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Abstract

We present two randomized algorithms, one for message passing and the other for shared
memory, that, with probability 1, schedule multiparty interactions in a strongly fair manner.
Both algorithms improve upon a previous result by Joung and Smolka (proposed in a shared-
memory model, along with a straightforward conversion to the message-passing paradigm) in the
following aspects: �rst, processes’ speeds as well as communication delays need not be bounded
by any predetermined constant. Secondly, our algorithms are completely decentralized, and the
shared-memory solution makes use of only single-writer variables. Finally, both algorithms are
symmetric in the sense that all processes execute the same code, and no unique identi�er is used
to distinguish processes. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since Hoare introduced CSP [13], interactions and nondeterminism have become two
fundamental features in many programming languages for distributed computing (e.g.,
Ada [34], Script [11], Action Systems [3], IP [10], and DisCo [15, 14]) and algebraic
models of concurrency (e.g., CCS [24], SCCS [23], LOTOS [7], �-calculus [25, 26]).
Interactions serve as a synchronization and communication mechanism: the participating
processes of an interaction must synchronize before embarking on any data transmis-
sion. Nondeterminism allows a process to choose one interaction to execute, from a
set of potential interactions it has speci�ed.
For example, consider a replica system consisting of two client processes C1 and

C2, and two replica managers M1 and M2. The two clients C1 and C2 interact with
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Fig. 1. A replica system.

the managers M1 and M2 respectively to access the database. Moreover, from time to
time the two managers interact with each other to update their replica data (Fig. 1).
The system can be described by the following program written in CSP’s style except
that input=output commands are now replaced by interactions (where i=1; 2):

Ci :: ∗ [ accessi → local-computing; ]

Mi :: ∗ [ accessi → local-computing;

� gossip → local-computing; ]

In the program accessi designates the interaction between Ci and Mi, and gossip desig-
nates the interaction between M1 and M2. Like CSP’s input=output guards, interactions
can also serve as guards in an alternative=repetitive command, and an interaction guard
can be executed only if its participating processes are all ready for the interaction. So
the replica manager M1 can either establish an interaction with its client C1, or an
interaction with its peer M2; and if both targets are ready, then the choice is nondeter-
ministic. Interactions and nondeterminism therefore provide a higher level of abstraction
by hiding execution-dependent synchronization activities into the implementation level.
Note that, although like CSP and Ada, each interaction in the above example involves

only two processes, interactions can also be multipartied, allowing an arbitrary number
of processes to establish an interaction. Multiparty interactions provide a higher level
of abstraction than biparty interactions as they allow interactions in some applications
to be naturally represented as an atomic unit. For example, the natural unit of process
interactions in the famous Dining Philosophers problem involves a philosopher and
its neighboring chopsticks, i.e., a three-party interaction. More examples can be found
in [10], and a taxonomy of programming languages o�ering linguistic support for
multiparty interaction is presented by Joung and Smolka [18].
Intuitively, since a process may be ready for more than one interaction at a time, the

implementation of interaction guards must guarantee a certain level of fairness to avoid
a prejudicial scheduling that favors a particular process or interaction. For example,
the notion of weak interaction fairness (WIF) is usually imposed to ensure that an
interaction that is continuously enabled will eventually be executed. (An interaction is
enabled if its participants are all ready for the interaction, and is disabled otherwise.)
To illustrate, the following execution of the above replica program does not satisfy
WIF, as interaction access2 is continuously enabled forever but is never executed (note
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that, in the program, when a process is ready for interaction, it is ready to execute any
interaction of which it is a member):
All four processes are ready for interaction initially, and then the following scenario
is repeated forever:
• C1 and M1 establish access1;
• C1 and M1 exit access1 and then respectively become ready again.

WIF has been widely implemented in CSP-like biparty interactions [8, 31, 29, 5, 33], as
well as in the multiparty case [28, 4, 27, 20, 17].
Although WIF can ensure some form of liveness, it is sometimes too weak to be

useful. For example, consider another execution of the replica program:
All four processes are ready for interaction initially, and then the following scenario
is repeated forever:
• C1 and M1 establish access1;
• C2 and M2 establish access2;
• the four processes respectively leave their interactions and become ready again.

The computation satis�es WIF because no interaction is continuously enabled forever.
(Recall that an enabled interaction becomes disabled when some of its participants
executes an interaction.) However, in the computation the two replica managers never
establish an interaction, regardless of the in�nitely many opportunities they have.
On the other hand, the above execution can be prevented if the implementation were

to satisfy strong interaction fairness (SIF), meaning that an interaction that is in�nitely
often enabled is executed in�nitely often. SIF is much stronger than most known
fairness notions (including WIF) [2], and therefore induces more liveness properties.
Unfortunately, given that (1) a process decides autonomously when it will be ready
for interaction, and (2) a process’s readiness for interaction can be known by another
only through communications, and the time it takes two processes to communicate is
nonnegligible, SIF cannot be implemented by any deterministic algorithm [32, 16]. Note
that, the impossibility result holds as well even if interactions are strictly bipartied.
To cope with the impossibility phenomenon, Joung and Smolka [19] propose a ran-

domized algorithm for scheduling multiparty interactions that guarantees SIF with prob-
ability 1. That is, if an interaction is enabled in�nitely often, then the probability is 1
that it will be executed in�nitely often. The algorithm is an extension of Francez and
Rodeh’s randomized algorithm [12] for CSP-like biparty interactions to the multiparty
case. Both algorithms use a very basic idea – “attempt, wait, and check” – to establish
interactions. That is, when a process is ready for interaction, it �rst “attempts” to es-
tablish an interaction by accessing some shared variables, and then “waits” for some �
time before it “checks” if its partners are likewise willing to establish the interaction. 1

Francez and Rodeh were able to claim only weak interaction fairness, and only under

1 A similar concept is used by Reif and Spirakis [30], albeit the �-parameter in their randomized algo-
rithm is more deliberately calculated to meet the real-time response requirement. Like Francez and Rodeh’s
algorithm, however, Reif and Spirakis’s algorithm is proposed only for biparty interactions, and guarantees
WIF with probability 1.
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the limiting assumption that the time it takes to access a shared variable (i.e., the
communication delay) is negligible compared to �. Joung and Smolka remove the
negligible delay assumption, but they require the delay be bounded by some constant
�max so that � can then be appropriately determined. 2 The algorithm therefore does not
work for systems where such a bound cannot be known in advance. Moreover, given
that the algorithm’s time complexity is in linear proportion to �, the performance may
be signi�cantly decreased if the average communication delay is much less than the
upper bound �max.
Moreover, like Francez and Rodeh’s algorithm, Joung and Smolka’s algorithm is

presented in a shared-memory model where processes communicate by reading from
and writing to shared variables. They also have to use a multi-writer variable (meaning
that a shared variable can be read and written by more than one process) for each
interaction in order to resolve the mutual exclusion and concurrency problem between
the participating processes of the interaction. While it is true that multi-writer variables
can be implemented from single-writer variables (where a single-writer variable allows
only one process to write), 3 some extra cost in e�ciency would be required in the
conversion.
The main contributions of this paper are two randomized algorithms for the inter-

action scheduling problem, one for message passing and the other for shared memory.
Like Joung and Smolka’s algorithm, our algorithms are presented for a multiparty
setting, and use the concept of “attempt, wait, and check” to establish interactions.
However, we do not assume any predetermined bound on the length of each process
step, where a step is a non-zero �nite time interval in which a single instruction is
instantaneously executed at the last moment of the interval. (A process’s speed is a
measure of the process’s steps such that the slower the speed, the more the time it takes
to execute a step.) Rather, a process’s � parameter is dynamically adjusted according
to other processes’ speeds. Therefore, the system’s performance is determined by the
actual speeds of the processes, not by a worst-case scenario of the system. We show
that our algorithm guarantees SIF with probability 1, so long as the following two con-
ditions are satis�ed: (A1) processes are not hanging (a process is hanging if it stops
executing its instructions, or there exist an in�nite sequence of steps of the process with
monotonically increasing length), 4 and (A2) a process’s transition to a state ready for
interaction does not depend on the random choices performed by other processes. Note
that, the no-hanging assumption implies that the length of each process’s step will even-
tually be bounded throughout an in�nite computation of the system. However, unlike
Joung and Smolka’s algorithm, this bound may vary from computations to computations
and, therefore, no �xed bound is assumed for all possible computations of the system.

2 As noted by Joung and Smolka [19], the impossibility result for SIF holds as well even if the commu-
nication delay is bounded by some constant.
3 For references on the related issues, see the book Distributed Algorithms by Lynch [22].
4 A similar showdown situation has been addressed by Afek et al. [1] in solving the sequence transmission

problem in an unreliable packet-switching network.
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Our algorithms are completely decentralized, meaning that no coordinating process
is used in either of them. In particular, for the shared-memory algorithm, only single-
writer variables have been used, as opposed to Joung and Smolka’s algorithm for
which a multi-writer variable has to be associated with each interaction. Our algorithms
are also symmetric in the sense that all processes execute the same code, and no
unique identi�ers are used to distinguish processes. Symmetry is particular useful if we
are to extend the algorithms to an environment where processes can be dynamically
created and destroyed. Joung and Smolka have also described how to convert their
algorithm into a message-passing paradigm. However, this conversion would also turn
the algorithm into asymmetric because some processes are distinguished from the others
to maintain the multi-writer variables they have used in their algorithm.
To help understand our algorithms, we have chosen to present the message-passing

solution �rst. The algorithm is simpler because a communication imposes a causal
ordering between the initiator (usually the information provider) and its target (the
information recipient), and the send and receive commands in the message-passing
paradigm implicitly assumes this causal ordering in their executions. By contrast, a
more sophisticated technique is required in a completely decentralized shared-memory
model to ensure that two asynchronous processes engaged in a communication are
appropriately synchronized so that the information provider will not overwrite the in-
formation before the other process has observed the content. Both algorithms share the
same idea in the dynamic adjustment of the �-parameter.
The rest of the paper is organized as follows. Section 2 presents the multiparty inter-

action scheduling problem. The message-passing solution is presented in Section 3, and
the shared-memory solution in Section 4. Concluding remarks are o�ered in Section 5.

2. The problem

We assume a �xed set of sequential processes p1; : : : ; pn which interact by engaging
in multiparty interactions X1; : : : ; Xm. Each multiparty interaction Xi involves a �xed
set of processes P(Xi). Initially, each process in the system is in its local computing
phase which does not involve any interaction with other processes. From time to time,
a process becomes ready for a set of potential interactions of which it is a member.
After executing any one of the potential interactions the process returns to its local
computing phase.
Assume that a process starting an interaction will not complete the interaction until

all other participants have started the interaction. Assume further that a process will
eventually complete an interaction if all other participants have started the interaction.
The multiparty interaction scheduling problem is to devise an algorithm to schedule
interactions satisfying the following requirements:
Synchronization: If a process pi starts X , then all other processes in P(X ) will

eventually start X . Note that by the above two assumptions that a process will not
complete an interaction until all other participants have started the interaction, and that
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a process will eventually complete an interaction if all other participants have started
the interaction, the synchronization requirement implies that when a process starts X ,
all participants of X will eventually complete an instance of X .
Exclusion: No two interactions can be in execution simultaneously if they have a

common member. An interaction X is in execution if every process in P(X ) has started
X , but none of them has yet completed its execution of X .
Strong interaction fairness: If an interaction is enabled in�nitely often, then it will

be executed in�nitely often. (Recall that an interaction is enabled if its participants
are all ready for the interaction, and becomes disabled when some of them starts an
interaction.)

3. A message-passing solution

3.1. The algorithm

We now present our solution for the multiparty interaction scheduling problem in the
message-passing paradigm. To help explain our algorithm, we �rst present a simpli�ed
version of the algorithm, which satis�es the synchronization and exclusion requirements
of the problem, but does not satisfy strong interaction fairness unless the length of a
process step is bounded by some predetermined constant. The restriction will be lifted
later when we present the full version of the algorithm.
In the simpli�ed version of the algorithm, each process pi is associated with a unique

token Ti. When pi is ready for interaction, it randomly chooses one interaction X from
the set of potential interactions it is willing to execute, and informs each process in
P(X ) of pi’s interest in executing X . To do so, pi makes |P(X )| copies of Ti, tags
them with “X ”, and sends one copy to each participant of X (including pi itself).
When all of the recipients have acknowledged the receipt of Ti, pi waits for some �
time, hoping that every other process in P(X ) will also send pi a copy of its token
tagged with “X ” in this time interval.
If for each pj ∈ P(X ), pi does receive a copy of Tj, and each copy is tagged with

“X ”, then pi has successfully observed the establishment of X (because the processes
in P(X ) all agree to execute X ). Then pi changes the tags of the tokens to “success”.
When � expires, pi retrieves its tokens from each pj ∈ P(X ) by sending pj a message
request, and then starts X when the tokens are returned. (Note that pi will also receive
a copy of Ti tagged with “success” from itself.)
If pi does not receive copies of tokens tagged with “X ” from all processes in P(X )

before � expires, then pi also retrieves its tokens by sending each pj a message
request. When the tokens are returned, pi checks if any one of them is tagged with
“success”. If so, then the process returning this token has observed the establishment
of X . So pi also starts X . If none of the tokens is tagged with “success”, then pi must
give up on X , discard all duplicated copies of Ti, and return to the beginning of this
procedure to attempt another interaction.
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1 ∗[ ¬ready → do local computations; ready := true;

2 � ready ∧ ¬commit ∧ attempt = nil →
3 randomly select an interaction X for which pi is ready;
4 attempt := X ;
5 send a copy of Ti tagged with “X ” to each pj ∈P(X );
6 wait until each pj ∈P(X ) acknowledges the receipt of the token;
7 init−ck := clock(pi); /* start timing � */

8 � receive Tj from pj →
9 add Tj to token−pool;
10 send an acknowledgment to pj;
11 ∀pj ∈P(attempt) : Tj ∈ token−pool ∧ tag(Tj) = attempt →
12 for each such Tj, tag(Tj) := success;
13 � receive request from pj →
14 remove Tj from token−pool and send it back to pj;

15 � clock(pi)− init−ck¿� →/* � expires */
16 send each pj ∈P(attempt) a message request;
17 wait until each pj returns its copy of Ti;
18 if any returned Ti is tagged with success
19 then commit := true;
20 else attempt := nil;
21 delete the returned tokens;
22 init−ck :=∞;
23 � commit →
24 execute attempt;
25 attempt := nil;
26 commit := false;
27 ready := false;
28 ]

Fig. 2. An algorithm for multiparty-interaction scheduling that may not guarantee strong interaction fairness
if the length of a process step is unbounded.

The algorithm to be executed by each pi is given in Fig. 2 as a CSP-like repetitive
command consisting of guarded commands. Each guarded command is of the form
“b;message → S”. A guarded command can be executed only if it is enabled; i.e.,
its boolean guard b evaluates to true and the speci�ed message has arrived. Both the
boolean guard and the message guard are optional. The execution receives the mes-
sage and then the command S is executed. If there is more than one enabled guarded
command, then one of them is chosen for execution, and the choice is nondeterminis-
tic. We do, however, require that a guarded command that is continuously enabled be
executed eventually.
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Fig. 3. A scenario of three processes executing the algorithm. Each non-shaded interval represents the time
during which a process is monitoring an interaction.

The variables local to each pi are given as follows:
• ready: a boolean 
ag indicating if pi is ready for interaction. It is initialized to false.
• attempt: the interaction that pi randomly chooses to attempt; it is set to nil if there
is none. The initial value of attempt is nil.

• commit: a boolean 
ag indicating if pi has committed to an interaction. It is initial-
ized to nil.

• token−pool: set of tokens received by pi. It is initialized to ∅.
• Ti: pi’s token. Function tag(Ti) returns the tag associated with Ti.
• init−ck: a temporary variable for pi to record the time at which it starts waiting for
a �-interval before it determines whether or not its chosen interaction is established.
It is initialized to ∞.

Moreover, each process pi is equipped with a clock, and clock(pi) returns the content
of the clock when the function is executed. We assume that processes’ clocks tick at the
same rate. Section 5 discusses how this assumption can be lifted from the algorithm.
From the above description, it is not di�cult to see that the algorithm satis�es the

synchronization requirement of the multiparty interaction scheduling problem (see The-
orem 1). This is because a process can start an interaction X only if it has received a
copy of it’s token tagged with “success”. Since only the process pk which possesses
a set of tokens {Tj |pj ∈P(X ); tag(Tj)= “X ”} can change the tags to “success”,
when a process pj �nds that the token returned by pk is tagged with “success”, all
other processes in P(X ) will also �nd that their tokens are tagged with “success”
when they retrieve their tokens from pk , and so will all start X . Moreover, the ex-
clusion requirement is easily satis�ed because a process attempts one interaction at a
time.
The fairness property depends on an appropriate choice of �, however. To see this,

assume that interaction X involves p1; p2, and p3, which are all ready for X . We say
that a process is monitoring X if it, after choosing X , has set up init−ck (line 7 of
Fig. 2) and is waiting for its �-interval to expire (i.e., to execute line 15). Consider
the scenario depicted in Fig. 3. In this �gure, each non-shaded interval represents
the time during which a process is monitoring an interaction. A shaded interval then
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amounts to the maximum time a process can spend from the time it has executed
line 15 until the time it loops back to line 7 to set a new init−ck to monitor another
interaction. According to this scenario, p1 is monitoring some interaction from t3 to
t7. During this interval, p2 and p3 will also start monitoring some interaction (at t5
and t6, respectively). If the three processes monitor the same interaction, say X , then
by t5, p1 will have received p2’s token tagged with X , 5 and by t6, p1 will also have
received p3’s token with the same tag. So, by t6, p1 will have collected all three
processes’ tokens tagged with “X ” (p1’s own token is received prior to t3). So each
process, upon receiving its own token returned by p1, will start X .
On the other hand, if a process does not monitor an interaction long enough, then no

interaction may be established among processes even if their random choices coincide.
For example, consider again Fig. 3. At time t1, p1 has collected tokens from p1 and
p2 (assume that they both choose the same interaction X to monitor). Suppose p3
also chooses X to monitor at t2. However, p3’s token is not guaranteed to arrive at
p1 before t1, and so p1 may give up on X at t1 when its �-interval expires.
From the above discussion it can be seen that if there exists a time instance at

which all processes in P(X ) are monitoring X , then X will be established after the
processes �nish up their monitoring phases. Moreover, suppose that the maximum pos-
sible interval during which each pi ∈P(X ) is ready for interaction but is not monitor-
ing any interaction (i.e., the maximum possible length of a shaded interval in Fig. 3;
we shall henceforth refer to each such interval as a “non-monitoring window”, see
Section 3.2) is strictly less than �i. Suppose further that the processes in P(X ) estab-
lish their non-monitoring windows, one after another, in the following manner (assume
that P(X )= {p1; p2; : : : ; pl}): p1’s window is [t; t+�1−�) (where the window is taken
to be semi-closed because p1 stops monitoring an interaction at t, and starts monitor-
ing a new interaction at t + �1 − �), p2’s window is [t + �1 − �; t + �1 + �2 − 2�), and
so on. Then, we see that, at no time instance in [t; t+

∑
pk∈P(X ) �k − l�), the processes

in P(X ) can be all monitoring an interaction simultaneously. However, if each pi’s �
satis�es the condition: �¿

∑
pk∈P(X )−{pi} �k , then the processes in P(X ) are all mon-

itoring an interaction at t+
∑

pk∈P(X ) �k − l�. Note that, on the condition that each pi’s
� is greater than or equal to

∑
pk∈P(X )−{pi} �k , the layout of non-monitoring windows

described above provides a maximal interval throughout which we cannot �nd a time
instance at which the processes in P(X ) are all monitoring an interaction.
By the algorithm, when a process is monitoring an interaction, the interaction it is

monitoring is determined by the random draw performed prior to the monitoring phase.
So when the processes of P(X ) are all monitoring interactions, the probability that X
will be established after the monitoring phases is given by the probability that a set
of random draws, one by each process in P(X ), yield the same outcome X . The Law
of Large Numbers in probability theory (see, for example, the book by Chung [9])
then tells us that if there are in�nitely many points at which all processes in P(X )

5 Recall that p2’s token sent to p1 is acknowledged by p1, and p2 will not start monitoring an interaction
until its tokens are received by all receivers.
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are monitoring interactions, then the probability is 1 that they will monitor the same
interaction X in�nitely often and, so, with probability 1 they will establish X in�nitely
often.
So, strong fairness of the algorithm relies on the assumption that the length of each

non-monitoring window is bounded by some �k so that another process’s � can be
determined accordingly. Note that the condition �¿

∑
pk∈P(X )−{pi} �k for pi implies

that the � values chosen by processes need not be the same. Moreover, a temporarily
short � cannot cause the algorithm to err, although it may cause a set of processes to
miss a chance for rendezvous.
Based on these observations, we can remove the bounded step assumption by let-

ting processes communicate with each other about the length of their previous non-
monitoring windows. Processes then use this information to adjust their next
�-intervals. So long as processes are not hanging and every message will eventu-
ally be delivered, the dynamic adjustment of processes’ �-intervals guarantees that
when the participants of X are all ready for X , eventually their �-intervals will be
adjusted to meet the rendezvous requirement (i.e., they will all monitor interactions
at the same time). The chance that they will establish X is then determined by their
random draws. In this regard, we need not assume any predetermined bound on pro-
cesses’ steps (speeds) and communication delays; the algorithm will adapt itself to the
run-time environment.
So, we can modify the algorithm, yielding that shown in Fig. 4 — the full version of

our algorithm for the multiparty interaction scheduling problem. We shall refer to the
algorithm as TB (for Token-Based). Algorithm TB adds the following time variables
to each pi:
• �: records the maximum of the durations from the time pi previously stopped mon-
itoring interaction to the time pi starts monitoring interaction. It is initialized to 0.

• init−�: a temporary variable for pi to record the time at which it starts to measure �.
It is initialized to ∞.

• E[1::n]: E[j], initialized to 0, records the maximum value of pj’s � sent by pj.
In the algorithm, pi measures its � by lines 1.1 and 7.1 (for the �rst non-monitoring

window while pi is ready for interaction), and by lines 15.1 and 7.1 (for the remaining
non-monitoring windows). When pi has sent out its token to pj (line 5), pj acknowl-
edges the receipt of the token by sending its � to pi (line 10′). Then pi adjusts its
E[j] to the larger value of E[j] and pj’s new � (lines 6.1–6.2). These E[j]’s are used
in line 15′ to time-out pi’s �-interval.
The system’s performance depends on the lengths of �-intervals the processes choose,

which in turn depend on the values of E[j]’s. From time to time, one may reset each
E[j] (and �) after pi has established an interaction to prevent the system getting too
slow due to some abnormal speed retardation. (Note that the time variables cannot be
reset while pi is attempting to establish an interaction; for, otherwise, the algorithm
would not even guarantee weak interaction fairness.) In general, since a temporarily
short �-interval cannot cause the algorithm to err, E[j] can be reset to any value, e.g.,
the average of the past history of E[j]’s values, or the minimum of them. On the other
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1 ∗[ ¬ready → do local computations;
1.1 init−� := clock(pi); /* start measuring � */
1.2 ready := true;

2 � ready ∧ ¬commit ∧ attempt = nil →
3 randomly select an interaction X for which pi is ready;
4 attempt := X ;
5 send a copy of Ti tagged with “X ” to each pj ∈P(X );
6 wait until each pj ∈P(X ) acknowledges the receipt of the token;
6.1 let �j be the timestamp in pj’s acknowledgment;
6.2 ∀pj ∈P(X )− {pi} : E[j] := max(E[j]; �j);
7 init−ck := clock(pi); /* start timing � */

/* start monitoring interaction */
7.1 � := max(�; clock(pi)− init−�); /* record a new � */

8 � receive Tj from pj →
9 add Tj to token−pool;
10′ send an acknowledgment with timestamp � to pj;
11 ∀pj ∈P(attempt) : Tj ∈ token−pool ∧ tag(Tj) = attempt →
12 for each such Tj, tag(Tj) := success;
13 � receive request from pj →
14 remove Tj from token−pool and send it back to pj;

15′ � clock(pi)− init−ck¿�, where � =
∑

pj∈P(attempt)−{pi} E[j] →
/* � expires */

15.1 init−� := clock(pi); /* start measuring � */
/* stop monitoring interaction */

16 send each pj ∈P(attempt) a request;
17 wait until each pj returns its copy of Ti;
18 if any returned Ti is tagged with success
19 then commit := true;
20 else attempt := nil;
21 delete the returned tokens;
22 init−ck :=∞;
23 � commit →
24 execute attempt;
25 attempt := nil;
26 commit := false;
27 ready := false;
28 ]

Fig. 4. Algorithm TB.
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hand, reseting E[j]’s may also bring an extra load to a stable system. This is because
if E[j] is reset to a value smaller than the length of pj’s next non-monitoring window
then, when next time pi wishes to establish an interaction with pj, it may not be able
to do so because pi’s � is too short. Therefore, extra attempts by pi are needed for pi

to re-catch the length of pj’s non-monitoring windows. This overhead will be analyzed
in Section 3.2.4.

3.2. Analysis of algorithm TB

In this section we prove that TB satis�es the synchronization and exclusion require-
ments of the multiparty interaction scheduling problem and, with probability 1, is strong
interaction fair. We also analyze the expected time TB takes to schedule an interaction.

3.2.1. De�nitions
We assume a discrete global time axis where, to an external observer, the events of

the system are totally ordered. 6 Moreover, we assume that for any given time instances
t0; t1; : : : on this axis, the usual less-than relation over these instances is well-founded.
That is, for any given two time instances ti and tj, there are only a �nite number of
points ti1 ; ti2 ; : : : ; tik on the global time axis such that ti¡ti1¡ti2 · · ·¡tik ¡ tj. Accord-
ingly, the phrase “there are in�nitely many time instances” refers to the interval [0;∞].
Recall from TB that, a process pi, after sending out its tokens to the processes in

P(X ), must wait for � time before it decides whether to start or give up on X . We say
that pi starts monitoring X if it has executed line 7 of the algorithm to time its �. It
stops monitoring X when line 15.1 is executed. Let t1 and t2, respectively, be the time at
which these two events occur. The semi-closed interval [t1; t2) is a monitoring window
of pi, and pi is monitoring X in this window. Suppose that X fails to be established
in this monitoring window, then pi must start another monitoring window. Therefore,
from the time (say t0) pi becomes ready for interaction until the time (say tl) pi stops
monitoring an interaction that has been successfully established, the interval [t0; tl)
contains a sequence of monitoring windows [t1; t2); [t3; t4); : : : ; [tl−1; tl). The interspersed
intervals [t0; t1); [t2; t3); : : : ; [tl−2; tl−1) are called non-monitoring windows. 7 The length
of a window is the di�erence of the two ends in the interval. Note that all non-
monitoring windows and monitoring windows have a non-zero length. The monitoring
window of pi at time t refers to the monitoring window [ts; tf) of pi (if any) such
that ts6t¡tf; similarly for non-monitoring windows.

6 As usual, an event transits a process from one state to another. If an event occurs at time t and it transits
p from state s1 to state s2, then we say that p is in state s1 just before t, and is in state s2 right after t.
For p’s state to be de�ned at every time instance, we stipulate that p’s state at time t is s2 if the event
occurs at time t.
7 There is a latency between the time tl at which pi stops monitoring an interaction (line 15.1), until the

time tl′ at which pi starts executing the interaction (line 24). To simplify the de�nition, we shall henceforth
consider [tl−1; tl′ ) rather than [tl−1; tl) as a monitoring window. As a result, we can say that, from the
time pi becomes ready for interaction until the time its executes an interaction, it spends all of its time in
non-monitoring windows and monitoring windows.
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Note that, if pi is monitoring X , then every process in P(X ) must hold a copy
of Ti with a tag “X ”. Moreover, recall that a process records the length of a non-
monitoring window in variable �. Since a process records an � value only after it has
started monitoring an interaction (line 7.1), the recorded value is slightly larger than
the actual length. This is crucial to the correctness of Lemma 4.
If pi is monitoring X at time t, then the choice of X must be the result of some

random draw performed by pi before t. Let Dt;pi denote the event that is this random
draw. We use v(Dt;pi) to denote the outcome of the random draw. The probability that
v(Dt;pi)=X is denoted by  pi; X , and the probability is assumed to be independent of t.
Moreover, assume ts6tf. We de�ne a set Etf

ts P(X ) of random draw events, at most
one by each process pi in P(X ), as follows:
• If pi remains in a monitoring window throughout [ts; tf], or pi is in a monitoring
window at ts and then starts an interaction after the window terminates, then the
random draw events Dts;pi is included in Etf

ts P(X ). With respect to Etf
ts P(X ), process

pi is referred to as a type-M process.
• If pi has a non-monitoring window contained 8 in [ts; tf], then the random draw event
performed in the window is included in Etf

ts P(X ), and with respect to Etf
ts P(X ); pi

is referred to as a type-N process. If pi has more than one non-monitoring window
contained in [ts; tf], then one of the random draw events performed in these windows
is chosen for Etf

ts P(X ). To avoid ambiguity, we shall give the priority to the one
performed in the largest window; and if there is still a tie, then the tie will be broken
by giving the priority to the one performed the latest.

• Otherwise, no event by pi is included in Etf
ts P(X ).

So, if |Etf
ts P(X )|=|P(X )|, then every process in P(X ) has a random draw event in

Etf
ts P(X ). Furthermore, with respect to Etf

ts P(X ), let QN ⊆P(X ) be the set of type-N
processes. For each pi∈QN , let ui denote the non-monitoring window in which pi per-
forms its random draw event chosen for Etf

ts P(X ), and let ‖ui‖ denote the length of ui.
Then, the set Etf

ts P(X ) is said to be proper if tf−ts6
∑

pi∈QN
‖ui‖ and |Etf

ts P(X )|=|P(X )|.

3.2.2. Properties of TB that hold with certainty
We now analyze the correctness of TB. We begin with the synchronization property.

For this, it is useful to distinguish between an interaction (a static entity) and an
instance of an interaction (a dynamic entity): when an interaction X is established, an
instance of X is executed.

Theorem 1 (Synchronization). If a process starts a new instance of X; then all other
processes in P(X ) will eventually start the instance of X .

8 We say that an interval [t1; t2] is contained in [t3; t4] if t36t1 and t26t4. Two intervals join if they have
a common end point, and they overlap if there exists a non-zero length interval contained in both intervals.
The terms apply to semi-closed intervals as well. For example [2, 4) is contained in [1, 4], and [2, 4) and
[4, 6) join.
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Proof. A process starts an instance of X only if it has sent a copy of its token tagged
with “X ” to some pj ∈P(X ), and the token is returned with a tag “success”. Since only
the process which holds the set of tokens {Tj |pj ∈P(X ); tag(Tj)= “X ”} can change
the tags to “success”, and since a process will not give up its attempt to establish X
until its tokens are returned, when a process attempting X receives a token tagged with
“success”, all other processes in P(X ) will also obtain a token tagged with “success”
when they retrieve their tokens. The theorem therefore follows.

Theorem 2 (Exclusion). No two interactions can be in execution simultaneously if
they have a common member.

Proof. This follows from the fact that a process attempts one interaction at a time.

3.2.3. Properties of TB that hold with probability 1
We move on to prove the fairness property of TB.

Lemma 3. Suppose that, from time t′−u to time t′+u; for each pi ∈P(X ); if pi has
a non-monitoring window overlapping or joining with [t′ − u; t′ + u]; then the length
of this window is strictly less than �maxi . Let �X =

∑
pi∈P(X )�

max
i . If X is enabled

at t′ and u¿�X ; then there exist t1 and t2; where t′ − �X¡t16t2¡t′ + �X and
t2 − t1¡�X ; such that Et2

t1P(X ) is proper.

Proof. Since X is enabled at t′, each pi ∈P(X ) is ready for interaction at t′. So, at
t′; pi is either in a non-monitoring window or in a monitoring window. It is clear that
either (i) every pi ∈P(X ) is in a monitoring window at t′, or (ii) some process in
P(X ) is in a non-monitoring window at t′.
Consider Case (i). Let t1 = t2 = t′. By de�nition, then |Et2

t1P(X )|= |P(X )|. Since with
respect to Et2

t1P(X ) there is no type-N process, set Et2
t1P(X ) is obviously proper. More-

over, the two time instances t1 and t2 we have chosen easily satisfy the condition:
t′ −�X¡t16t2¡t′ +�X and t2 − t1¡�X . So, the lemma is proven for this case.
Consider Case (ii). We begin with the following de�nition. Let U be a set of inter-

vals [aj; bj), where 16j6l. Let left(U )=min{aj | 16j6l}, and right(U )=
max{bj | 16j6l}. The intervals in U are said to be connected if

∀t; left(U )6t¡right(U )⇒∃[ak ; bk)∈U; ak6t¡bk

(Intuitively, the intervals are connected if they can be “glued” together to form a single
interval. For example, the three intervals in {[3; 7); [5; 9); [9; 10)} are connected, but
the two intervals in {[3; 7); [8; 9)} are not.) It follows from the above de�nition that if
the intervals in U are connected, then right(U )− left(U )6∑

16j6l(bj − aj).
Recall that for Case (ii), there exists some process in P(X ), say p1, that is in a non-

monitoring window at t′. Let [t1; s; t1; f) be the non-monitoring window of p1. De�ne
� to be a set of pairs 〈p; u〉 satisfying the following conditions:
(1) For each 〈p; u〉 ∈�; p∈P(X ) and u is a non-monitoring window of p.
(2) 〈p1; [t1; s; t1; f)〉 ∈�.
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(3) For each p∈P(X ); � contains at most one pair 〈q; u〉 such that p= q.
(4) Let intervals–of (�)= {u | 〈p; u〉 ∈�}. Then, the intervals in intervals–of (�) are

connected.
(5) � is maximal; that is, there exists no other pair � such that set �∪{�} satis�es

the above four conditions.
(Note that there may be more than one such set.)
Let t1 = left(intervals–of (�)), and let t2 = right(intervals–of (�)). Since the inter-

vals in intervals–of (�) are connected and since t1; s6t′¡t1; f, it can be seen that
t′ −�X¡t16t2¡t′ +�X and t2 − t1¡�X .
Consider Et2

t1P(X ). Let processes–of (�)= {p | 〈p; u〉 ∈�}. Clearly, with respect to
Et2
t1P(X ) each p∈ processes–of (�) is a type-N process.
Let Q=P(X ) – processes–of (�). We argue that, if Q 6= ∅, then with respect to

Et2
t1P(X ) each q∈Q is a type-M process. To see this, observe that t16t′¡t2 (because

t16t1; s6t′¡t1; f6t2). Since q does not have a non-monitoring window overlapping
of joining with [t1; t2) (for otherwise, � would not be maximal), q is in a monitoring
window at t′. Since every monitoring window must be preceded by a non-monitoring
window, and since q does not have a non-monitoring window overlappng or joining
with [t1; t2), either q remains in a monitoring window throughout [t1; t2], or q remains
in a monitoring window throughout [t1; t′] and starts an interaction after the window
terminates. So, with respect to Et2

t1P(X ); q is a type-M process.
Given that, with respect to Et2

t1P(X ), each p∈P(X ) is either a type-N of type-M pro-
cess, we have |Et2

t1P(X )|= |P(X )|. So to show that Et2
t1P(X ) is proper it

remains to show that t2 − t16
∑

p∈processes of (�)‖up‖, where up is the non-monitoring
window in which p performs its random draw event chosen for Et2

t1P(X ). For this, let
vp be the non-monitoring window of p such that 〈p; vp〉 ∈�. Note that, because each
p∈ processes–of (�) may have more than one non-monitoring window contained in
[t1; t2]; vp and up may not refer to the same window. However, the up we have chosen
to build up Et2

t1P(X ) guarantees that ‖vp‖6‖up‖. Observe that t2 − t16
∑

〈p; vp〉∈�‖vp‖.
So, t2 − t16

∑
p∈processes of (�)‖up‖.

Therefore, the lemma is proven for Case (ii).

Lemma 4. Assume set Et2
t1P(X ) is proper. With respect to Et2

t1P(X ); let QN be the set
of type-N processes, and QM be the set of type-M processes. For each pi ∈QN ; let
ui denote pi’s non-monitoring window from which pi’s random draw event is chosen
for Et2

t1P(X ); and let wi denote pi’s monitoring window immediately following ui. For
each pi ∈QM ; let wi denote pi’s monitoring window at t1. If all the random draws
in Et2

t1P(X ) yield the same outcome X and, for each pi ∈QN ; ‖wi‖¿(
∑

pl∈QN
‖ul‖)−

‖ui‖; then an instance of X will be started when some process pj ∈P(X ) �nishes its
monitoring window wj.

Proof. Since t2−t16
∑

pl∈QN
‖ul‖, and since for each pi ∈QN ; pi’s monitoring window

wi has a length strictly greater than (
∑

pl∈QN
‖ul‖) − ‖ui‖; pi must still be in the

monitoring window at time t2.
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Recall that every pj ∈QM either remains in a monitoring window throughout [t1; t2],
or is monitoring an interaction at t1 and starts the interaction after it �nishes the
monitoring window. Suppose �rst that every pj ∈QM remains in a monitoring window
throughout [t1; t2] (where, under the lemma assumptions, this window is wj). Then,
every pj ∈QM is also monitoring X at t2. So, at time t2 each process in P(X ) has
collected every other process’s token tagged with “X ” and has changed (or is changing)
all the tags to “success”. Hence, every process pk ∈P(X ) will start X when it �nishes
its monitoring window wk (and retrieves its tokens).
Suppose otherwise that some pj ∈QM is monitoring an interaction at t1 and starts

the interaction after it �nishes the monitoring window. Since the interaction pj is
monitoring is decided by the outcome of pj’s random draw event in Et2

t1P(X ), by the
assumptions of the lemma, the outcome is X . So, pj will start X when it �nishes its
wj. 9

Note that in Lemma 4 the monitoring window wi of each pi ∈P(X ) must overlap
or join with the interval [t1; t2]. So, if an instance of X is established and each wi6�,
then the instance will be established by time t2 + �.
For fairness, we �rst show that TB satis�es weak interaction fairness, for which we

need some assumption on the faultless behaviour of the system. We assume that if the
communication medium remains connected, then every message will eventually reach
its destination. Note that, if processes are not hanging, then they remain active (that
is, every process will eventually execute its next instruction unless the instruction is a
message receiving command and no message speci�ed in the command has been sent
to the process), and starting from any point the time it takes a process to execute an
instruction (i.e., the length of the step to execute the instruction) will eventually be
bounded.

Theorem 5 (Weak interaction fairness). Assume that processes are not hanging and
the communication medium remains connected. If X is enabled at time t then, with
probability 1, X will be disabled eventually.

Proof. We show that the probability is 0 that X is continuously enabled from t onward.
Observe that since the communication medium remains connected and processes remain
active, and since every continuously enabled guarded command will eventually be
executed, a process will not be blocked inde�nitely from executing its next action. So,
the time it takes for each process to measure a new � value (which corresponds to the
length of a non-monitoring window, although the measured value is slightly larger)

9 In the algorithm, it is possible that some process p1 has already started X , but another process is still
monitoring X , or is even still in a non-monitoring window. For example, consider the following scenario,
and assume that P(X )= {p1; p2} : (1) p1 starts monitoring X ; (2) p2 randomly chooses X and sends
p1 a copy of T2 tagged with “X ”; (3) p1 receives T2 and acknowledges the receipt (at this point p1 has
successfully observed the establishment of X ); (4) p1 �nishes its monitoring window, retrieves its tokens,
and starts X ; and (5) p2 executes lines 6.1–6.2 of the algorithm, and then starts monitoring X .
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is �nite. Moreover, the assumption that processes are not hanging also ensures that,
starting from any point, all possible � values measured by a process will eventually
be bounded by some constant c. The well-founded ordering of events on the time axis
ensures that a process may at most measure a �nite number of distinct � values less
than c.
Recall that the length of a monitoring window for pi to monitor X is determined

by the value
∑

pj∈P(X )−{pi}E[j], where E[j] is the maximum of pj’s previous � val-
ues collected between the time pi becomes ready for interaction through the time pi

starts the monitoring window. Moreover, every time when pi chooses to attempt X ,
it will learn all other participants’ current � values when they acknowledge the re-
ceipt of pi’s tokens (see lines 6–6.2 of TB). Since if pi is continuously ready it will
attempt interactions in�nitely often, by the law of large numbers (Theorem 6 will ex-
plain this law in more detail), pi will attempt X in�nitely often with probability 1. So
if X is continuously enabled forever, then by the previous observations on � values,
there must exist some t0 such that, from t0 onward, for every pi ∈P(X ); pi’s new
� value is no greater than some �maxi , and pi’s E[j] is equal to �maxj . It follows that
from t0 onward each pi’s non-monitoring window has a length less than �maxi , and
each pi’s monitoring window to monitor X has a length greater than 10 or equal to∑

pj∈P(X )−{pi}�
max
j .

Let �X =
∑

pj∈P(X )�
max
j . Consider the interval [t0; t0 + 2�X ). Given that from t0

onward each pi’s non-monitoring window has a length less than �maxi , Lemma 3
(with t′= t0 + �X and u=�X ) ensures that there exist two time instances t1; s; t1; f,
where t0¡t1; s6t1; f¡t0 + 2�X such that Et1; f

t1; s P(X ) is a proper set of random draw
events. Given that starting from t0 each pi’s non-monitoring window has a length
less than �maxi , and each pi’s monitoring window to monitor X has a length greater
than or equal to

∑
pj∈P(X )−{pi}�

max
j , Lemma 4 implies that, if the random draws in

Et1; f
t1; s P(X ) yield the same outcome X , then X will be disabled. Note that, even if the
random draws do not yield the same outcome, some process in P(X ) may still estab-
lish another interaction X ′ if its random draw coincides with other processes’ random
draws.
Let � denote the probability that X remains enabled starting from t up to the point

the random draws in Et1; f
t1; s P(X ) are to be made. So the probability that the random

draws in Et1; f
t1; s P(X ) do not cause X to be disabled is no greater than �(1−  X ), where

 X is the probability that the random draws in Et1; f
t1; s P(X ) yield the same outcome X . If

X remains enabled after the random draws, then every process in P(X ) will perform a
new random draw in �nite time, and so by Lemma 3 again there exists another proper
set of random draws Et2; f

t2; s P(X ) such that E
t1; f
t1; s P(X )∩Et2; f

t2; s P(X )= ∅. The probability that
X remains enabled after the new set of random draws is no greater than �(1− X )2. In

10 The length may be greater than
∑

pj∈P(X )−{pi}E[ j] because the condition that the length of pi’s

monitoring window equals to
∑

pj∈P(X )−{pi}E[ j] only causes the guarded command in line 15
′ to be

enabled; it is not necessarily executed right away.
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general, the probability that X remains enabled after l mutually disjoint sets of random
draws is no greater than �(1 −  X )l. If X continues to be enabled then l will keep
increasing and, so, �(1 −  X )l tends to 0. So the probability that X remains enabled
forever is 0.

Theorem 6 (Strong interaction fairness). Assume (A1) that processes are not hang-
ing and the communication medium remains connected, and (A2) that a process’s
transition to a state ready for interaction does not depend on the random draws per-
formed by other processes. If an interaction X is enabled in�nitely often then, with
probability 1, the interaction will be executed in�nitely often.

Proof. Assume the hypothesis that X is enabled in�nitely often. By (A1), there exists
some time instance t0 after which every non-monitoring window of pk has a length
less than �maxk for each pk in the system, and every monitoring window of pk has
a length no less than �X − �maxk , where �X =

∑
pj∈P(X ) �maxj . Because t0 is �nite,

from t0 onward X is still enabled in�nitely often. By Lemma 3, there exist in�nitely
many ti’s, ti;1’s, and ti;2’s, where i¿0, ti −�X¡ti;16 ti;2¡ti +�X and ti;2− ti;1¡�X ,
such that X is enabled at ti; E

ti; 2
ti;1 P(X ) is proper, and Eti; 2

ti;1 P(X )∩Etj; 2
tj;1 P(X )= ∅ if i 6= j.

Let I be the set of indices of such ti’s. By Lemma 4, if the random draws in
Eti; 2
ti;1 P(X ) yield the same outcome X , then an instance of X will be established. So,
in the following, we shall show that the probability is 1 that there are in�nitely many
i’s in I such that Eti; 2

ti;1 P(X ) yield the same outcome X . This then establishes the
theorem.
Because I is in�nite and there are only a �nite number of interactions in the system,

there exists an in�nite subset J⊂ I such that, for each p∈P(X ), p is ready for the same
set of interactions Ap at ti for each i∈ J. Let  Ap;X be the non-zero probability that
X is chosen from Ap in a random draw. Let  X =

∏
p∈P(X )  Ap;X . Consider E

ti; 2
ti;1 P(X ),

where i∈ J. By Assumption (A2), the random draws in Eti; 2
ti;1 P(X ) are independent of

the enabledness of X at ti and, so, are independent of one another. So, the probability
that the random draws in Eti; 2

ti;1 P(X ) produce the same outcome X is  X .
For each i∈ J, de�ne random variable Ei to be 1 if the random draws in Eti; 2

ti;1 P(X )
produce the same outcome X , and 0 otherwise. Then Ei=1 also has the probability
 X . Let the indices of J be enumerated by j1; j2; : : : . By the law of large numbers
in probability theory (see, for example, the book by Chung[9]), for any given � we
have

lim
n→∞P

(∣∣∣∣
∑

16i6nEji

n
−  X

∣∣∣∣ 6 �
)
=1:

That is, when n tends to in�nity, the probability is 1 that (
∑

16i6n Eji)=n tends to  X .
Therefore, with probability 1, the set {i |Eji =1; i¿ 1} is in�nite. So, with proba-
bility 1, there are in�nitely many i’s in J such that the random draws in Eti; 2

ti;1 P(X )
yield the same outcome X . Hence, with probability 1 there are in�nitely many i’s in
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I such that the random draws in Eti; 2
ti;1 P(X ) yield the same outcome X . The theorem is

therefore proven.11

Like the algorithm presented in [19], a conspiracy against strong interaction fairness
can be devised if Assumption (A2) is dropped from Theorem 6. To see this, consider
a system of two processes p1 and p2, and three interactions X1; X2, and X12, where
P(X1)= {p1}; P(X2)= {p2}, and P(X12)= {p1; p2}. Assume that p1 is ready for both
X1 and X12. So it will toss a coin to choose one to attempt. The malicious p2 could
stay in its local computing phase until p1 has randomly selected X1; then p2 becomes
ready for X2 and X12 before p1 executes X1. Since p1’s attempt to execute X1 will
succeed once it selects X1, X12 will not be executed this time. However, X12 is enabled
as soon as p2 becomes ready. Similarly, p1 could also stay in its local computing
phase until p2’s random draw yields X2. So if this scenario is repeated over and over
again, then the resulting computations would not be strong interaction fair. Note that in
the resulting computation there exist in�nite many ti;1’s and ti;2’s such that E

ti; 2
ti;1 P(X12)

is proper. However, the two random draws in Eti; 2
ti;1 P(X12) are not mutually dependent

because one of them is performed only if the other has outcome X1 (or X2)

3.2.4. Time complexity
To measure the time complexity of TB, we wish to know that, when an interaction

X is enabled, how long it takes a participant of X to execute an interaction, i.e., to
disable X .12 It can be seen from Theorem 5 that a necessary condition for X to be
disabled is that processes’ speeds will not keep decreasing. So, to simplify the analysis,
we shall �rst consider a stable system where processes’ speeds do not vary. Moreover,
for subsequent comparison with deterministic algorithms, we shall also simplify the

11 The law of large numbers cannot be used to prove the theorem if one were to reset time variables
E[ j] periodically. This is because although there are in�nitely many i’s in I such that all the random draws
in each E

ti; 2
ti;1

P(X ) yield the same outcome X , Lemma 4 might not be used to guarantee the establishment of

X because each process’s monitoring window following its random draw in E
ti; 2
ti;1

P(X ) could incidentally be
reset to a value unable to satisfy the condition of Lemma 4. Instead, the second Borel–Cantelli Lemma can
be used to prove the theorem. As a consequence of the lemma, it is a well known fact in measure theory
and probability that (see for instance Example 4.14 of [6]), if a coin (with outcome 0 or 1) is tossed an
in�nite number of times, then given any constant c the probability is 1 that there are in�nitely many runs
of 1 of length greater than c (where a run of 1 is a sequence of 1’s surrounded by two 0’s; its length is
the number of 1’s in the sequence).
Given that the length of a non-monitoring window will eventually be bounded, we can see that, from

some point onward, if an interaction X is enabled and each participant of X always chooses X to attempt,
then after at most some �nite number of attempts X will be established (they failed to establish X in earlier
attempts because their monitoring windows were too short to satisfy the condition of Lemma 4). The above
fact in measure theory and probability guarantees that, if X is enabled in�nitely often, then the probability
is 1 that, in�nitely often, every participant of X will continuously choose X to attempt for at least some
�nite number of times. Therefore, the probability is 1 that X will be established in�nitely often.

12 Given that interactions’ membership rosters may overlap, it is clear that no algorithm can guarantee
the following: when an interaction is enabled, then this particular instance of interaction must eventually be
executed with certainty; for, otherwise, the exclusion requirement of the interaction scheduling would not be
satis�ed.
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analysis by assuming that each non-monitoring window takes a constant time � − �
for some �¿0, and each interaction involves m participants. By the algorithm, each
monitoring window then must take more than (m− 1)(n− �) time. Let us assume that
it takes (m− 1)�+ � time.

Theorem 7 (Time complexity). Suppose each interaction involves m participants.
Suppose further that each non-monitoring window has a length �− � for some �¿0;
and each monitoring window has a length (m− 1)�+ �. Then, once an interaction X
is enabled, the expected time it takes for a member of X to start an interaction is
no greater than

m�∏
pi∈P(X )  pi; X

+ (m− 1)�+ �

where  pi; X is the probability that pi chooses X in its random draw.

Proof. Assume the hypothesis, and that X is enabled at time t. By Lemma 3 (with
�maxi = �, t′= t, u=�X =m�), there exist two time instances t1 and t2, where t −
m�¡t16 t2¡t + m� and t2 − t1¡m�, such that Et2

t1P(X ) is proper. By Lemma 4
(with the hypothesis that each monitoring window has a length (m − 1)� + � sat-
isfying the condition: (m − 1)� + �¿(m − 1)(� − �)) and the remark following the
lemma, if the random draws in Et2

t1P(X ) yield the same outcome X (an event that
occurs with probability  X =

∏
pi∈P(X )  pi; X ), then an instance of X will be estab-

lished by time t2 + (m − 1)� + �¡t + m� + (m − 1)� + �. Note that if the ran-
dom draws do not yield the same outcome X but some process’s random draw in
Et2
t1P(X ) leads to the establishment of some other interaction involving the process,
then the process will also start an interaction when it �nishes its monitoring window
(that is established following the random draw). If neither of these is the case then
each process in P(X ), after performing its random draw in Et2

t1P(X ), must perform
a new random draw in another m� time (which amounts to the length of a non-
monitoring window �− � plus the length of a monitoring window (m− 1)�+ �). That
is, there must exist another proper set of random draws Et2+m�

t1+m�P(X ) that is disjoint
from Et

t2
1
P(X ).

Once again, if the new random draws yield the same outcome X or cause some
other interaction to be established (with probability no less than (1 −  X ) X ), then
some interaction involving a member of X will be established by time t2 +m�+ (m−
1)� + �¡t + 2m� + (m − 1)� + �. Otherwise, there must exist another proper set of
random draws Et2+2m�

t1+2m�P(X ) that is disjoint form Et2+m�
t1+m�P(X ), and so on.

In general, if X remains enabled, then there exist mutually disjoint sets of random
draws Et2

t1P(X ); Et2+m�
t1+m�P(X ); : : : ; Et2+(i−1)m�

t1+(i−1)m�P(X ); : : : ; and each of these sets is proper.

Moreover, if the random draws in Et2+(i−1)m�
t1+(i−1)m�P(X ) yield the same outcome X or cause

some other interaction to be established (with probability no less than (1−  X )i−1 X ),
then an interaction involving a member of X will be established by t+im�+(m−1)�+�.
Therefore, the expected time starting from t until an interaction involving a member
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of X is established is less than(∑
i
im�(1−  X )i−1 X

)
+ (m− 1)�+ �=

m�
 X

+ (m− 1)�+ �:

Similar analysis can also be carried out if interactions have di�erent size or non-
monitoring windows have di�erent lengths. In particular, when the length of pj’s non-
monitoring windows may vary, another process pi must update its E[ j] in order to
adjust its monitoring window for monitoring some interaction involving pj. In the
algorithm, pi learns a new �j (which measures the maximum length of pj’s previous
non-monitoring windows) through an attempt to establish an interaction involving pj.
For pi to have such an attempt it must choose an interaction involving pj in some
random draw. Let �i; j denote the probability that, in one random draw by pi, an
interaction involving pj is chosen. Then the expected number of attempts for pi to
�nally attempt an interaction involving pj so as to update pi’s E[ j] is

Ti; j =
∑
k
k(1− �i; j)k−1�i; j =

1
�i; j

:

If each such attempt takes no more than s time (which consists of a non-monitoring
window followed by a monitoring window), then an additional s=�i; j time would be
required for pi to have the knowledge of pj’s new �j. If pj also has no knowledge of
pi’s new �i, then an additional max{Ti; j; Tj; i} · s time would be required for both pi

and pj to have each other’s new �.
To see how the time complexity is a�ected by (1) the number of potential interactions

for which a process may be ready at a time, and (2) the size of an interaction, assume
that a process may be ready for k potential interactions at a time, and each interaction
involves m participants. So the probability for the processes in P(X ) to choose X in
a set of random draws, one by each process, is (1=k)m. Assume further that each non-
monitoring window has a length � − � and a monitoring window has a length (m −
1)�+ �. From Theorem 7, the expected time for an enabled interaction to be disabled
is dominated by mkm�. Suppose that the time to execute a local action is negligible
compared to the communication time for delivering a message. Then, � consists of four
message transmissions (a message to send the token, an acknowledgement, a message
to retrieve the token, and a message to return the token) if messages in lines 5, 6, 16,
and 17 of TB can be sent in parallel. If the message transmission time is c, then the
time complexity is dominated by

4cmkm:

In the above, since m messages are sent in parallel in each interval c, the expected
number of messages needed to establish an interaction per process is no greater than

4m2km:

For comparison, the e�cient deterministic alogrithm by Ramesh [28] has a worst case
time complexity in the order of 3cnk and a message complexity 3mk. Note that, unlike
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TB (and other randomized algorithms [12, 30, 19]), the time complexity of determinis-
tic algorithms typically depends on n — the total number of processes in the system.
This is because they impose priority (e.g., process id’s) to break the symmetry be-
tween processes so that a low-priority process must wait for a high-priority one if they
attempt to establish con
icting interactions (two interactions con
ict if they involve a
common process).13 The fact that randomized algorithms often have a time complexity
independent of n is one of the reasons that Reif and Spirakis’s randomized algorithm
[30] was able to claim a real-time response.
From the above comparison, we can see that TB can out-perform deterministic al-

gorithms (where only WIF is required) only if time is a main concern and the two
parameters, k — the number of potential interactions for which a process may be ready
at a time, and m — the number of participants in an interaction, are kept small rel-
ative to n, e.g., CSP-like biparty interactions. (For e�ciency’s concern, deterministic
or randomized, it is generally known that the two parameters must be kept small in
practical applications. A technique of synchrony loosening [10] is therefore proposed
for reducing the size of an interaction.) Otherwise, TB has a niche simply because
deterministic algorithms are unable to guarantee SIF.

4. A shared-memory solution

In this section we present an algorithm for the multiparty interaction scheduling
problem where processes communicate by reading from and writing to shared variables.
In particular, the algorithm uses only single-writer variables. A non-local variable Vj
can be read by the command read (Vj).

4.1. Informal description

Like Algorithm TB, when a process pi is ready for interaction, it randomly chooses
one interaction X , from the set of potential interactions it is ready to execute, and
then attempts to establish X . However, instead of sending out tokens, pi expresses
its interest in X by writing 〈examining;X 〉 to its local variable state, which is to be
read by other processes. In the algorithm, values of state is of the form 〈status;X 〉,
where X denotes the interaction pi is attempting, and status records the status of the
attempt. Besides examining, status has another three possible values: waiting, success,
and closed ; their meaning should be clear shortly.
After setting its state to 〈examining;X 〉, pi begins to read the states of the other

participants. If, for every pj ∈P(X ), pj’s state is 〈examining;X 〉 or 〈waiting;X 〉, then
the other processes in P(X ) are also interested in X . This means that pi has successfully
observed the establishment of X . It then changes its state to 〈success;X 〉, and waits
for the other participants to observe the establishment of X . To do so, pi keeps a

13 It is well known that, even if only WIF is required, there is still no symmetric, decentralized, and
deterministic algorithm for scheduling process interactions [12, 21].
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binary variable 
ag[X ] for each interaction X . Initially, all processes in P(X ) have
their 
ag[X ]’s set to the same value, say 0. When a process p is to execute an instance
of X , it complements its 
ag[X ]. In the above case, pi complements its 
ag[X ] before
it changes its state to 〈success;X 〉. To ensure that every other pj ∈P(X ) has also
observed the establishment of X , pi keeps reading pj’s 
ag[X ] until it has the same
value as pi’s. Then, pi changes its state to 〈closed ;X 〉 and starts X .
As we shall see, 
ag[X ] has another important role in the algorithm: to avoid a

process from “outrunning” other processes in executing instances of X . In other words,
the algorithm guarantees that, if pi is to execute an instance of X , then all other
processes in P(X ) must have �nished the previous instance of X .
When examining other processes’ states, if not all of them are 〈examining, X 〉 or

〈waiting;X 〉, then pi changes its state to 〈waiting;X 〉. Like TB, pi has to wait for a
period of time �, and then re-inspects the other participants’ states. The value of � is
determined as in TB. That is, � must be no less than

∑
pj∈P(X )−{pi} �j, where �j is

the maximum time (measured by the algorithm) pj has spent between two consecutive
�-intervals.
If after � time some process pj has changed its state to 〈success;X 〉, and pj: 
ag[X ]

6= pi : 
ag[X ], then pi has learned the establishment of X from pj. (Throughout the
paper we often use pj:v to denote pj’s variable v.) So, pi also complements its

ag[X ] and then starts X . If after � time either (1) no process’s state has changed
to 〈success;X 〉, or (2) some process is in state 〈success;X 〉 but its 
ag[X ] has the
same value as pi: 
ag[X ] (which means that the process is still executing the previ-
ous instance of X ), then pi’s attempt to establish X has failed. It must return to the
beginning of the procedure to attempt another interaction.

4.2. The code

The algorithm executed by each process pi is given in Fig. 5. We shall refer to the
algorithm as SM (for Shared Memory). The variables local to pi are given as follows:
• ready: a boolean 
ag that is set to true when pi is ready for interaction, and is set
to false when pi has executed some interaction. It is initialized to false.

• state[1::n]: array of 〈status;X 〉, where X is an interaction, and status is examining;
waiting, success, or closed . Each state[ j] records the state of pj observed by pi,
and is initialized to 〈closed ;⊥〉.

• 
ag[X1::Xm]: array of binary values, where X1; : : : ; Xm are interactions of which pi

is a member. Each 
ag[Xj] is initialized to 0.
• �: � records the maximum of the durations from the time pi previously stopped
monitoring interaction to the time pi starts monitoring interaction. It is initialized
to 0.

• init−�: a temporary variable used to measure �. It is initialized to ∞.
• E[1::n]: E[j], initialized to 0, records the maximum value of pj’s � read by pi.
In the algorithm, variable � is measured in a way similar to TB. That is, pi starts

timing � before it is ready for interaction (line 3), and before it is to stop monitoring
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1 while true do {
2 local computing; /* in local computing phase */
3 init−� := clock(pi); /* start measuring a new � */
4 ready := true;
5 while ready do { /* ready for interaction */
6 randomly select an interaction X for which pi is ready to execute;
7 state[i] := 〈examining;X 〉;
8 for pj ∈P(X ); pj 6= pi do {
9 state[ j] := read(pj :state[ j]);
10 E[ j] := max(read(pj:�); E[ j]); }

/* start monitoring X */
11 � := max(�; clock(pi)− init−�); /* record a new � */
12 if ∀pj ∈P(X ) : state[ j]∈{〈examining;X 〉; 〈waiting;X 〉} then {
13 /* pi has successfully observed the establishment of X */
14 
ag[X ] :=¬
ag[X ];
15 state[i] := 〈success;X 〉;
16 for pj ∈P(X ); j 6= i do

/* wait for pj to learn the establishment of X */
17 while read(pj: 
ag[X ]) 6= 
ag[X ] do;
18 state[i] := 〈closed ;X 〉;

/* stop monitoring X */
19 execute X ;
20 ready := false; }
21 else { /* pi is unable to observe the establishment of X */
22 state[i] := 〈waiting;X 〉;
23 wait for �=

∑
pj ∈ P(X )−{pi} E[ j] time;

24 init−� := clock(pi); /* start measuring a new � */
25 state[i] := 〈closed ;X 〉;

/* stop monitoring X */
26 for pj ∈P(X ); j 6= i do { /* re-inspect other process’s state */
27 state[ j] := read(pj :state[ j]);
28 while state[ j] = 〈examining;X 〉 do
29 state[ j] := read(pj :state[ j]);
30 if state[ j] = 〈success;X 〉 and read(pj: 
ag[X ]) 6= 
ag[X ]
31 then { /* pj has observed the establishment of X ; it
32 then executes X and returns to an idle state. */
33 
ag[X ] :=¬
ag[X ];
34 execute X ;
35 ready := false;
36 break; /* exit the for-loop */ }
37 } /* end of for-loop */
38 } /* end of else statement */
39 } /* end of while-loop */
40 } /* end of while-loop */

Fig. 5. Algorithm SM.
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an interaction (line 24). A new � value is recorded in line 11 when pi is to wait for
another �-interval (i.e., to start monitoring some interaction). The value is to be read
by other processes (line 10) for them to adjust their �-intervals (line 23).
It is important to note that when a process pi has observed the establishment of a new

instance of X , it must complement its 
ag[X ] before changing its state to 〈success;X 〉
(lines 14–15). Otherwise, some process pj, after observing pi’s state 〈success;X 〉
(lines 27–29), could have read the value of pi: 
ag[X ] before the complement and
then regard pi as still in a previous instance of X . So, pj would not commit to X
albeit pi has already committed, thus violating the synchronization property of the
problem. (The crucial role of this ordering can be seen in the proof of Lemma 8.)
Furthermore, when pi is re-inspecting pj’s state in lines 28–29, if pj is in state

〈examining;X 〉, then pi must wait until pj leaves the examining status. This is because
pi cannot be sure whether pj will then enter state 〈success;X 〉 or 〈waiting;X 〉. In the
former case pi may start an instance of X , while in the latter pi should return to the
beginning of the algorithm to attempt another interaction. Note that, there is no danger
of deadlock because pj in state 〈examining;X 〉 will not be blocked by pi (or any other
process).

4.3. Analysis of SM

We now analyze the correctness of SM. We begin with an invariant of the algorithm.

Lemma 8. At any time of the algorithm either (1) all the pj: 
ag[X ]’s; where pj ∈
P(X ); have the same value; or (2) if the pj: 
ag[X ]’s are di�erent; then there exists
some previous time instance t such that all the pj: 
ag[X ]’s were equal at time t; and
there exists another time instance t′ such that all the pj : 
ag[X ]’s will be equal at
t′ and; in between t and t′; every pj complements its 
ag[X ] only once.

Proof. Let t1; t2; : : : be the time instances on the global time axis where the events
of the system are totally ordered, and let t0 be the initial time. We shall prove a
stronger invariant INV that not only guarantees the condition described in the lemma
(henceforth referred to as INV1), but also ensures the following condition INV2: if all
the pj: 
ag[X ]’s (where pj ∈P(X )) are equal, then the state of the system guarantees
that the next event that can make these pj: 
ag[X ]’s di�erent must be the execution
of the complement statement in line 14.
It is easy to see that INV1 holds at t0 because all the pj: 
ag[X ]’s are initial-

ized to the same value. For INV2, we note that a process can change its 
ag[X ]
only if (a) it is in state 〈examining;X 〉 and has observed the establishment of X—
i.e., has observed that every other process in P(X ) is in state 〈examining;X 〉 or
〈waiting;X 〉 (line 14), or (b) it is in state 〈closed ;X 〉 and while re-inspecting the
other processes’ states, it �nds that some process in P(X ) has already reached state
〈success;X 〉 and their 
ag[X ]’s are di�erent (line 33). Given that each process’s state
is initialized to 〈closed ;⊥〉, and that all the pj: 
ag[X ]s are initialized to the same
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value, it is easy to see that no process in P(X ) can later change its 
ag[X ] via the
complement statement in line 33 without some other process in P(X ) to �rst change
its 
ag[X ] via the complement statement in line 14. Therefore, both INV1 and INV2
hold at t0.
For the induction proof, we shall assume that INV holds at tl−1, l¿0. Moreover,

all the pj: 
ag[X ]’s have the same value (say 0) at tl−1, but some process pi changes
its 
ag[X ] at tl to cause the pj: 
ag[X ]’s to be di�erent at tl. We shall show that
there exists some time tl′ such that all the pj: 
ag[X ]’s will become equal (with value
1) at tl′ , and INV holds throughout [tl; tl′ ].
By the induction hypothesis, pi must change its 
ag[X ] at tl via the comple-

ment statement in line 14. So, pi has observed the establishment of X prior to tl.
Recall the algorithm that after pi has complemented its 
ag[X ] to 1, it changes
its state to 〈success;X 〉, and executes the for-loop in lines 16–17 until pj: 
ag[X ]
is changed to 1 for every other pj ∈P(X ). Consider each such pj, and recall that
pj: state∈{〈examining;X 〉; 〈waiting;X 〉} when pi inspected it in line 9. Since pi will
not exit the for-loop of lines 16–17 until pj: 
ag[X ] is set to 1, to show that tl′ exists,
we �rst show that pj will eventually set its 
ag[X ] to 1.
Suppose �rst that pj was in state 〈examining;X 〉 when pi inspected its state. By

the algorithm, pj will eventually enter 〈success;X 〉 or 〈waiting;X 〉, depending on if
pj can also observe the establishment of X . If pj can also observe the establishment
of X then, like pi, pj enters state 〈success;X 〉, complements its 
ag[X ] to 1, and will
also be waiting in lines 16–17 until all other processes in P(X ) have the same value of

ag[X ]’s. The case that pj instead enters state 〈waiting;X 〉 is collaterally considered
in the following where some process was in state 〈waiting;X 〉 when inspected by pi.
Suppose instead that pj was in state 〈waiting;X 〉 when pi inspected its state. Then,

pj must be in lines 23–24 when pi inspected its state. So, after pj’s � expires pj must
re-inspect other processes’ states. Observe that pi changed its state to 〈examining;X 〉
before it inspected pj’s state. So, when pj re-inspects pi’s state, either pi is still in
state 〈examining;X 〉 inspecting other processes’ states, or it has already �nished the
inspection and has changed its state to 〈success;X 〉, waiting in lines 16–17 for pj (and
every other process in P(X )) to complement its 
ag[X ]. Since pj cannot �nish re-
inspecting pi’s state until pi has left state 〈examining;X 〉, pj will eventually learn that
pi’s state is 〈success;X 〉. Moreover, since pi complements pi: 
ag[X ] before changing
its state to 〈success;X 〉, and since pj inspects pi: 
ag[X ] after it sees that pi is in state
〈success;X 〉, when pj inspects pi : 
ag[X ], it must learn that pi: 
ag[X ] 6= pj : 
ag[X ]
and so will set pj: 
ag[X ] to 1.
So, we see that every process in P(X ) will eventually set its 
ag[X ] to 1. To

complete the proof that tl′ exists, we must show that before these 
ag[X ]’s are set to
1, each process can only complement its 
ag[X ] once (starting from tl). Note that,
if some process has not yet complemented its 
ag[X ] to 1, then pi (and all other
processes that have observed the establishment of X ) must stay in the for-loop in
lines 16–17. So it su�ces to show that, for each pj ∈P(X ) that does not observe the
establishment of X by itself, pj cannot reset its 
ag[X ] to 0 while pi (or any other
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process that has observed the establishment of X ) is still in the for-loop. For this,
observe that for pj to reset its 
ag[X ] to 0, pj must re-enter state 〈examining;X 〉 in
line 7. So, when pj inspects the other participants’ states in line 9, it will �nd that
pi is still in state 〈success;X 〉 and so cannot proceed to line 14 to reset its 
ag[X ].
Moreover, when pj subsequently enters state 〈waiting;X 〉 and re-inspects pi’s state in
lines 27–29, if pi is still in the for-loop, then when pj proceeds to line 30, pj will
learn that pj: 
ag[X ] = pi : 
ag[X ] and so will not be able to reset pj: 
ag[X ] to 0.
Therefore, there exists tl′ such that all the pj: 
ag[X ]’s (where pj ∈P(X )) will

become equal at tl′ . The fact that each pj can only complement its 
ag[X ] once
throughout [tl; tl′ ] and the assumption that all the pj: 
ag[X ]’s are equal at tl−1 imply
that INV1 holds throughout [tl; tl′ ].
We now show that INV2 holds throughout [tl; tl′ ]. Because INV2 holds vacuously if

the pj: 
ag[X ]’s are di�erent, it su�ces to show that the system state at tl′ guarantees
that the next event to reset any of these pj: 
ag[X ]’s to 0 must be the complement
statement in line 14. For this, in the above proof we have seen that, while some process
pi is in state 〈success;X 〉 waiting for all processes in P(X ) to set their 
ag[X ]’s to
1, no other process pj in P(X ) can proceed to line 33 to complement pj: 
ag[X ] to
0. Therefore, if after tl′ some process pk ∈P(X ) has observed that another process
ph is in state 〈success;X 〉 and their 
ag[X ]’s are di�erent (so that pk can reset its

ag[X ] to 0 via the complement statement in line 33), then the fact that ph can be
in state 〈success;X 〉 must be due to the fact that ph has reset its 
ag[X ] to 0 via
the complement statement in line 14 at some time after tl′ (but before pk has reset
its 
ag[X ] to 0). So, the �rst event after tl′ to reset any 
ag[X ] to 0 must be the
complement statement in line 14.
Therefore, both INV1 and INV2 hold throughout [tl; tl′ ]. The lemma is thus

proven.

The following lemma follows immediately from the above proof.

Lemma 9. A process entering state 〈success;X 〉 of SM will eventually execute an
instance of X .

The synchronization property of SM follows from Lemma 8 and the fact that every
complement of 
ag[X ] is followed by an execution of X .

Theorem 10 (Synchronization). If a process starts a new instance of X; then all other
processes in P(X ) will eventually start the instance of X .

The exclusion property follows directly from the fact that a process attempts inter-
actions one at a time.

Theorem 11 (Exclusion). No two interactions can be in execution simultaneously if
they have a common member.
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To show that SM satis�es weak and strong interaction fairness, again we need some
de�nitions about monitoring windows, non-monitoring windows and proper sets of ran-
dom draws Etf

ts P(X ). Analogous to the analysis of TB, we say that pi starts monitoring
X if it has set its state to 〈examining;X 〉 and has �nished reading the state of every
other process in P(X ) (lines 8–10 of SM). It stops monitoring X if it has changed
its state to 〈closed ;X 〉 (lines 18 or 25). Let t1 and t2 denote the two events respec-
tively. The semi-closed interval [t1; t2) is referred to as a monitoring window, and at
any time instance of the interval pi is monitoring X . Note that if pi is monitoring
X , then it must be in state 〈examining;X 〉, 〈success;X 〉, or 〈waiting;X 〉. Accord-
ingly, the de�nitions of non-monitoring windows and Etf

ts P(X ) can be de�ned as in
Section 3.2.1.
Like TB, the de�nition of “monitoring windows” ensures that if every process in

P(X ) is monitoring X , then X will be established, as shown in the following lemma.

Lemma 12. Assume set Et2
t1P(X ) is proper. With respect to Et2

t1P(X ); let QN be the
set of type-N processes; and QM be the set of type-M processes. For each pi ∈QN ; let
ui denote pi’s non-monitoring window from which pi’s random draw event is chosen
for Et2

t1P(X ); and let wi denote pi’s monitoring window immediately following ui. For
each pi ∈QM ; let wi denote pi’s monitoring window at t1. If all the random draws
in Et2

t1P(X ) yield the same outcome X and; for each pi ∈QN ; ‖wi‖¿(
∑

pl∈QN
‖ul‖)−

‖ui‖; then an instance of X will be started when some process pj ∈P(X ) �nishes its
monitoring window wj.

Proof. By a proof similar to Lemma 4, we can show that all processes in QN are
monitoring X at time t2. Moreover, every pj ∈QM either remains in a monitoring
window throughout [t1; t2], or is monitoring an interaction at t1 and starts the interaction
after it �nishes the monitoring window. In the �rst case, we can see that all the
processes in P(X ) are monitoring X at t2; and, in the later case, it is easy to see that
X will be established when some process pj ∈QM �nishes its monitoring window wj.
So, in the following we shall only show that if all processes are monitoring X at t2,
then an instance of X will be established when they �nish their monitoring windows.
By de�nition, each process must be in state 〈examining;X 〉, 〈success;X 〉, or

〈waiting;X 〉 at time t2. So it su�ces to consider the following two cases: (1) Some
process pi is in state 〈success;X 〉 executing the for-loop in lines 16–17 of the algo-
rithm, or (2) all processes are in state 〈examining;X 〉 or 〈waiting;X 〉.
For Case (1), by Lemma 9 and Theorem 10, the processes in P(X ) will start an

instance of X when their monitoring windows at t2 expire.
For Case (2), observe that a process can enter state 〈waiting;X 〉 only from state

〈examining;X 〉. Let pl be the process, among the processes in P(X ), that is the last
to enter state 〈examining;X 〉 (i.e., to execute line 7), and assume that pl entered
the state at t′, where t′¡t2. (If there is more than one such process, then choose
an arbitrary one.) Moreover, since pl is monitoring X at t2, pl, after entering state
〈examining;X 〉 at t′, must have �nished inspecting the other participants’ states by



Y.-J. Joung / Theoretical Computer Science 243 (2000) 307–338 335

t2. Since every pi ∈P(X ) is in state 〈examining;X 〉 or 〈waiting;X 〉 throughout the
interval [t′; t2], pl must have successfully observed the establishment of X prior to t2.
So it must then enter state 〈success;X 〉. By Lemma 9 and Theorem 10, the processes
in P(X ) will start an instance of X when their monitoring windows at t2 expire.

For the fairness property, again we need some assumption on the faultless behavior
of the system. Unlike in the message-passing paradigm, no physical communication
link for delivering messages is present between every pair of processes in the shared-
memory model. So we need only to assume that processes are not hanging.

Theorem 13 (Weak interaction fairness). Assume that processes are not hanging. If
X is enabled at time t then; with probability 1; X will be disabled eventually.

Proof. The proof is similar to Theorem 5, and note that Lemma 12 and a lemma
similar to Lemma 3 is needed for the proof.

Theorem 14 (Strong interaction fairness). Assume (A1) that processes are not
hanging; and (A2) that a process’s transition to a state ready for interaction does
not depend on the random draws performed by other processes. If an interaction X
is enabled in�nitely often then; with probability 1; the interaction will be executed
in�nitely often.

Proof. Similar to Theorem 6.

The time complexity of SM can be analyzed as in Section 3.2.4.

5. Concluding remarks

We have proposed two randomized algorithms, one for message passing and the
other for shared memory, that, with probability 1, schedule multiparty interactions in
a strongly interaction fair manner. Both algorithms improve upon a previous result by
Joung and Smolka in the following aspects: �rst, processes’ speeds and communication
delays need not be bounded by any predetermined constant; second, the algorithms are
completely decentralized, and the shared-memory solution makes use of only single-
writer variables; and third, the algorithms are symmetric in the sense that all processes
execute the same code, and no unique identi�ers are used to distinguish processes.
In algorithm TB, a process pi attempting to establish X adjusts its � based on

the length of non-monitoring windows sent by the other processes in P(X ). Suppose
for each pj ∈P(X ), the maximum length of pj’s non-monitoring window known by
pi is less than �j. As we have shown, the necessary condition for TB to satisfy the
fairness requirement is that �¿

∑
pj∈P(X )−{pi} �j. Since � and each �j are measured

by di�erent processes using their own clocks, in the algorithm we have assumed that
processes’ clocks tick at the same rate. Clearly, if the clocks may move at di�erent
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rate, then the condition �¿
∑

pj∈P(X )−{pi} �j (where the interpretation of � and �j is
with respect to a universal clock) may no longer be satis�ed. However, if the relative
clock speed between pi and pj is known, then pi can time �j by the drift rate to
compensate its reading of �j. If such a factor is not available, then, since a temporary
choice of a short � cannot cause the algorithm to err, pi can incrementally enlarge its
� so that eventually the condition �¿

∑
pj∈P(X )−{pi} �j will be met. The situation is

similar for algorithm SM.
Both algorithms cannot tolerate zero-speed failure, meaning that a process can stop

prematurely (without forging or corrupting any of its variables). For algorithm TB, a
process’s failure may stop the whole system. This is because if a process pj fails, then
any process pi which attempts to establish an interaction with pj may have already
sent its token to pj and is waiting for pj’s acknowledgment or its return of the token.
It is well known that, under the assumption of unbounded communication delay, pi

cannot distinguish whether pj has already terminated, or has not yet responded to pi’s
request. So, pj’s failure may hang pi, which in turn will also hang all other processes
waiting for pi’s response, and so on.
For algorithm SM, if pj fails after it has expressed its interest in X (by set-

ting pj: state to 〈examining;X 〉), then pi could establish X by changing pi: state to
〈success;X 〉, and then waits forever in line 17 of SM for pj to complement pj: 
ag[X ].
Note, however, that unlike TB, the other processes not involved in P(X ) may still be
able to proceed in this situation. This is because another process pk attempting to estab-
lish an interaction, say Y , waits for the other participants only in a bounded �-interval,
and it learns their states by actively reading their variables. So, if Y also involves pi

(which has been trapped in an inde�nite loop waiting for X to be established), then pk

will eventually time-out its � to give up on Y because not all processes in P(Y ) are
interested in Y . So, pk will be able to re-try another interaction. Of course, if no other
interaction involving pk is enabled, then pk will also be blocked from establishing an
interaction, even though some interaction involving pk (e.g., Y ) has been enabled.
It should be pointed out that, although in general the cost of randomized algorithms is

considerably high, they may still out-perform existing deterministic algorithms (where
only WIF is required) if response time is a main concern and the two parameters,
k — the number of potential interactions for which a process may be ready at a time,
and m — the number of participants in an interaction, can be kept small relative to
n—the total number of processes in the system. Even if the above conditions cannot
be met, randomized algorithms still have a niche because no deterministic algorithms
are able to claim SIF.
Finally, we note that the fairness property of both algorithms is based on two as-

sumptions. For weak interaction fairness, we require Assumption (A1) that a process
cannot be hanging in the sense its speed cannot reduce to zero and there cannot ex-
ist an in�nite sequence of steps of the process such that the lengths of the steps
are monotonically increasing. For strong interaction fairness, we additionally require
Assumption (A2) that a process’s transition to a state ready for interaction does not
depend on the random choices performed by other processes (so that two random draws
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by di�erent processes are always independent). It remains open whether either assump-
tion can be removed. However, by observing the impossibility phenomena of strong
interaction fairness in a deterministic setting [32, 16] and by the example discussed
after Theorem 6, we conjecture that Assumption (A2) cannot be removed from strong
interaction fairness.
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