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Abstract 

This paper presents a selective survey of numerical representations of preference structures 
from the perspective of the representational theory of measurement. It reviews historical contri- 
butions to ordinal, additive, and expected utility theories, then describes recent contribution!, in 

these areas. @ 1999-Elsevier Science B.V. All rights reserved 
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1. Introduction 

Decision theory, which traces its philosophical foundations to antiquity, has devel- 

oped into a mathematically mature subject in recent times. Early evidence of mathemat- 

ical analysis in decision theory appears in the eighteenth century writings of Bernoulli 

[7] on rational analysis of risky decisions and of Borda [9] and Condorcet [ 151 on 

aggregation of individuals’ preferences through voting or algebraic combination for 

collective action. 

The first third of the present century witnessed a new level of mathematical so- 

phistication in Norbert Wiener’s [103] axiomatic analysis of what we now rcfcr to as 

interval orders, Frank P. Ramsey’s [83] axiomatization for decision under uncertainty, 

and Bmno de Finetti’s [18, 191 contributions to subject probability and logical decision 

making. As mid-century approached, these were joined by the monumental treatise on 

rational choice and the theory of games by John von Neumann and Oskar Morgenstern 

[ 1001. Then, in the 195Os, other books that have profoundly influenced mathematical 

research in decision theory through the rest of the century appeared. These include Ken- 

neth Arrow’s [5] work on social choice theory, L.J. Savage’s [85] axiomatic foundations 

for subjective expected utility theory in decision under uncertainty, and Gerard Debreu’s 

[ 171 axiomatization of preferences for utility-based economic equilibrium analysis. 

The central principle for human judgment and choice in the vast majority of these 

works and their successors is the notion of order, formalized by transitivity, and the 

related notion of decision-by-maximization. Even when decision paradigms do not 

transparently involve maximization, as with Nash equilibria in non-cooperative games 
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[48,77] and some ballot aggregation procedures, individuals are often assumed to have 

ordered preferences. 

The emphasis on order and maximization has led to a huge body of work on quantifi- 

cation of preferences, likelihood judgments, and other qualitative aspects of judgment 

and choice. The obvious reason is that quantification facilitates the search for optimal 

or near-optimal decisions. A less obvious reason is that many contributors to decision 

theory have been instrumental in developing the representational theory of measure- 

ment, which subsumes but is certainly not limited to representations of preferences 

and other aspects of decision theory. The representational theory of measurement was 

formalized in [88] and has received its most complete expression in the three-volume 

set by Krantz et al. [55], Suppes et al. [91] and Lute et al. [68]. Its defining character- 

istic is the quantitative representation by analogous numerical structures of qualitative 

structures that consist of a ground set X and one or more relations or operations on 

X. The set X may have a variety of structural properties, e.g. as a Cartesian product 

set or a set of probability distributions, and one of its relations is often assumed to 

be a binary ordering relation. A familiar operation is the binary concatenation opera- 

tion @ where x @ y denotes the joining together of objects X, y E X by placing them 

end-to-end for length measurement or putting them in the same balance pan for weight 

measurement. We often use F to denote an asymmetric and transitive binary relation 

on X, in which case (X, F) is a partially ordered set, and we always define N as its 

symmetric complement by 

x N y if neither x + y nor y + x . 

The relation + could denote is preferred to, or is more probable than, or is longer 
than, and so forth. Corresponding interpretations of N are is indifferent to, is equally 

probable as, and is the same length as. However, if + is assumed only to be a partial 

order without N also being transitive, in which case N is not necessarily an equivalence 

relation, then x N y for x # y could signify incomparability rather than comparable 

equality. 

Positive, closed extensive measurement provides a nice example of a qualitative 

structure represented by an analogous quantitative structure. The qualitative structure 

is (X, +,@) with order relation + on X. We assume also that - is transitive, + is 

positive [for all x,y E X, x @ y F x], @ is closed under N [for all x,y E X there is a 

z E X such that z N x $ y], and the structure satisfies an Archimedean condition that 

is needed for a real valued as opposed to nonstandard or lexicographic representation. 

The analogous quantitative structure is (R+, >, +), where R+ denotes the positive 

reals. The representation is: there exists II/ : X --f [w+ such that, for all x, y E X, 

x + Y +i ti(x> ’ Icl(Y) 

and 

ti(x @ Y> = $(x) + ti(Y) . 

The mapping $ thus preserves F on X by > on R+, and takes @ into +. 
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The representational theory also pays close attention to the uniqueness status of 

representing functions. In the example, $ is unique up to multiplication by a positive 

constant: if $ satisfies the representation then so does $* if and only if I/?* = a$ for 

some LIE [w+. 

I have described the representational theory of measurement because it provides a 

general framework for most decision-theoretic representations. Other works that em- 

phasize its approach include Pfanzagl [80], Roberts [84] and Narens [76]. Books not 

cited earlier that adopt the representational tack for decision theory include Fishburn 

[23,25,29] and Wakker [loll, and extensive surveys are available in [22,24,30.36]. 

The sections to follow discuss the representational theory for a variety of preference 

structures. They are not exhaustive but rather offer a selective survey that illustrates 

facets of preference theory and includes recent results not found in earlier surveys 

The next section opens with a few definitions of central importance to our subject and 

then describes basic representations for ordinal utility theory, additive utility theory, and 

expected utility theory. Section 3 begins our consideration of specific topics with a dis- 

cussion of cancellation conditions for finite additive measurement. We emphasize recent 

work on the extent to which such conditions are needed to ensure additivity. Section 4 

continues the additivity theme by showing how a general theorem for additive measure- 

ment applies to a utility threshold representation for sets of arbitrary cardinality. Sec- 

tion 5 illustrates recent contributions to decision under risk and decision under uncer- 

tainty in two areas. The first is a generalization of Savage’s subjective expected utility 

theory in which utilities are real vectors ordered lexicographically and subjective prob- 

abilities take the form of real matrices. The second focuses on the role of a binary op- 

eration of joint receipt for situations in which holistic alternatives consist of similar but 

clearly discernible pieces. Section 6 concludes the paper with examples of preference 

cycles and representations that accommodate cyclic preferences. The representations 

described in earlier sections assume that preferences are transitive, or at least acyclic. 

2. Preference representations 

This section uses an array of preference structures and their quantitative represen- 

tations to illustrate our subject and provide points of departure for later sections. We 

first outline three factors that differentiate among various representations and contain 

important definitions. 

Ftrctor 1: Cardinality of X. The main distinction is among finite, countable (finite 

or denumerable), and uncountably infinite X. 

Futor 2: Ordering properties of >. The following four main categories are common. 

We say that + on X is: 

ucycli~ if its transitive closure is it-reflexive (we never have XI + XI + XX, t XI 

for finite t); 

u partiul or&r if it is transitive (x + z whenever x + ,V and JJ > z) and irreflexive 

(we never have x + x); 
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a weak order if it is a partial order for which N is transitive; 

a linear order if it is a weak order or partial order for which N is the identity 

relation. 

Szpilrajn’s [92] theorem implies that an acyclic + has a linear extension, i.e., is 

included in some linear order. If + is a weak order then N is an equivalence relation 

(reflexive, symmetric, transitive) and the set X/ N of equivalence classes in X deter- 

mined by N is linearly ordered by +* on X/ N defined by a +* b if x + y for some 

(hence for all) x E a and y E 6. 
Factor 3: Representational uniqueness. Suppose the quantitative structure of the rep- 

resentation uses only one real-valued function u on X. Assume that u satisfies the 

representation, and let U denote the set of all u:X + DB that satisfy it. We then say 

that u is unique up to: 

(i) an ordinal transformation if U = {u: for all X, Y E X, v(x) > v(y) H u(x) > 

u(y)); 
(ii) a positive gjine transformation if U = {v: there are real numbers a > 0 and b 

such that U(X) = au(x) + b for all x E X}; 

(iii) a proportionality transJbrrnation if U = {v: there is an a E [w+ such that 

v(x) = au(x) for all x E X}. 

When a representation uses more than one real-valued function, the same definitions 

apply to individual functions although additional restrictions on admissible transforma- 

tions usually obtain when the functions are considered jointly. For example, if X = 

X, x X2 x . . . x X, and the representation uses Ui :Xi + [w for i = 1,2,. . , n, we 

say that the ui are unique up to similar positive ajfine transjhmations if another set 

{V~,V~,...,V~} Of Vi:Xi --j [w also satisfies the representation if and only if there is an 

a E W and bl, bz,. . , b,L E 58 such that vi(xi) = au(x;) + bi for all xi E Xi and all 

i E {1,2 ,..., rz}. 

Other distinguishing factors include special structures for X, the presence or absence 

of operations like $, and whether a representation involves specialized properties for 

its real-valued functions such as continuity or linearity. Continuity is often associated 

with topological structures as described, for example, in [23,30,36, 1011, and it will 

not play a prominent role in our present discussion, which is primarily algebraic. 

The rest of the section outlines traditional topics in preference theory, where u in 

a representation is usually referred to as a utility function. Theorems that link utility 

representations to qualitative preference structures by means of assumptions or axioms 

for preference are noted. Most proofs are available in [23] or in references cited in 

[30,36]. I include a few proof comments here to illustrate the representations. 

2. I. Ordinal measurement 

A fundamental result for (X, +) says that if X is countable then there is a utility 

function u : X + IF! such that 

x + Y * u(x) > U(Y) for all x, y t X , (1) 



if and only if + on X is a weak order. In this case, u is unique up to an ordinal 

transformation. Sufficiency of weak order can be seen by enumerating the indifference 

classes in $ m as al, ~2,. . ., defining u* on xi - by 

lC*(Q,) = x(2-‘: Ui t* U,} . 

noting that rc*(a~ )>u*(ah)+22” if nk +* ah, and then defining u on X by u(x) = u*(N,) 

whenever x t a,. 

Weak order is not generally sufficient for (1) when X; N is uncountable. For exam- 

ple, the linear order + on 58’ defined by (x1,x2) + (_I,,,Y~) if.\-, > J’~ or (x, = J’~,.Y, > 

~2) can be represented lexicographically as (x,,?I~) + (yt.?‘2) ++ (LI~(.YI),II?(x~)) >L 

(u~(_v~),u~(_w)), where Ui(X;) = Xi and >t> denotes lexicographic order. But it can- 

not be represented by ( 1): otherwise, since u(xt (0) < U(XI. 1) < u(y,, 0) < u(J,, , I ) 

whenever XI < ~1, every interval [U(XI, Oj, u(xt , I )] would contain a different ratio- 

nal number and yield the contradiction that the countable set of rational numbers is 

uncountable. 

To obtain (1) when Xi N is uncountable, it needs to be assumed also that X: h, 

includes a c~ountahlr subset that is >“-order dense in X, N. By definition, A C B is 

order dense in (B, +o) if, whenever u to h for II. h E B\A, there is a c E A such that 

a ~0 c ~0 h. Countable order denseness is often replaced in economic discussions by 

a sufficient but nonnecessary topological assumption which implies that u in ( 1 ) can 

defined to be continuous in the topology used for X. 

Because (1) implies that t is a weak order, it cannot hold when > is acyclic or 

a partial order that is not also a weak order. We can, however, continue to use 11 to 

preserve + one-way in the manner x >- _V :+ u(x) > u(J~). We can also use the same 

u to fully preserve, by equality, the strong indifference relation =Z on X defined by 

for z on X is an equivalence relation with x + _r z 2 3 x + z and x N J’ + z 3 .Y t z. 

Thus, if X is countable, there is a u : ,Y + W for which 

x+v * U(X) > u(y) and s RZ y ++ 24(x) = 24(y) for all 1. ,t’ E X, (2) 

if and only if > on X is acyclic. Fig. 1 illustrates z on a Haase diagram for a partially 

ordered set in which one point bears + to a second if there is a downward sequence 

of lines from the first to the second. 

When X/z is uncountable, (2) holds for acyclic + if +*, defined in the natural way 

on Xl!=:, has a linear extension in which some countable subset is order dense. Further 

discussion along this line is available in [78,90] 

Suppose (X, +) is a partially ordered set that is not necessarily weakly ordered. An 

alternative to (2) of the two-way or if’ and only if variety that replaces M in (I ) by 

another quantitative construct may then apply if (X, +) has additional structure. A case 

of this occurs when + is an intrrvul m&r, i.e., when 
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The primary two-way representation for an interval order is 

x + y H Z(x) > Z(y) for all x, y E X , (3) 

where I :X --f Z with Z the set of all real intervals, and for A, B E I, A > B means 

that a > b for all a E A and all b E B. One basic result (Fishbum [23], Theorem 2.7) 

is: if X/ = is countable for an interval order (X, >-), then (3) holds for a mapping 

I into nondegenerate closed intervals. Other structures may require open or half-open 

intervals (consider X = Z with + = >), and yet others may fail for (3) because 

there are not enough intervals in I to accommodate the desired representation. Further 

results are in [lo, Ch.7 of 27,791 and other references cited there. 

2.2. Additive measurement 

Several seemingly different types of representations are grouped together under this 

heading because they have an additive character and can be analyzed by similar mathe- 

matical methods. A general theory of additive measurement is presented in [35], where 

it is applied to a variety of contexts, including positive extensive measurement, additive 

utility measurement for multiattribute alternatives, difference measurement for strength 

of preference comparisons, threshold measurement, expected utility, and comparative 

probability. The paper includes a condition for X of arbitrary cardinality that is nec- 

essary and sufficient for the existence of an additive representation. I will describe 

its approach for threshold measurement in Section 4. The present subsection considers 

only comparative probability and multiattribute utility to illustrate the additive theme. 

I include comparative probability under the preference rubric because its relation > is 

often defined from preference comparisons. Suppose x and y are uncertain events. Let 

gx be the gamble that pays $100 if x obtains and $0 otherwise, and similarly for gY. 

Then the approach promoted by de Finetti [19] and Savage [85] defines x + y if gx is 

preferred to gY. 

We formulate X for the present discussion as a family of subsets of a universal set 

Sz. For comparative probability, Q is a set of states, members of X are events, and 

X usually includes the empty event 8 and universal event 52. The event set X may or 

may not be closed under operations like union, intersection, and complementation, and 

its members can have very different cardinalities. 
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The set of items to be compared by preference in multiattribute utility theory is a 

subset A of a Cartesian product set Al x A2 x . . x A, with n 3 2. Each A; is a nonempty 

set, and we assume without loss of generality that the Ai are mutually disjoint and every 

ai E 14, appears in at least one n-tuple in A. The universal set Q is defined as U, .A,. 

and 

x = {{Q,,a2>..., a,}: (Ul,Q,...,Un) E A} 3 

so every member of X is an n-element subset of B. 

Suppose B is finite and > on X is a weak order. The basic additive representation 

uses u : !2 + R! for 

x > J’ H c u(w) > c u(0) 
19t.r r,,t 1 

for all x, .r t X . (4) 

It is common in the multiattribute case to denote the restriction of u on A, by II, so, 

when x = {LZ~,U~,..., a,l}, C,r@) = C, ~(a,). Th en, when (4) holds, it remains 

valid when the origin of each Ui is translated by adding a constant c; to all u, values. 

For comparative probability, we assume R + 8 and that the union 2 of t and N is 

monotonic, so x > 1: 3 x 2 y. Then we can take u > 0 and En I) = 1 when (4) holds, 

so u becomes a probability distribution on s2. A necessary and sufficient condition for 

(4) referred to as cancellation, independence, or additivity, was identified first by Kraft 

et al. [54]: 

Cancellation. For every pair x1,x2,. . ,xm and 1.‘. y2,. . , ,P of finite sequences of 

members of X such that 

~{.j:~tx~}~=~{j:~E,v~}~ forall c0EQ, 

it is false that .x’ 2 yl for j = 1,. . ,m and xi + ,v’ for some j. 

Necessity of Cancellation for (4) follows from the fact that (5) implies 

(5) 

I? c u(w) = 2 c u(w) . 
j=l ruEa’ /=I WEl“ 

Hence if (4) holds and if Cancellation is violated by xi 2 yl for all j and X/ + y’ for 

some j, summation over j on the right side of (4) followed by cancellation of identical 

terms leaves the contradiction that 0 > 0. Sufficiency of Cancellation for (4) follows 

from solution theory for finite systems of linear inequalities by way of a solution- 

existence theorem known by various names. including the separating hyperplane lemma, 

the theorem of the alternative, Farkas’s lemma, and Motzkin’s lemma: see, for example 

[23,37,55,87]. Essentially the same separation lemma applies when + is only assumed 

acyclic or a partial order, with slight modifications in Cancellation. For example, if (4) 

is to hold when ti is replaced by +, we replace the last line of Cancellation by “it 

is false that xi + $ for all j.” 

When (4) holds for finite 52 under weak order, u is not generally unique in any 

simple sense. Special conditions that are not necessary for (4) but which yield simple 
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uniqueness forms, such as absolute uniqueness for subjective probabilities, are described 

in [30,36,45]. Additional discussions of Cancellation for finite Sz appears in the next 

section. 

Theories of additive measurement for infinite 52 usually assume nicely structured 

domains, such as A = Al x A2 x . . x A, for additive utility or X = 2* for compara- 

tive probability. Most also use existence axioms that simplify cancellation conditions, 

promote representational uniqueness, and facilitate the derivation or assessment of u. 

Examples for (4) with A = AI x A2 x . x A,, in the multiattribute case of both the 

algebraic and topological varieties are detailed in [23,55, 1011. Their cancellation con- 

ditions use only m = 2 and m = 3 in Cancellation, and their u; functions as defined 

after (4) are unique up to similar positive affine transformations. 

When 52 is infinite for the comparative probability case, the weak order representation 

(4) is usually replaced by (1) in conjunction with u(X) C[O, l],u(Q) = 1, and 

U(X u y) = u(x) + u(y) for all x, y,x U Y E X for which x n y = 8 , 

so that u is a finitely additive probability measure on X. Savage’s [85] elegant axiom- 

atization for this representation assumes X = 2”, weak order, Q + 0, x 2 8 for all x, 

the m = 2 part of Cancellation which says that 

and an Archimedean axiom involving finite partitions of Q. The representing measure 

is unique and satisfies the following divisibility property: if x + 0 then for every 

0 < i, < 1 there is an xi. cx such that u(x),) = ~,u(x). Proof are given in [23,29] 

as well as Savage [85]. Survey material on related axiomatizations of comparative 

probability appears in Section 6 in [36]. 

2.3. Expected utility 

The simplest version of expected utility formulates X as a set of finite-support proba- 

bility distributions, also called lotteries, on a set C of consequences. The consequences 

in C are viewed as mutually exclusive outcomes of decision. If x(cI)+x(cz)+x(c~) = 1 

for distinct ci E C, and if x is chosen over other lotteries, then the unique outcome of 

the decision is ci, with probability x(c,), for i = 1,2,3. The expected utility represen- 

tation for weak order involves a utility function u : C + R for which 

x * y H axe > C y(c)u(c) for all x,y E X. 
c c 

(6) 

It is commonly assumed that X is closed under convex combinations so /Ix+( 1 -i)y, 

defined by (3~ + (1 - i_)y)(c) = LX(C) + (1 - J”)y(c) for all c E C, is in X whenever 

x, y E X and 0 G/Z < 1. This is tantamount to assuming that X is closed under every 

binary operation @i in a set of operations for 2” l [0, 11, with x @;. y = LX + (1 - /z)y. 

A straightforward generalization of the simple version under convex closure takes X 

as a function set closed under a mixture operation which maps each triple (x,j_,y) for 
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x, _Y E X and 0 d i $1 into another member of X that is usually denoted by (x, i, ?‘) 

or xi.v or ilu + (1 - 1)~. This is essentially the approach taken in the axiomatiza- 

tion of von Neumann and Morgenstern (1944) whose utility representation is (I ) in 

conjunction with the lineurity propert? 

u(xI._v) = j_u(x) + (1 - I.)u(y) for all x, y E X and all O<i<l . (7) 

When the simple version applies and u is extended from X to C by u(c) = u(xI.) under 

the assumption that every degenerate distribution x,. for which x,,(c) = I, is in X, (6) 

follows from (I ) and (7). 

After early confusion about the von NeumannMorgenstem approach was clarified 

by Malinvaud [72] (see also [46]), several equivalent axiomatizations for ( 1) and (7) 

were developed. My favorite is Jensen’s [50] which, in addition to properties for the 

mixture operation, uses three assumptions for F- on X. They are weak order and the 

following for all x, y, z E X and all 0 < iL < 1: 

indrpmdencr: x s y * xA2 t yj2, 

continuitj7 x * y + z * xx2 k- y >- xfiz for some 2, P t (031) 
Independence says that F is preserved under similar mixtures. It is usually defended 

by an interpretation for XLZ and yir, whereby x or y obtains with probability i and 2 

obtains with probability I - 1.. Continuity ensures the existence of real-valued utilities 

as opposed to nonstandard or multidimensional lexicographically ordered utilities. We 

discuss the lexicographic case in Section 5. 

The proof in [23,25,29] that (I ) and (7) follow from weak order, independence and 

continuity shows that these axioms imply independence for b: x e_ y + .Gz - >xj: 

for all 0 <j_ < 1 and all z E X. Then, whenever x F ?‘ and x t z 2 ,v, we prove that 

z - .riy for a unique i E [O,l]. We then fix x1 + x0, set u(.Y~) = 1 and u(.Q) = 0. 

define U(Z) = i when XI tz 5x0 and z - X,&Q, and show that (I ) and the linearity 

property (7) hold for all members of X in the closed preference interval from .Y() 

and x1. The representation is then extended to the rest of X in the only way that 

preserves linearity under indifference. The resulting u is unique up to a positive affine 

transformation obtained, for example. by choosing values for u(x,) and I other 

than I and 0. 

Modifications of (1) with maintenance of linearity (7) when F is assumed only 

to be a partial order are presented in [23,25,75,98], and integral forms for (6) are 

axiomatizated for certain classes of probability measures in [23,25]. 

Beginning around 1980, several investigators developed nonlinear versions of the 

theory that weaken its independence axiom, which is often inconsistent with actual 

preferences [3,5 I, 70,961. Consider an example from Kahneman and Tversky [5 I] 

with ~($0) = 1 and il = l/4: 

x : $3000 with probability 1, 

y : $4000 with probability 0.8, nothing otherwise, 
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1 
x’ = x4z : $3000 with probability 0.25, $0 otherwise, 

1 
y’ = y;z : $4000 with probability 0.20, $0 otherwise . 

A majority of 94 respondents in their study violated independence with x + y and 

y’ + x’. Fishburn [29, Ch.31 reviews weak order and partial order theories due to 

Machina [71], Chew [12], Fishbum [26] and Quiggin [82] among others, that accorn- 

modate this and other failures of independence. Section 6 describes another theory that 

also allows violations of transitivity. 

The preceding theories are grouped under the heading of decision under risk be- 

cause their consequence probabilities are given as part of the formulation and are not 

derived from axioms. Theories of expected utility that derive subjective probabilities 

of uncertain events along with utilities from axioms are grouped under the heading of 

decision under uncertainty. The best known of these is Savage’s [SS] theory of sub- 

jective expected utility. A full account also appears in [23], and a summary is given 

in [36, Section 71. 

Savage’s theory is based on a set C of consequences and a set S of states of the 

world that describe the decision maker’s areas of uncertainty and are outside his or her 

control. Subsets of S are uncertain events, and the relevant set of events is assumed to 

be the entire power set 2’. We take X as the function set Cs of all maps from S to 

C and refer to each x E X as an act. The constant act that assigns consequence c to 

every state is denoted by C. If x E X is the chosen act and state s obtains, then x(s) 

is the resulting consequence. Savage’s representation is (1) and 

u(x) = s u(x(s))dn(s) for all x E X , (8) 
S 

where u(c) on the right denotes u(C) and ‘it is a finitely additive probability measure 

on 2’. The measure rc is unique and satisfies the divisibility property at the end of the 

preceding subsection; u is bounded and unique up to a positive affine transformation. 

The representation of (1) and (8) is derived from axioms that include weak order, 

independence assumptions, and an Archimedean partition axiom. The proof shows first 

that the axioms for comparative probability on 2’ at the end of the preceding subsection 

follow from the axioms of preference. This gives 71, which is then used to construct 

lotteries that correspond to acts with finite consequence sets {x(s) : s E S}. The natural 

definition of t- on the lottery set is shown to satisfy expected utility axioms that yield 

a linear u on lotteries and establish Savage’s representation for all acts with finite 

consequence sets. The representation is then extended to all acts. 

Savage’s contribution stimulated a number of alternative axiomatizations of subjec- 

tive expected utility for decision under uncertainty, including theories in [4,21,81]. A 

comprehensive review is given in [24]. Theories that weaken additivity for subjective 

probability or transitivity of + or N, including those in [41,47,69,86], are described 

in Chapter 8 in [29]. 
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Savage’s theory has the disadvantage of requiring S to be infinite. The most popular 

alternatives to his theory that retain weak order and additive subjective probability, 

and which yield unique subjective probabilities for finite S, use lotteries in their for- 

mulations. This is done either by replacing C by the set PC of all lotteries on C, so 

that acts map states into lotteries, or by constructing mixed acts as lotteries whose 

outcomes are Savage acts: see, for example [4,21,23]. To illustrate the PC approach, 

let X denote the set of all maps from finite S into PC. State s is said to be nonnull 

if x > y for some x,y E X that differ only in state s. We apply Jensen’s axioms of 

weak order, independence and continuity to (X, > ) and add a nontriviality condition 

and a new independence axiom which says that if s and t are nonnull states, and p 

and q are lotteries in PC, then, for all x E X, (x with x(s) replaced by p) F (x with 

x(s) replaced by q) H (x with x(t) replaced by p) > (x with x(t) replaced by q). 

The axioms imply that there is a unique probability distribution n on S and a linear 

u : PC, + R unique up to a positive affine transformation such that 

x > y -3 c 7c(s)u(x(s)) > c 7c(.s)u(y(s)) for all x,y EX , 
YES SES 

with state s null if and only if X(S) = 0. 

Subjective probabilities in (9) arise from two observations. First, Jensen’s axioms 

for (X, +) imply additivity over states: 

x k- y H C 24,(x(s)) > C uy(y(s>> for all x,y E X , 
YES .SES 

where each U, on PC is linear, and the 11,~ collectively are unique up to similar positive 

affine transformations. Second, when >-r is defined by 

p >-.Y q if x t y when x(s) = p, y(s) = q , and x(t) = y(t) otherwise , 

the new independence axiom says that +,r is the same for every nonnull state. Since us 

preserves +$, it follows for nonnull s and t that us is a positive affine transformation 

of u,, say us = au, + b with a > 0, so a = n(s)/n(t) for (9). That is, U, = rr(s)u and 

ut = n(t)u, and normalization of the X(S) then gives (9) with C rc(s) = 1. 

3. Cancellation conditions 

By the late 1960s weak-order additive representations for infinite X with nice 

uniqueness properties were well understood [23,55], but two noticeable gaps existed 

for finite-X representations. The first concerned conditions that imply nice uniqueness 

structures comparable to those of some infinite-X representations. This was partly rec- 

tified by the late 1980s in a series of papers surveyed in [45]. 

The second gap concerned Cancellation. To focus this concern, we reformulate Can- 

cellation from Section 2.2 as a sequence of conditions based on the number J of 

distinct pairs (xj, 9) involved in (5). The condition for J is denoted by C(J). 
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C(J): For every sequence (x’, y’), . . . , (x’,$) of distinct members of X x X and 

corresponding sequence ~1, . . . , CrJ of positive integers such that 

c{cYj: to E x’} = C{q: 0 E JJ} for all w E Q , 

it is false thatxiky forj= l,..., J andxJ+# for somej. 

Condition C( 1) is vacuous since its hypotheses require x’ = y’, and C(2) is tanta- 

mount to the first-order independence condition which says that if (x1, y’) # (x2,y2) 

and if every cc) E Q appears in (x1,x2) the same number of times it appears in (y’, y*), 
then x’ S- y1 H y2 S- x2. An example for A = { 1,2,3} x {a,b,c} that satisfies C(2) 

is the linear order 

3c + 36 + 2c + Ic t 3a + 26 + 2a % lb h- la. 

but this violates C(3) because 

In this example, al = ~(2 = a3 = 1 and 3c = {3,c},3b = (3, b}, and so forth. 

The hi in C(J) are used for repetitions of the same (x,y) pair in the sequence 

(x1, v’), . . ., (x”, y”) of Cancellation, which is clearly equivalent to the conjunction of 

C(2), C(3), . . . Our concern for Cancellation is the smallest J such that every weak- 

ordered set A C Al x A2 x . . x A, of a given size has an additive representation if it 

satisfies C(2) through C(J). We revert here to the product formulation of multiattribute 

preference, which applies also to comparative probability when IAiJ = 2 for all i and 

an event is characterized by the vector (al,. . . , a,) which has a, = 1 if state i is in the 

event and ai = 0 otherwise. 

We define the size of X, or of A &AI x A2 x . . . x A,, as the n-tuple (yi, ~2,. . . , vn) 

for which yli = IAi 1 for each i. To avoid trivial Ai, we assume along with n 2 2 that 

yi 22 for all i. We then define f(ri, ~2,. . . qn) as the smallest positive integer J* such 

that every weak order on X of size (yi, 172,. . . , qn) that violates Cancellation does so 

for some C(J) with J < J*. In other words, if f(yi, ~9,. . . , qn) = J*, then: 

(i) there is a weak order + on X of size (~1, ~2,. . . ,qn) that violates C(J*) but 

satisfies C(J) for all J E (2,. . , J* - 1); 

(ii) every weak order on an X of size (qi,ylz,. . . ,y,) that satisfies C(J) for J = 

2 , . . . , J* also satisfies C(K) for all K > J* for which C(K) is defined for that size 

and therefore has an additive representation as in (4). 

In the comparative probability setting for weak orders, Kraft et al. [54], proved 

that X has an additive representation if n<4 and first-order independence holds, so 

f(2,2) = f(2,2,2) = f(2,2,2,2) = 2. They showed also that f(2,2,. . . ,2)24 for all 

n 2 5. In the multiattribute setting, Krantz et al. 155, pp. 4274281 noted that f(2, ~2) = 

2 for all y/z 22. Little else was known about f until recently. 



We summarize here results in [37-391 and note topics for further research. The first 

two papers focus on yli = 2 for all i. Let 2, denote (2.2,. ,2) with IE entries. The 

first paper shows that ,f’(2,) = 4 and ,J‘(2,, ) 3 n ~ I for n = 6,7,8. The latter result 

is extended to all n 26 in [38] by explicit constructions based on a theorem in the 

first paper that is designed to identify structures that violate C(J) for relatively large J 

but satisfy all C(J’) for small J’. Fishburn [37] also shows that for every n 25 there 

are weak order cases of comparative probability that violate C(4) but have additive 

representations whenever one state is deleted, and that there are failures of Cancellation 

that require X, # yj for some i and ,j in any corresponding failure of a C(J ). In other 

words, (4) can have no solution when every applicable C(J) holds under the restriction 

that X(I = ~2 = ... = xJ = 1. 

Fishbum [39] considers vi 23 as well as 11~ = 2 and proves the following upper 

bound on ,f’: 

This is ineffective for the case of ,f(2.112) = 2, but shows in conjunction with the 

lower bound of the preceding paragraph that n - 1 < f( 2,1) <II + 1 for all n 3 6. We 

also prove for n = 2 that ~<f(3,~2) for all even ~1~4. and 112 - 1 <f(3,t/l) for all 

odd ~2 2.5. The upper bound for these cases is f(3,tp)<q2 + 2. 

Two areas for further research are my conjecture that ,f‘(2n) = II ~~ 1 for all n 26, 

and derivation of good lower bounds on ,f’(~lr, ~2,. ,q,) for general sizes. It seems 

plausible that ,f’(r~, ,112,. . , ~1,~) is very close to the upper bound C q, ~ (n - 1 ) for most 

sizes, but this awaits further study. 

4. Thresholds 

This section describes a general theorem for additive measurement in [35] and applies 

it to the closed-interval representation 

x * y H U(X) > u(v) + 0(y) for all .X,-Y E X , 

where I(, CJ :A’ + R and c 20. A sample of other approaches to interval and more 

general threshold representations is provided in [ 1,2,6, 8, 1 1,20,74,9 1, ch. 161. 

Our theorem is a linear separation theorem for arbitrary systems 

that have finite numbers of terms. We begin with a nonempty set 

the vector space of all 2;: Y + R for which {X E Y: P(X) # 0) is 

and r + 11’ for real i and c’, c’ E V by 

(j.C)(.X) = ;“V(x) ) (c + d)(x) = r(x) + d(x) 

of linear inequalities 

Y, and let V denote 

finite. We define i.13 

The representation for the theorem consists of distinguished subsets A and B of V and 

a mapping d, :X + R for which 

(u,$)<O for all a EA, 

(h, 4) > 0 for all h E B , 
(LO) 
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where (x,/I) = C ~(x)fi(x). W e say that (A,B) is solvable if there exists a 4 that 

satisfies linear system (10). We will state a condition on (A, B) that is necessary and 

sufficient for solvability. It is assumed, with no loss of generality, that the zero function 

0 of Y is in A and that B is not empty. 

A few other definitions are needed. For VI, V, C V, VI + Vz = {u + v’: v E VI, v’ E 

Vz}. A subset K of V is a convex cone if it is nonempty, closed under convex com- 

binations, and contains lLv whenever I. > 0 and v E K. A convex cone K is without 

origin if 0 # K. The convex cone generated by nonempty U C V is denoted by U*, so 

U’ = 
{ 

5 /zivi: m E { 1,2,. . .} , I.; > 0 and vi E U for all i 
I 

. 
i=l 

Finally, we say that nonempty U c V is Archimedean if for all v, v’ E U, iv - v’ E U 

for some i. > 0. 

Our separation theorem says that (A, B) is solvable if and only if -A* +B* is included 

in some Archimedean convex cone without origin in V. Given (lo), necessity of the 

condition on -A* + B* is shown by extending 4 linearly to all of V by d(v) = (v, 4) 

and observing that {v E V: 4(v) > 0} is an Archimedean convex cone without origin 

that includes -A* +B*. The sufficiency proof is based on a standard separation theorem 

discussed, for example, in [52,53]. 

To apply the theorem to the opening representation of this section, let X’ be a 

disjoint copy of X with x’ E X’ corresponding to x E X, and 

opening representation can then be rewritten as 

x+yH4(x)-4(y)-$(y’)>O forallx,yEX, 

4(x’) 3 0 for all x’ E X’ 

Sets A and B for application of the separation theorem are 

A = (0) U{u: v(x) = -v(y) = -v(y’) = 1 and c’ = 0 

otherwise, for all (x,y) with x - y and 

U{v: v(x’) = -1 and c’ = 0 otherwise, for all 

B = {v: v(x) = -v(y) = -v(y’) = 1 and u = 0 otherwise, 

for all (x, y) with x + y}. 

let Y = X U X’. The 

x # Y> 

x’ E X’) 

Suppose -A* + B” is included in an Archimedean convex cone without origin. Let 4 

satisfy (10). Then, when x - y and x # y, 4(x) < &y)+&y’) and 4(y) < &X)+$(X’), 

or u(x)<u(y>+a(y> and u(y) < u(x)+~(x); for x’ E X’, 4(x/)20, or 0(x)30; when 

x * Y, 4(x) > 4(y) + 44~‘)~ or u(x) > u(y) + 4~). 

5. Decision under risk and uncertainty 

An enormous amount of theoretical and empirical research effort has been devoted 

to decision under risk and decision under uncertainty during the past few decades. 



1 comment here on two topics that illustrate very different facets of this work. Both 

have assumed that + on X is a weak order. The first is a theory of subjective expected 

utility that relaxes continuity or an Archimedean axiom to obtain vector-valued utili- 

ties ordered lexicographically along with subjective probabilities characterized by real 

matrices rather than real numbers. The second departs more radically from traditional 

theories and considers the role of a binary operation 9 of joint receipt. The principal 

investigators are Irving LaValIe in the lexicographic domain and Duncan Lute for joint 

receipt. 

The lexicographic story beings with Hausner’s [49] lexicographic linear utility theory 

for a weak order + on a mixture space X that can be viewed as a set of lotteries or its 

generalization for (7) that is closed under a mixture operation. Hausner assumed that 

> and - satisfy independence (x + y 3 _y& t JJ/.Z; x - y =+ ~5.z - _rj.z ) and proved 

that (X, +) is represented by a linear mapping into a real vector space ordered lexico- 

graphically. When the vector space has finite dimension, say R”‘, this gives 11: A’ - R”’ 

that satisfies (7) along with 

where (XI,.... x,,,) >L (Bl,..., [I’,?,) if the two vectors are not equal and X, > /I’, for 

the smallest i at which they differ. When u(x) = (~41 (x), . u~,(.I-)), (7) is 

= (/AI(X) + (1 - 2)241(y), ,i~4,,,(x) + (1 ~ i.)L4,,,(_t’)) 

= (14, (xA_y), . . ) u,,(xiy)) 

with each 14, a linear functional on X. We say that u is pursitnonious of dimension 

m if the representation cannot be satisfied by any linear utility function of smaller 

dimension. Given that u is parsimonious of dimension m, it is unique up to an affine 

transformation 

I’ = Gu + ~4~) , 

where r,u and I_Q are m-dimensional column vectors. ~0 is fixed, and G is an m x m 

lower triangular matrix (O’s above the main diagonal) with all diagonal entries positive. 

Failures of continuity that force m 22 in (7) and (1 I ) are analyzed in detail in [25]. 

The typical failure occurs when x + y + z and y # xi.,- for all L E [0, I], in which 

case there is a unique i* E [0, 11 such that 

xw > ~3 t .x/~z for all rx > /.* > /i . and 

either xi*= t y or y > xi*z 

An example based on marginal probabilities is x = (_rr ,x2) in which x1 is the probability 

of dying and x2 is the probability that you or your heirs will receive $10. If no increase 

in XI can be compensated for by increasing x_ 1 to I, then t cannot be represented 
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by a linear unidimensional utility function, but u(xl,xz) = (-x1,x2) can represent + 

lexicographically. 

The extension of linear lexicographic utility to decision under uncertainty in [42,57- 

591 formulates X as the set of all finite-support probability distributions, called mixed 

acts, on a set A of acts in Cs with S = { 1,2,. . . , n}. In the main state-independent 

version of our theory, we assume that every consequence is relevant for every state in 

S, that the constant-act set {F: c E C} is included in A, and that A has some additional 

structure. We denote by XC the set of all lotteries on C and let xi E Xc denote the 

marginal distribution in state i of x E X. 

The preference relation + applies to X, and for p and q in XC, p + q means that 

x + y when x(F) = p(c) and y(C) = q(c) for every consequence c E C. We assume 

the following axioms: + is a weak order, + and N satisfy independence, 

x - y whenever x, = yi for i = 1,2,. . , n , 

and a relaxed form of Archimedean axiom which implies that the lexicographic hierar- 

chy has only finitely many levels. The axioms imply the existence of linear G :X + L@ 

and u : XC + RK that preserve lexicographically k on X and + on XC, respectively, 

with parsimonious dimension J of u^ and K of u. Because + on XC is tantamount 

to the restriction of + on X to mixed constant acts, we have K < J, and K < J if 

preferences between other acts force levels into the hierarchy not accounted for by u 

on XC. Uniqueness follows the format described after (11). 

Subjective matrix probabilities L’(i) for i = 1 , . . . , II rectify i(x) with {u(xi)} in the 

expression 

Z;(X) = 2 II(i)U(Xi) + 220 , 
i=l 

where i(x) and z.& are J-dimensional column vectors and Ii’(i) is a J x K real matrix 

that premultiplies the K-dimensional column vector u(xi). Matrix h’(i) begins with p(i) 

nonzero columns followed by K - p(i) zero columns such that the first nonzero entry 

in column k for 1 <k <p(i) is a positive number in row j,(i) for some 1 <jl(i) < 

j,(i) < ... < jp(i)(i)dJ. In addition [59], j,(i) = 1 for some i, p(i) = K for some i, 

and the J rows of the J x nK matrix [n( 1) : I7(2) : . . . : Ii’(n)] are linearly independent. 

The resulting representation is 

x + y H 5 n(i)u(xj) > L 2 IZ(i)u( yi) for all x, y E X . (l-2) 
i=l i=l 

LaValle and Fishburn [60,61] show how to assess the vector utilities and matrix 

probabilities in (12). The latter paper also describes admissible transformations of the 

matrix-probability distribution n for any given u that put 17 in a standard normalized 

form. With n(S) = I7( 1) + . . + II(n), we say that n is a standard matrix distribution 

if the K columns of ZI(S’) are unit vectors (0,. . . ,O, l,O,. . . ,O) with the l’s in row 

positions 1 < j2 < f . . < jK <J left to right. Thus, if K = J, then II(S) is the K x K 



identity matrix. If K < J then standard n(S) has J - K rows of zeros interspersed 

among the rows below row 1 of the K x K identity matrix. 

Our second topic for decision under uncertainty is motivated by situations with 

holistic alternatives that consist of similar but clearly identifiable pieces received jointly, 

such as two checks and a bill in today’s mail or the good news and bad news parts of 

a medical diagnosis. A fundamental behavioral question asks how people evaluate such 

alternatives for preference comparison or choice. Do they tend to combine similar pieces 

and then evaluate wholes, or do they evaluate pieces and then combine these evaluations 

to arrive at holistic assessments? And, in either case, what rules or operations govern 

the combining process‘? 

To consider these questions, let A0 denote a nonempty set of basic objects. such as 

amounts of money or lotteries, and let i? denote a binary operation of joint receipt that 

applies first to A() and then to Ai, AZ,. defined recursively by 

A,+, = {a+b: a,h~A~uA, u...uA;} 

fori=O,l,...,sothatAlcA2~...withlimitA,. WeassumethatAoUA,CXiAo~ 

‘4,. Then X includes at least one joint-receipt level. We assume also that + on X is 

a weak order. 

An elementary case of joint receipt that does not involve decision under risk or 

uncertainty takes X = A0 U Al with As = [w. We interpret x E A0 as an amount of 

money and refer to x30 as a gain and to x 60 as a loss. An early empirical and 

partly theoretical study of joint receipt for this case is Thaler [93], followed by Thaler 

and Johnson [94] and Linville and Fischer [62]. They focused in part on the herk~ic~ 

erlitin~q ruk 

14(x r:, y ) = max{ u(x + y), u(x) + u(y)} for all x, J’ E A0 , (13) 

where IA : X + R is strictly increasing, preserves +, and has its origin fixed by u(O) = 

0. This indicates pre-evaluation aggregation in U(X + y) as well as post-evaluation 

aggregation in U(X) + U(Y), with addition as the combining operation in each case. 

Thaler [93] found that subjects tend to have x CE ~3 N x + _V when x and J’ are losses. 

but x TV y + x + y when x and y are gains, and these agree with (13) if u is convex 

in losses and concave in gains. Fishbum and Lute [43] provides a complete analysis 

of (13) under the assumption that u is convex in gains and either convex or concave 

in losses. The option for (13) is then clear except in the mixed loss and gain region 

where x > 0 > y. Our results for the mixed region, which depend on limiting slopes 

of u at the origin and &co, show for most cases that there is a continuous curve in 

{(x.~,): x>O3~:} that separates u(x@y) = U(X+ 1’) and U(XO y) = u(x) + u(y) when 

( 13) holds. 

Research that followed Thaler [93] in [62,94] and ~ within a setting of certainty 

equivalents for monetary lotteries ~ [13,65], shows that (13) is not viable in many sit- 

uations. Part of the difficulty arises in the mixed region, where individuals’ assessments 

of joint receipts are not generally well understood. Another difficulty can be seen in 

the conjecture of Tversky and Kahneman [97] that x CI+ _r 1 - x + _v, which was sustained 
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at least in the loss and gain regions separately in [13]. If x @ y - x + y everywhere, 

it would gut (13) by effectively excluding u(x @ y) = u(x) + u(y). Also, as Tversky 

and Kahneman [97] notes, if in fact we assume that u(x @ y) = u(x) + u(y), as was 

done in part of Lute and Fishburn [66], and if x @ y N x + y, then u(x) = kx for some 

k > 0, and this linear form is supported neither by intuition nor by empirical research. 

Empirical and theoretical investigations of joint receipt of lotteries or acts in decision 

under risk or uncertainty include, in addition to the certainty-equivalence approach of 

Lute [65], Cho and Lute [13], Slavic and Lichtenstein [89], Lute [64], Lute and 

Fishburn [66,67] and Cho, Lute and von Winterfeldt [14]. We comment briefly on 

representational aspects of Lute and Fishburn [66,67] for a joint-receipt axiomatization 

of what they refer to as rank- and sign-dependent linear utility. A similar representation 

without the joint-receipt operation was proposed independently in [97] and axiomatized 

in [102] under the rubric of cumulative prospect theory. 

A central part of the representation in [66] is based on a qualitative structure (X, +, 

@,e) where + is a weak order on X, @ is a joint receipt operation on X, and e 

denotes the status quo consequence. Several axioms for the qualitative structure imply 

that there exists u :X t R that satisfies ( 1) along with u(e) = 0 and 

( a+ u(x) + bitt(y) + c+u(x)u(y) if x 2 e and y 2 e, 

u(x@y)= 
a+u(x> + b-u(y) if x ye 2 y, 

a-U(X) + b+u(y) if ytezx, 
(14) 

Q-U(X) + b-u(y) + c-u(x)u(y) if e ‘_x and e y y . 

where a+,a-,b+ and b- are positive constants and c+ and c- are constants. If u 

is unbounded and @ is monotonic in the sense that x N y + [x @ z - y @ z and 

z~x~~~y]and.~~y~[x~z~y~zandz$x~z~y],thenc+30and 

c- 60. On the other hand, if x @ y N x + y and if u is bounded and @ is monotonic, 

then [67] c+ ,< 0 and c- 3 0. In both cases, if @ is commutative and associative, then 

a+ = b+ = a- = b- = 1. The weighted additive forms in (14) for the mixed cases of 

x 2 e 2 y and y 2 e 2 x were adopted as a compromise between u(x $ y) = u(x) + u(y) 

and more complex possibilities. 

To expand the formulation to the context of decision under uncertainty, we can take 

A0 as the set of all acts in Cs that assign only finite numbers of consequences to 

the states, define Al, AZ,. . . as above, and assume that @ is associative so that A, 

can be replaced by the set A* of all finite sequences al @ a2 $ . . @ a, for which 

m 22 and a, t A0 for all i. Representation (14) applies under this expansion with 

X = A0 U A*. Given X in this form, Lute and Fishburn [66] describes conditions 

which imply algebraic forms for the utility of acts that involve subjective probabilities. 

We illustrate with C = Iw, as in a monetary context, with u(C) increasing in c. 

Let cEd denote the act in A,J that yields c if event E C S obtains and yields d 

otherwise. Assuming that E is neither empty nor the universal event and that e = 0 
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with u(0) = 0, one form is 

u(cEd) = 
i 

rc*,(E)U(C)+ [I ~ 713>(E)]~(U’) if ,I->>‘, 

n>(E)u(C) + [l - n*,(E)]u(d) if .X < J’, 

with 0 < rr* < 1. This applies separately to gains. where x = + and c,d 20, and to 

losses. where * = - and C, d 60. 

For each x E Aa, let E+(x) = {s E S: s(s) t e} and 

and define x-,x- c A,J by 

E-(x) = {s t s: c t x(s)}. 

I 

x(s) if s E E*(x), 
x*(s) = for * t {+,-} 

c’ otherwise, 

A main part of the representation in [66] separates gains 

sition 

from losses in the decompo- 

II(X) = a+u(x-)n+(E+(x)) + b-LI(S-)n-(E-(s)) 

with 0 <rC(E) 6 1 for * E {+, -} and E C S, and with the rr* unique and II unique 

up to a proportionality transform that fixes u(e) at 0. Additional conditions that allow 

further refinements for u(x+) and U(.C ) based on (14) are described in the reference. 

Lute and Fishburn [67] focuses on the monetary context with e = 0 and considers 

first the effect of x @ y - x $ y for monetary amounts with 3 monotonic. We adopt 

the first and last lines of (14) for joint gains and joint losses respectively, so that 

for gains, U(X cf’i ,v) = U(X) + U(J.) ~ U(.X)U(J~)/k” , 

for losses, U(X $ 4’) = U(X) + u(y) - U(.X)U(J’),& 

We assume kt > 0 and kp < 0, which imply u(x + y) < u(x) + u(y) for gains 

and u(x + J)) > U(X) + u(y) for losses, given x t;, y - ?I + y. These inequalities are 

consistent with studies, including Kahneman and Tversky [51] and others surveyed in 

[40], that observe increasing marginal utility for losses and decreasing marginal utility 

for gains. We show in [67] that these hypotheses imply exponential expressions for 

utility of gains and utility of losses: 

1/(X) = 
{ 

k’(1 - eC”) , E > 0 for gains (x30), 

kK(l ~ ebr) , /I > 0 for losses (x<O) 

We also consider lotteries without presuming x t; y - x + y but maintaining the 

parts of (14) just noted. Let x denote a lottery on gains cl > ~‘2 > > c,,! 30 

with x(c,) = p; > 0 and Cy p, = I. We identify fairly reasonable assumptions which 

imply the rank-dependent form [82] 

U(X) = C U((.i)[U+(Pj) - a+(P;&[ )] 
, I 
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in which Pi = p1 +p2+.. fpi and o+ is a continuous and increasing map from [0, l] 

onto [0, 11. A similar form with G- in place of g+ applies to lotteries on losses. The 

issue of mixed gains and losses is more problematic as described in Section 5 in [67]. 

6. Nontransitive preferences 

A preference relation F on a set X is nontrunsitive if there are x, y,z E X for which 

x~y,yrzandnot(x~z),andiscycliciftherearexl,x2,...,x,~Xwithm33such 

that x, >- xi+1 for all i < m and x, F xi. The representations described thus far assume 

that t is transitive, or at least acyclic. I believe that this reflects a strong attraction of 

decision theorists and perhaps others to transitivity as an intuitively obvious basis for 

rational thought and action, an apparently natural desire for order in practical affairs, and 

the supposed efficiency of optimization based on maximization. Although I find some 

merit in these contentions, I argue elsewhere [32] against transitivity as an undeniable 

tenet of rational preferences because I believe that reasonable people sometimes hold 

nontransitive or cyclic preference patterns that account for their true feelings. 

My purpose here is not to recount the arguments for or against transitivity set forth 

in [32]. Instead, I will illustrate a few situations that might give rise to cyclic pat- 

terns and then describe four representations that can account for cyclic preferences by 

straightforward and elegant generalizations of representations that presume transitivity. 

The genesis of cyclic patterns in decision theory may be Condorcet’s [ 151 phe- 

nomenon of cyclic majority. The simplest example uses candidates x, y and z and 

three voters with preference orders x +i y +r z, z +2 x >2 y and y %3 z +3 x. 

Then, with F the strict simple majority relation, x t y > z F x. Arrow’s [S] famous 

extension shows that every reasonable rule for aggregating voters’ preference orders 

that makes binary social comparisons without regard to other candidates’ positions in 

voters’ orders, and which allows a variety of voter preference profiles, must have pro- 

files for which the social comparison relation is nontransitive. Subsequent contributions 

on this theme are reviewed in [28]. 

Multiattribute comparisons provide a source of cyclic preferences for an individual. 

May [73] asked 62 college students to make binary comparisons between hypothetical 

marriage partners x, y and z characterized by three attributes, intelligence, looks and 

wealth: 

x : very intelligence, plain, well off, 

y : intelligent, very good looking, poor, 

z : fairly intelligent, good looking, rich. 

Seventeen of the 62 had the 2-to-1 majority cyclic pattern x + y + z + x; the other 

45 had transitive preferences. 

Let (a, p) denote the lottery that pays $a with probability p and nothing otherwise. 

Tversky [95] observed that a significant number of people have the cyclic pattern 

(5.00,7/24) + (4.75,8,‘24) + (4.50,9/24) + (4.25,10/24) 

F (4.00,l l/24) + (5.00,7/24) . 
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In a four-state example with subjective probability of l/4 for each state, consider 

four acts with monetary prizes: 

states 

acts i=O iiii 

Subjective expected utility theory says that xl N x2 N x3 N x4 N XI because every act 

is equivalent to a lottery with equal chances for the four prizes. However, some people 

will have xt t x2 F x3 > x4 F xt because the first act in each t comparison yields a 

larger prize than the second in three of the four states. Others may have the opposite 

cycle if they fear that they will experience severe regret if they choose the act with a 

$7000 prize in state i over the one with the $10000 prize in the same state and i turns 

out to be the state that obtains. 

We now describe four representations that accommodate cyclic preferences. The first 

two apply to multiattribute situations, the third to lottery comparisons in decision under 

risk, and the fourth to act comparisons in decision under uncertainty. 

Letx = (x1,x2,..., x,) and y = (yl, ~2,. . , y,,) denote items described by IZ attributes. 

Assume that the attribute levels within a given attribute are unambiguously ordered by 

a weak order > ,. The udditive d@ermcc represent&on is 

x + _V * ~.fi[Uj(Xj) - Uj(Yj)] > 0 . (15) 
;=, 

where Ui preserves >, as in (1) and ,f; is a strictly increasing functional on its domain 

with J;(d) = -J;(-d). Many possibilities for the ,fi allow x F y. ,v > z and z F s by 

way of positive sums on the right side of (15) for the three comparisons. Discussions 

and axioms for (15) and related representations are in [ 16,34,91,95]. 

An alternative to (15) is the nontransiticr additive utility, rc~prcsmtation 

in which $J; is a real-valued function on ordered pairs of levels of attribute i with 

x; > I) y, e 4i(Xi,yf) > 0 and xi N, yI H $i(xi, y;) = 0. Axioms for (16) are in 

[31,33,99]. The latter axiomatizations imply that each cbi is &en, symmrtric, i.e.. 

and all three imply that the di are unique up to proportionality transformations with a 

common scale multiplier. 

Skew symmetry is also used in our other two representations. The representation for 

lotteries x and y on a set C of consequences is x + y @ &(x,y) > 0, where 4 

is a real-valued, skew-symmetric and bilinear function on ordered pairs of lotteries. 

Bilinearity means that 4(xI.z, y) = Q(x, y) + ( 1 - ;,)4(z. y) and 4(x, y2z) = 2$(x, y) + 

(1 - i)&x,z). We refer to the representation as the SSB representation, short for 
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skew-symmetric and bilinear. When all individual consequences are in X and it is 

convex, we have the bilinear expected utility expression 

The SSB representation was first described in [56] and is axiomatized in [29], with 4 

unique up to a proportionality transformation. A constant-threshold SSB representation 

that has x + y H I$(x,~) > 1 is axiomatized in [44]. 

Our final representation applies + to a Savage act set X = Cs for decision under 

uncertainty. The representation is 

x*-y H 
J 

d4+),y(s))Ws) ’ 0 9 

s 
(17) 

where # is a skew-symmetric functional on C x C and rt is a finitely additive probability 

measure on 2s, with rc unique and 4 unique up to a proportionality transformation. 

When 4 decomposes as &c,d) = u(c) - u(d), (17) reduces to Savage’s subjective 

expected utility representation. Axioms that imply (17) for all acts that use only finite 

numbers of consequences are in Chapter 9 in [29]. They are like Savage’s axioms in 

most respects with weak order replaced by an asymmetry condition. Extension to all 

acts is also discussed in Chapter 9. Other representations that are closely related to 

(17) appear in [29,41,63]. 

Although cyclic preference patterns have been studied in depth for aggregate re- 

lations in voting and social choice theory, they have received very little attention in 

individual decision theory. Unlike most decision theorists, I think the aversion to cyclic 

preferences for individuals is unjustified, and I hope that more will be done on the 

subject in the years ahead. 
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