we need to set 

z&CO for i,k=l,...,n (4) 

and then compute 

vijk * xijyjk, zik + c%‘ik + V$ for all i, j, k, 1 < i, j, k <n. (5) 

Computation (5) for different triples i, j, k is independent (although it requires con- 

current reading from xv and yjk, and concurrent writing to zik), and therefore can be 

performed in parallel. 

The BSPRAM algorithm implementing this method is derived from the BSP algo- 

rithm for matrix multiplication described in [ 19,201, which in its turn is based on an 

idea from [l]. The algorithm works by a straightforward partitioning of the problem. 

The array V = (vgk) is represented as a cube of volume n3 in integer three-dimensional 

space (see Fig. 9). The arrays X, Y, Z are represented as projections of the cube V 

onto the coordinate planes k = 0, i= 0 and j = 0, respectively. The computation with 

the point vijk in (5) requires the input of its X and Y projections xii and yjk, and 

the output of its Z projection zik. In order to provide a communication-efficient BSP 

algorithm, the array V must be divided into p regular cubic blocks of size n/p113 (see 

Fig. 10). Such partitioning induces a partition of the matrices X, Y and Z into p213 
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Fig. 9. Matrix multiplication dag. 
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Z 

Fig. 10. Matrix multiplication in BSPRAM. 

regular square blocks of size n/~‘~‘, 

(6) 

and similarly for Y and Z (see Fig. 10). The computation (4), (5) can be expressed 

in terms of blocks as 

ZiktO for i,k=l,...,p113 (7) 
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and then 

f’$k +$qkk, zik + Zik + Kjk, for all i,j,k, 1<i,j,k<p1/3. (8) 

Each processor computes a block product I’& =X, . qk sequentially by (4), (5). The 

algorithm is as follows. 

Algorithm 3. Matrix multiplication. 

Znput: Matrices X = (xv) and Y = (J+), 1 <i, j<n. 

Output: A matrix Z = (zg), 1 Gi, j bn, defined by (3). 

Description. We assume n>p ‘I3 The computation is performed on CRCW . 

BSPRAM (P, g,Q. 

After the initialisation step (7), the computation proceeds in one superstep. Each 

processor performs the computation (8) for a particular triple i, j, k. In the input phase, 

the processor reads X, and I$. Then it computes the product &k =X, . qk by (4), 

(5). The block Kjk is then written to Z& in the main memory. Concurrent writing is 

resolved by addition of the written blocks to the previous content of Zik. The resulting 

array Z is the matrix product of X and Y. 

Cost analysis. The local computation, communication and synchronisation costs are 

W = O(n3/p), H = 0(n2/p2j3), S=O(l). 

The algorithm is oblivious, with slackness and granularity 0 = y = n2/p2j3. 

8. Sorting in BSPRAM 

Sorting is a classical problem of parallel computing. Many parallel sorting algorithms 

of different complexity have been proposed (see e.g. [3,9,12] and references therein). 

Here we consider comparison-based sorting of an array x = (xi), 1 <i <n. Without loss 

of generality we may assume that the elements of x are distinct (otherwise, we should 

attach a unique tag to each element). Let (a, b) denote an open interval, i.e. the set of 

all x in x such that a<x<b. 

Probably the simplest parallel sorting algorithm is parallel sorting by regular sampling 

(PSRS), proposed in [22] and discussed in [15]. Paper [l I] describes an optimised 

version of the algorithm, and its efficient implementation on a variety of platforms. 

The PSRS algorithm proceeds as follows. First, the array x is partitioned into p 

subarrays x’,...,xP, each of size n/p. The subarrays x4 are sorted independently by 

an optimal sequential algorithm. The problem now consists in merging the p sorted 

subarrays. 

On the first stage of merging, p + 1 regularly spaced primary samples are selected 

from each subarray (the first and the last elements of a subarray are among the sam- 

ples). We denote the samples of the subarray x4 by ??z,. . . ,Xz. The samples divide 

each subarray into p primary blocks of size n/p*. We denote the primary blocks of 

x4 by [z&x;], . . . , [FE_,,XF]. Then, p . (p + 1) primary samples are collected together 
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Fig. 11. Sorting by regular sampling on three processors. 

and sorted by an arbitrary sequential algorithm. After that, we choose p + 1 regularly 

spaced secondary samples from the sorted array of primary samples (the first and the 

last elements are again included in the samples). We denote the secondary samples 

by ?e,...,$,. The secondary samples partition the elements of x into p secondary 

blocks, corresponding to the intervals (ze,?t ), . . . , (F,_ I ,zp). Efficiency of the above 

computations with samples is not critical, since the number of samples does not depend 

on n. The problem is now reduced to collecting the elements of each secondary block 

together. 

Let us show that each secondary block contains at most 3nJp elements. For a fixed 

secondary block defined by (&,Xk+t ), we divide all the primary blocks of x into three - - 
categories. We call a primaty block (Zy,Xi”,,) an inner block, if ($,jsi”,,) C (&,&+t); 

an outer block, if (X~,Y~+,) n (&,&+I) = 8; and a boundary block, if it is neither inner 

nor outer. With respect to any secondary block, there are at most p inner primary blocks 

in total (because there are only p primary samples inside the secondary block) and at 

most two boundary primary blocks in each subarray (because a boundary block must 

contain at least one of the two ends of the secondary block). Therefore, the size of 

a secondary block is at most n/p2 . (p + 2p) = 3njp. Thus, on the second stage of 

merging, the elements of each secondary block can be collected in optimal time, and 

then sorted by an optimal sequential algorithm. 

The method is illustrated in Fig. 11 for p = 3. The state of the array x after local 

sorting of the subarrays is represented by three horizontal bars at the top. Primary 

samples are shown as white dots. Dotted lines show the rearrangement of primary 

samples into a sorted array at the bottom. The dashed bars at the bottom show the 

elements of x assumed to lie between the samples; their numbers between neighbour- 

ing primary samples need not be equal. Black dots indicate the secondary samples. 

The secondary block (?t,?z) is shown by dark shading. Primary blocks that are in- 

ner, boundary and outer for (!?t,%$) are shown by dark shading, light shading and 

no shading, respectively. Only inner and boundary blocks may contain elements from 
- - 

(%,~2). 
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The sorting algorithm based on PSRS can be easily implemented in the BSPRAM 

model. We assume that the input and output arrays are stored in the main memory of 

BSPRAM. 

Algorithm 4. Sorting by regular sampling. 
Input: an array x = (xi), 0 6 i < n, where all X; are distinct. 

Output: the elements of x in increasing order. 

Description. We assume n 2 p3. The computation is performed on CRCW 

BSPRAM (p, g, I) and proceeds in three supersteps. In the first superstep a proces- 

sor picks a subarray ~4, reads it, sorts it with an optimal sequential algorithm, selects 

from it p + 1 primary samples, and writes them to the main memory. In the second 

superstep the processors perform an identical computation: read the p. (p + 1) primary 

samples, sort them and select p secondary samples. In the third superstep a processor 

picks a secondary block and collects its elements. In order to do this, a processor 

receives from other processors (via the main memory) all primary blocks that may 

intersect with the assigned secondary block; the number of such blocks is at most 3p, 

and their total size is at most 3n/p. The processor merges the primary blocks, discard- 

ing the values that do not belong to the assigned secondary block. The merged result 

is written to the main memory. 

Cost analysis. The local computation, communication and synchronisation costs are 

W = O(n log n/p) H = O(nlp) S=O(l) 

The algorithm is not communication-oblivious. Its slackness and granularity are 

(ignoring non-critical computations with samples) o = n/p, y = n/p’. 

Paper [lo] presents a more complex BSP sorting algorithm which is asymptotically 

optimal for any n 2 p. Its costs are W = O(n log n/p), H = O(n/p . log n/ log(n/p)), 

S = 0( log n/ log(n/p)). For n 2 p3, the algorithm is identical to PSRS; for smaller 

values of n it uses a pipelined tree merging technique similar to the one employed by 

Cole’s algorithm (see e.g. [3]). Despite its asymptotic optimality, the algorithm from 

[IO] is unlikely to be practical in the case of IZ M p. A more practical BSP sorting 

algorithm for small values of n is described in [6]. 

9. Conclusions 

A new model for bulk-synchronous parallel computing, the BSPRAM, has been pre- 

sented. The model enables the shared-memory style BSP programming with efficient 

exploitation of data locality. The BSP model can simulate BSPRAM optimally for a 

broad range of algorithms. The use of BSPRAM was illustrated on the examples of 

butterfly dag computation, cube dag computation, matrix multiplication and sorting. 

The corresponding values of the BSP cost, the type of BSPRAM used, and the charac- 

teristics of the obtained algorithms are summarised in Table 1. The BSPRAM approach 
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Table 1 
Summary of algorithm examples (constant factors omitted) 

Problem W H s trpe clobl? 0 Y 

bfly dag 
* 

4P 1 EREW 
P yes 4P dP2 

cube dag n3/P ,2 +2 P 112 EREW yes n2/P n2/P 

matr mult n31p .2 +3 1 CRCW yes .z .2 

* P2 3 $3 

sorting nip 1 CRCW IlO 
P nip nlp2 

encourages natural specification of the problems: the input and output data are assumed 

to reside in the main memory, and no assumptions on data distribution are necessary. 

The design and analysis of algorithms are also simplified, since all communication is 

performed via the shared memory. 

In future we plan to develop new BSPRAM algorithms and to analyse their costs. 

This may lead to identifying new algorithm properties connecting BSPRAM and BSP, 

in addition to obliviousness, slackness and granularity. We also plan to develop a 

programming model and an implementation of BSPRAM. 
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