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Abstract

Based on an analysis of the inference rules used, we provide a characterization of the

situations in which classical provability entails intuitionistic provability. We then ex-

amine the relationship of these derivability notions to uniform provability, a restriction

of intuitionistic provability that embodies a special form of goal-directedness. We de-

termine, first, the circumstances in which the former relations imply the latter. Using

this result, we identify the richest versions of the so-called abstract logic programming

languages in classical and intuitionistic logic. We then study the reduction of classical

and, derivatively, intuitionistic provability to uniform provability via the addition to

the assumption set of the negation of the formula to be proved. Our focus here is on

understanding the situations in which this reduction is achieved. However, our discus-

sions indicate the structure of a proof procedure based on the reduction, a matter also

considered explicitly elsewhere.

Key Words: classical logic, intuitionistic logic, proof theory, uniform provability, proof

search, logic programming.

1 Introduction

We address three questions pertaining to derivability relations over sequents in this paper.

The first of these concerns the correspondence between classical and intuitionistic provabil-

ity. It is well known that the former is a stronger relation than the latter: while every
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intuitionistic proof is also a classical one, there are some sequents that are derivable only in

classical logic. However, it is possible in principle to obtain the reverse correspondence by

restricting the syntax of formulas considered or the kinds of inference rules used in a clas-

sical proof. We examine this possibility here. In particular, we provide a characterization

at the level of inference rule usage of the situations in which classical provability implies

intuitionistic provability. Our analysis is “coarse-grained” in that it pays attention only

to the inference rules used, and not to their interaction in particular proofs as is done in

a restricted setting in [PRW96], but it is complete at this level of granularity. While our

study is one that has been independently conducted, results similar to ours have previously

been obtained by Orevkov [Ore68] as we discuss in Section 4. The results that we present

have uses in proof search. One possible application is that it permits intuitionistic proof

procedures to be employed in settling questions of classical validity in special situations.

This approach has benefits and has also been employed in the past: for example, it underlies

the procedure commonly used relative to Horn clause logic with the virtue that proof search

at any point is driven by a single goal formula. Another application of our observations

is that it supports the use of classical principles in intuitionistic proof search. Thus, the

treatment of quantifier dependencies can, in special circumstances, be achieved by a static

(dual) Skolemization process instead of a costly dynamic accounting mechanism.

The second question we consider concerns the correspondence between classical and

intuitionistic provability on the one hand and uniform provability on the other. Uniform

proofs as identified in [MNPS91] are intuitionistic proofs restricted so as to capture a goal-

directedness in proof search. One reason for interest in this category of proofs is that it

provides a framework for interpreting the logical symbols in the formulas being proved as

primitives for directing search and the inference rules pertaining to these symbols as spec-

ifications of their search semantics. This viewpoint has been exploited in [MNPS91] in

describing a proof-theoretic foundation for logic programming. By its very definition, uni-

form provability is a less inclusive relation than either classical or intuitionistic provability.

However, by a suitable restriction of the context, it is possible to obtain a correspondence

between these three relations. We provide, once again, a complete characterization at the

level of inference rule usage of the situations in which intuitionistic provability entails and

uniform provability. When combined with the earlier result, this analysis yields a similar

characterization relative to classical logic. As one application of these observations, they

enable us to identify the richest possible logic programming languages within classical and

intuitionistic logic; our remarks relative to intuitionistic logic are similar to those in [Har94].

The final question we consider concerns the reduction of classical and intuitionistic
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provability to uniform provability. Efficient procedures can be designed for searching for

uniform proofs. Towards exploiting this possibility, it is worth considering a modification of

the given formula or sequent in a way that does not alter the original derivability question

but, nevertheless, succeeds in reducing it to one of uniform provability. One such modifica-

tion that has been studied in the past is the addition of the negation of the formula that is

to be proved to the assumptions [NL95, Nad96]. This transformation is sound with respect

to classical logic. We characterize the situations in which it also achieves the desired reduc-

tion. Since the transformation can be applied to intuitionistic provability without loss of

soundness whenever this notion coincides with classical provability, we obtain information

indirectly about the reducibility in this case as well.

2 Logical preliminaries

We will work within the framework of a first-order logic in this paper. The logical symbols

that we assume as primitive are ⊤, ⊥, ∧, ∨, ⊃, ∃, and ∀. The first two symbols in this

collection denote the tautologous and the contradictory propositions, respectively. Note

that we consider these logical constants to be distinct from atomic formulas. Negation is a

defined notion in our language, ¬A being an abbreviation for (A ⊃ ⊥).

Notions of derivation that are of interest to us are formalized by sequent calculi. A

sequent in our context is a pair of multisets of formulas. Assuming that Γ and ∆ are its

elements, the pair is written as Γ −→ ∆ and Γ and ∆ are referred to as its antecedent

and succedent, respectively. Such a sequent is an axiom if either ⊤ ∈ ∆ or for some A

that is either ⊥ or an atomic formula, it is the case that A ∈ Γ and A ∈ ∆. The rules

that may be used in constructing sequent proofs are those that can be obtained from the

schemata shown in Figure 1. In these schemata, Γ, ∆ and Θ stand for multisets of formulas,

B and D stand for formulas, c stands for a constant, x stands for a variable and t stands

for a term. The notation B,Γ (∆, B) is used here for a multiset containing the formula

B whose remaining elements form the multiset Γ (respectively, ∆). Further, expressions

of the form [t/x]B are used to denote the result of replacing all free occurrences of x in

B by t, with bound variables being renamed as needed to ensure the logical correctness of

these replacements. There is the usual proviso with respect to the rules produced from the

schemata ∃-L and ∀-R: the constant that replaces c should not appear in the formulas that

form the lower sequent. A contraction rule is one that is obtained from either the contr-L

or the contr-R schema. All other rules are referred to as operational rules and the formula

in the lower sequent that is explicitly affected by such a rule is called its principal formula.
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B,B,Γ −→ ∆
contr-L

B,Γ −→ ∆

Γ −→ ∆, B,B
contr-R

Γ −→ ∆, B

Γ −→ ∆,⊥
⊥-R

Γ −→ ∆,D

B,Γ −→ ∆
∧-L

B ∧D,Γ −→ ∆

D,Γ −→ ∆
∧-L

B ∧D,Γ −→ ∆

B,Γ −→ ∆ D,Γ −→ ∆
∨-L

B ∨D,Γ −→ ∆

Γ −→ ∆, B Γ −→ ∆,D
∧-R

Γ −→ ∆, B ∧D

Γ −→ ∆, B
∨-R

Γ −→ ∆, B ∨D

Γ −→ ∆,D
∨-R

Γ −→ ∆, B ∨D

Γ −→ ∆, B D,Γ −→ Θ
⊃ -L

B ⊃ D,Γ −→ ∆,Θ

B,Γ −→ ∆,D
⊃ -R

Γ −→ ∆, B ⊃ D

[t/x]B,Γ −→ ∆
∀-L

∀xB,Γ −→ ∆

Γ −→ ∆, [t/x]B
∃-R

Γ −→ ∆,∃xB

[c/x]B,Γ −→ ∆
∃-L

∃xB,Γ −→ ∆

Γ −→ ∆, [c/x]B
∀-R

Γ −→ ∆,∀xB

Figure 1: Rules for deriving sequents
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Finally, we refer to contr-L and the operational rules whose principal formulas are in the

antecedent of the lower sequent as left rules and to the remaining rules as right rules.

We are interested in three notions of derivability for sequents of the form Γ −→ ∆. A

C-proof for such a sequent is a derivation obtained by making arbitrary uses of the inference

rules. I-proofs are C-proofs in which every sequent has exactly one formula in its succedent.

Notice that, by this stipulation, ∆ must itself consist of a single formula. Finally, a uniform

proof or O-proof is an I-proof in which any sequent that has a non-atomic formula distinct

from ⊥ in its succedent occurs only as the lower sequent of an inference rule that introduces

the top-level logical symbol of that formula.

In the case that ∆ is a single formula, we shall write Γ ⊢C ∆, Γ ⊢I∆ and Γ ⊢O∆ to indicate

the existence of, respectively, a C-proof, an I-proof and an O-proof for Γ −→ ∆. The first

two notions correspond to classical and intuitionistic provability respectively. The sequent

calculi that we have used here to characterize these derivability relations are transparently

related to those in [Pra65]: we have treated antecedents and succedents as multisets rather

than sets but have added the contraction rules to realize arbitrary multiplicity of formulas

and, in the intuitionistic setting, we do not permit sequents of the form Γ −→ that are

not derivable in the system of [Pra65]. Uniform provability corresponds to the existence of

an O-proof. This notion indicates the possibility for a goal-directedness in the search for a

derivation, with the top-level structure of the formula in the succedent controlling the next

step in the search at each stage.

We observe certain properties of our derivation calculi for classical and intuitionistic

logic that will be used in later sections. First, any sequent in which the antecedent and

succedent have a common formula has a C-proof and, if the succedent has a single element,

an I-proof. Thus, a modification to our calculi that considers all such sequents to be axioms

does not change the set of provable sequents. The second observation concerns the so-called

Cut inference rules that are obtained from the schemata

Γ1 −→ ∆1, B B,Γ2 −→ ∆2

Γ1,Γ2 −→ ∆1,∆2

Notice that in generating Cut rules in the intuitionistic context, ∆1 must be instantiated

by an empty multiset and ∆2 by a singleton multiset. Now, these Cut rules are admissible

with respect to classical and intuitionistic provability as formulated here, i.e., the same

set of sequents have C-proofs and I-proofs even if we allow these additional rules to be

used in derivations. This property can be demonstrated by describing a procedure for

eliminating occurrences of the Cut rules from any given derivation. An examination of a

typical such procedure—for example, the procedure contained in [Gen69]—actually allows
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a stronger conclusion to be drawn: a derivation that uses Cut rules, contraction rules and

operational inference rules obtained from a restricted subset of the schemata in Figure 1 can

be transformed into one in which only contraction rules and operational rules obtainable

from the restricted schemata set appear. Furthermore, this property holds even when the

notion of an axiom is strengthened as described earlier in this paragraph.

3 Building contraction into other inference rules

The contraction rules allow for a profligate multiplicity of formulas. The necessary mul-

tiplicity can be characterized more precisely by identifying derived forms of some of the

operational rules that incorporate contraction into their structure and thereby permit the

contraction rules themselves to be omitted from the calculus. We describe below a conve-

nient form of these derived rules that is presented, for instance, in [Dra79].

We consider first the case for classical provability. The new rules that are of interest are

those obtained from the following schemata:

A,B,Γ −→ ∆
∧-L∗

A ∧B,Γ −→ ∆

Γ −→ ∆, A,B
∨-R∗

Γ −→ ∆, A ∨B

Γ −→ B,∆ D,Γ −→ ∆
⊃ -L∗

B ⊃ D,Γ −→ ∆

∀xP, [t/x]P,Γ −→ ∆
∀-L∗

∀xP,Γ −→ ∆

Γ −→ ∆,∃xP, [t/x]P
∃-R∗

Γ −→ ∆,∃xP

These rules are obviously derived ones: a C-proof of the lower sequent of each rule can be

obtained from C-proof(s) of the upper sequent(s) by using an instance of the ‘asterisk-less’

version of the schema followed by some number of contraction rules. By a C+-proof let us

mean a derivation constructed in a calculus obtained from the one for C-proofs by replacing

the rules ∧-L, ∨-R, ⊃-L, ∀-L and ∃-R with the ones obtained from the schemata above. It

is then easily seen that a sequent has a C-proof if and only if it has a C+-proof.

Let an C∗-proof be a C+-proof in which contraction rules are not used. Our objective

is to show that a sequent has a C∗-proof whenever it has a C+-proof, i.e., contraction can

be eliminated from C-proofs under the described strengthening of the ∧-L, ∨-R, ⊃-L, ∀-L

and ∃-R rules. This can be done through the following sequence of steps that culminate in

Theorem 3.

Lemma 1 Let Γ −→ ∆ have a C∗-proof of height h and let all references to rules be to

ones for constructing C∗-proofs.
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1. For any single upper sequent rule of the form

Γ′ −→ ∆′

Γ −→ ∆

it is the case that Γ′ −→ ∆′ has a C∗-proof of height at most h.

2. For any rule with two upper sequents of the form

Γ′ −→ ∆′ Γ′′ −→ ∆′′

Γ −→ ∆

it is the case that both Γ′ −→ ∆′ and Γ′′ −→ ∆′′ have C∗-proofs of height at most

h.

Proof. The cases for ∀-L∗ and ∃-R∗ follow from observing that if a C∗-proof exists for a

certain sequent, then there is a derivation of similar structure and identical height for any

sequent obtained from it by adding formulas to the antecedent or succedent. The remaining

cases, that show the invertibility of all the other rules, are covered by the Inversion Lemma

of [TS96].

✷

Let Σ be a multiset of formulas. We use the notation Σ̂ to denote the set of formulas

appearing in Σ.

Lemma 2 Let Γ −→ ∆ have a C∗-proof of height h and let Γ′ and ∆′ be such that Γ̂ ⊆ Γ̂′

and ∆̂ ⊆ ∆̂′. Then Γ′ −→ ∆′ has a C∗-proof of height at most h.

Proof. By an induction on the height of the derivation for Γ −→ ∆. We leave the reader

to fill out the details, perhaps by consulting [TS96].

✷

Theorem 3 A sequent Γ −→ ∆ has a C-proof if and only if it has a C∗-proof.

Proof. It suffices to show that Γ −→ ∆ has a C+-proof if and only if it has a C∗-

proof. The ‘if’ direction is obvious. For the other direction we use an induction on the

number of contractions in the C+-proof. If there are none, then we already have a C∗-

proof. Otherwise, we find a contraction that is the first one in the derivation in the path

from an axiom to the final sequent. By Lemma 2, this contraction can be dispensed with,

yielding a C+-proof with one less contraction.

✷
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Theorem 3 and Lemma 1 provide the basis for a proof procedure for classical logic

that is worth noting. All the rules that may be used in C∗-proofs that are distinct from

the ∀-L and ∃-R rules have an upper sequent or two upper sequents with fewer logical

symbols than those in the lower sequent. We may therefore use these rules repeatedly in a

terminating process to reduce a given sequent to a new set of sequents for which derivations

must be constructed. If every sequent in the set so produced is an axiom, then we will have

established classical provability. If at least one of the new sequents is not an axiom and

cannot be the lower sequent of either a ∀-L∗ or a ∃-R∗, then the original sequent can have

no C-proof. Otherwise each non-axiom sequent is reduced by a simultaneous use of all the

∀-L∗ and ∃-R∗ rules that are applicable to it and the process is repeated. The procedure

as presently stated is not quite practical since the use of a ∀-L∗ or a ∃-R∗ rule also involves

picking the ‘right’ instantiation term. However, this choice can be delayed by introducing

instead a variable that may be instantiated later and determining bindings for such variables

by using unification when checking if a sequent is an axiom. Unification must, of course, not

lead to the constraint on constants in the ∃-L and ∀-R rules to be violated. The best way to

achieve this effect in the classical setting is to transform the original sequent by a process

referred to as Herbrandization in [Sha92] that eliminates at the outset all quantifiers that

might require a ∃-L and ∀-R to be used in proof search.

Contraction is applicable only to antecedent formulas in the intuitionistic setting. The

essential uses of these rules occur in conjunction with the ∧-L, ∀-L, and ⊃-L rules. To

realize the effects of these uses, we may replace the ∧-L and the ∀-L schemata by ∧-L∗ and

∀-L∗ respectively, and ⊃-L by the following:

B ⊃ D,Γ −→ B D,Γ −→ ∆
⊃ -L∗

IB ⊃ D,Γ −→ ∆

Notice that, in contrast to the situation in classical logic, the present modification to the

⊃-L rules incorporates a contraction in the antecedent.

We refer to a derivation constructed in the calculus for I-proofs with the indicated

replacements for the ∧-L, ∀-L and ⊃-L rules as an I+-proof. If contr-L is not used in such

a derivation, we shall call it an I∗-proof. The adequacy of I∗-proofs in settling questions of

intuitionistic provability is stated in the following theorem whose proof may be modelled

on the arguments in [TS96].

Theorem 4 A sequent Γ −→ F has a I-proof if and only if it has a I∗-proof.

Once again, Theorem 4 has content that can be utilized in structuring proof search

in intuitionistic logic. However, there are important differences from the classical case.
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First, the static Herbrandization step is not sound in the new setting [Nad93, Sha92]. An

alternative approach that can be used in this case is to treat the ∃-L and ∀-R rules explicitly

in proof search and to employ a dynamic form of Herbrandization to ensure that the required

constraints are satisfied by quantifier instantiation terms [Fit90, Nad93, Sha92]. Second,

a detailed analysis reveals that the process for reducing sequents must delay consideration

of the rules ⊃-L∗

I
, ∨-R and ∃-R in addition to ∀-L∗.1 Further, the order in which these

rules are eventually considered may be important and it may be necessary to backtrack

over particular orders of reduction.

4 Correspondence between classical and intuitionistic prov-

ability

It is clear from the definitions that, if Γ is a (multi)set of formulas and ∆ is a single formula,

then Γ ⊢I ∆ implies Γ ⊢C ∆. The converse is not always true. A ‘canonical’ demonstration

of this fact is obtained by taking Γ to be the empty (multi)set and letting ∆ consist of the

formula ((q ⊃ s) ⊃ q) ⊃ q. However, the truth of the converse and, hence, the equivalence of

classical and intuitionistic provability, can be assured when the syntax of the assumption and

conclusion formulas is restricted in certain ways. We describe these syntactic restrictions

in this section. Our characterization is based, first of all, on the inference rules used in a

C-proof and is a complete one at this level: we identify four classes of C-proofs determined

by the non-use of certain inference rules and show that (a) an I-proof exists for the final

sequent of a C-proof belonging to any of these classes and (b) for each possible way for

violating all the restrictions on inference rule usage, there is a C-proof with a corresponding

final sequent for which no I-proof exists. Now, the syntactic structure of the formulas in a

given sequent determines the inference rules that can appear in a (cut-free) C-proof of that

sequent. This observation enables us to translate the restriction on inference rules into the

desired syntactic constraints on formulas.

The following theorem identifies one of the classes of C-proofs that are of interest.

Theorem 5 Let Γ −→ ∆ have a C-proof in which no ⊃-R or ∨-L rule is used. Then, for

some G in ∆, it is the case that Γ −→ G has an I-proof. In particular, if ∆ consists of a

1There is actually another problem with regard to the ⊃-L∗

I rules: the principal formula of this rule

appears again in the left upper sequent and so it is not certain that a use of the rule will produce less

‘complex’ sequents. Dyckhoff [Dyc92] and Hudelmaier [Hud90] have proposed alternative sequent calculi

for propositional logic that overcomes this problem but, to our knowledge, no similar calculus has been

described for the situation where quantifiers are included.
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single formula, then Γ −→ ∆ itself has an I-proof.

Proof. We use an induction on the heights of C-proofs. If Γ −→ ∆ is an axiom, then,

clearly, there is a G in ∆ such that Γ −→ G is also an axiom. Thus, the theorem is true

for C-proofs of height 1. If the height of the derivation is greater than 1, we consider each

possibility for the last rule used. If this is a rule with a single upper sequent, then, by

assumption, it must be distinct from an ⊃-R. In all the remaining cases, the induction

hypothesis combined possibly with a rule obtained from the same schema yields the desired

conclusion. If the last rule has two upper sequents, then, since it is distinct from an ∨-L,

it must be either an ⊃-L or an ∧-R. Suppose it is the first. Then the derivation at the end

has the structure

Γ′ −→ ∆1, B D,Γ′ −→ ∆2

B ⊃ D,Γ′ −→ ∆1,∆2

where Γ is B ⊃ D,Γ′ and ∆1 and ∆2 constitute a (multiset) partition of ∆. By hypothesis,

either Γ′ −→ G has an I-proof for some G in ∆1 or Γ′ −→ B has an I-proof. In the first

case, it is easily seen that B ⊃ D,Γ′ −→ G also has an I-proof. In the second case, we use

the hypothesis again to observe that for some G in ∆2 it is the case that D,Γ′ −→ G has

an I-proof. These observations used together with an ⊃-L rule yields the theorem in this

case. A similar argument can be provided when the last rule is an ∧-R.

✷

We translate the restriction on proof rules in Theorem 5 into restrictions on the syntax

of formulas. Consider the classes of formulas defined by the following mutually recursive

syntax rules, assuming A represents atomic formulas:

G ::= ⊤ | ⊥ | A | G ∧G | G ∨G | ∀xG | ∃xG

D ::= ⊤ | ⊥ | A | G ⊃ D | D ∧D | ∃xD | ∀xD

A sequent in which the succedent consists of a G-formula and the antecedent contains only

D-formulas is classically provable just in case it is intuitionistically provable. We observe

that the G- and D-formulas defined here subsume the so-called goal formulas and program

clauses of Horn clause logic [MNPS91].

There is an auxiliary utility to Theorem 5: it has content relevant to defining a multi-

formula succedent sequent calculus for intuitionistic logic. Such a calculus is of interest

because it permits a postponement in proof search of decisions about which disjunct of a

disjunctive formula in the succedent is to be chosen. Consider the calculus for constructing

C∗-proofs with the ∨-L and ⊃-R rules replaced, respectively, with ones obtained from the

following schemata:
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B,Γ −→ F D,Γ −→ F

B ∨D,Γ −→ ∆, F

B,Γ −→ D

Γ −→ ∆, B ⊃ D

A sequent of the form Γ −→ ∆ in which ∆ is a singleton multiset has a derivation in this

calculus if and only if it has an I-proof; the ‘if’ direction is obvious and the ‘only if’ direction

follows from Theorem 5 and an easy induction on the number of occurrences of the ‘new’

∨-L and ⊃-R rules in the given C∗-proof. We may also allow ∆ to contain more than one

formula by interpreting it as the disjunction of these formulas. We note, however, that the

modification to the ∨-L schema is essential even under such an interpretation for quantifica-

tional logic: without this modification, the sequent ∀x (p(x) ∨ q) −→ (∀x p(x)) ∨ q would,

for example, have a derivation even though it has no I-proof.

The following theorem identifies a second interesting class of C-proofs.

Theorem 6 Let Γ be a multiset of formulas and let B1, . . . , Bn be formulas such that

Γ −→ B1, . . . , Bn has a C-proof in which no ⊃-R or ∀-R rule is used. Then the sequent

Γ −→ B1 ∨ . . . ∨Bn has an I-proof. In the case that n = 1, Γ −→ B1 has an I-proof.

Proof. This theorem can be proved, once again, by an induction on the heights of

C-proofs. We do not provide an explicit proof here, noting only that an argument that is

similar to, but simpler than, that for Theorem 7 below suffices. In particular, a complication

arises in the (inductive) proof of Theorem 7 from having to consider a ∀-R as the last rule

in the C-proof of Γ −→ B1, . . . , Bn. The premise of the present theorem rules out this

possibility. There is an additional case that has to be considered here in that a ∀-L rule

could be the last one used. However, the argument for this case is a relatively simple one.

✷

Following earlier lines, we can rephrase Theorem 6 in terms of a restriction on the syntax

of formulas. Consider the following classes of formulas, assuming, again, that A represents

atomic formulas:

G ::= ⊤ | ⊥ | A | G ∧G | G ∨G | ∃xG

D ::= ⊤ | ⊥ | A | G ⊃ D | D ∧D | D ∨D | ∃xD | ∀xD.

If Γ is a (multi)set of D-formulas and F is a G-formula, then Γ ⊢C F only if Γ ⊢I F . The

classes of G- and D-formulas described by the present rules constitute a generalization of

similarly named classes in [NL95] and have been studied there as the basis for disjunctive

logic programming [LMR92].
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Analogously to Theorem 5, Theorem 6 can be used to justify a multi-formula succedent

sequent calculus for intuitionistic logic. Consider the calculus for constructing C∗-proofs

with the ∀-R and ⊃-R rules replaced, respectively, with ones obtained from the following

schemata:

Γ −→ [c/x]B

Γ −→ ∆,∀xB

B,Γ −→ D

Γ −→ ∆, B ⊃ D

A sequent of the form Γ −→ ∆ in which ∆ is a singleton multiset has a derivation in

this calculus if and only if it has an I-proof. As before, we may also allow ∆ to contain

more than one formula by interpreting it as the disjunction of these formulas. We note that

the calculus that is so described for intuitionistic logic differs superficially—in particular,

only in the manner in which the logical constant ⊥ is treated—from the GHPC calculus of

Dragalin [Dra79].

A third category of C-proofs is identified in the following theorem.

Theorem 7 Let Γ be a multiset of formulas and let B1, . . . , Bn be formulas such that

Γ −→ B1, . . . , Bn has a C-proof in which no ⊃-R or ∀-L rule is used. Then the sequent

Γ −→ B1 ∨ . . . ∨Bn has an I-proof. In the case that n = 1, Γ −→ B1 has an I-proof.

Proof. It is convenient to prove the theorem assuming derivation calculi with the stronger

notion of axioms described in Section 2, i.e., ones in which any sequent whose antecedent

and succedent have a common formula is considered an axiom. Further, we show a stronger

property than that required: If Γ −→ B1, . . . , Bn has a C-proof in which no ⊃-R or ∀-L

rule is used, then Γ −→ B1 ∨ . . . ∨Bn has an I-proof in which no ∀-L rule is used. We prove

this property by means of an induction on the height of the C-proof for Γ −→ B1, . . . , Bn.

The base case corresponds to Γ −→ B1, . . . , Bn being an axiom. In this case, we can

construct an I-proof of Γ −→ B1 ∨ . . . ∨Bn by using a sequence of ∨-R rules below a

suitably chosen axiom. Note that no ∀-L rule appears in this derivation.

For the inductive step, we consider the various possibilities for the last rule used in the

derivation. The argument is straightforward for all permitted left rules, i.e., ones that are

distinct from ∀-L, in which the succedent is identical in the upper and lower sequents—we

invoke the induction hypothesis and use an instance of the same rule schema to get an

I-proof for Γ −→ B1 ∨ . . . ∨Bn, and we note that this derivation must not contain a ∀-L

rule occurrence.

The only remaining possibility for a left rule is that it is an ⊃-L. In this case, the

derivation at the end has the structure

12



Γ′ −→ ∆1, F D,Γ′ −→ ∆2

F ⊃ D,Γ′ −→ ∆1,∆2

where Γ is F ⊃ D,Γ′ and ∆1 and ∆2 constitute some partition of B1, . . . , Bn. The argument

follows the pattern of that for the other left rules in the case that ∆1 is empty. We therefore

assume that it is nonempty. We also assume that the final sequent in the derivation has

exactly two formulas in the succedent and that ∆1 is B1 and ∆2 is B2; these assumptions

are not critical, and may be dispensed with in a more detailed argument.

Now, using the induction hypothesis, we see that Γ′ −→ B1 ∨ F and D,Γ′ −→ B2

have I-proofs in which no ∀-L rule is used. From this it follows that F ⊃ D,Γ′ −→ B1 ∨ F

and F,D,Γ′ −→ B2 also have such I-proofs. Using the latter, we can construct an I-proof

for B1 ∨ F,F ⊃ D,Γ′ −→ B1 ∨B2 as follows:

B1, F ⊃ D,Γ′ −→ B1
∨-R

B1, F ⊃ D,Γ′ −→ B1 ∨B2

F,Γ′ −→ F

F,D,Γ′ −→ B2
∨-R

F,D,Γ′ −→ B1 ∨B2
⊃ -L

F,F ⊃ D,Γ′ −→ B1 ∨B2
∨-L

B1 ∨ F,F ⊃ D,Γ′ −→ B1 ∨B2

Notice that no ∀-L rule appears in this derivation. We can combine this derivation with

the one for F ⊃ D,Γ′ −→ B1 ∨ F by means of a Cut rule and some contr-L rules to get

a derivation for F ⊃ D,Γ′ −→ B1 ∨B2. Finally, by the observation in Section 2, the Cut

rule can be eliminated from this derivation to obtain an I-proof for F ⊃ D,Γ′ −→ B1 ∨B2

in which no ∀-L rules appear.

To complete the proof, we have to consider the possibility that the last rule in the C-

proof is a right rule. Suppose that it is, in fact, a ∃-R. Then the derivation at the end has

the following form:

Γ −→ B1, . . . , Bi−1, [t/x]B
′

i
, . . . , Bn

Γ −→ B1, . . . , Bi−1,∃xB
′

i, . . . , Bn.

We have assumed here that Bi is actually a formula of the form ∃xB′

i. By the induction

hypothesis, Γ −→ B1 ∨ . . . ∨Bi−1 ∨ [t/x]B′

i ∨ . . . ∨Bn has an I-proof. Now, it is easily

seen that

B1 ∨ . . . ∨Bi−1 ∨ [t/x]Bi ∨ . . . ∨Bn −→ B1 ∨ . . . ∨Bi−1 ∨ ∃xB′

i ∨ . . . ∨Bn

has an I-proof in which no ∀-L rule is used. The desired conclusion follows in this case first

from using a Cut rule and then noting that this rule can be eliminated from the derivation

without introducing any occurrences of the ∀-L rule.

An argument similar to that for ∃-R can be provided for all other permitted right

rules except ∀-R. For the case of ∀-R, we need a further observation: If a sequent of the

13



form Γ −→ P1 ∨ . . . ∨ [c/x]P ′

i ∨ . . . ∨ Pn has an I-proof in which no ∀-L rule is used and

if Γ and P1, . . . , P
′

i , . . . Pn are such that the constant c does not appear in them, then

Γ −→ P1 ∨ . . . ∨ ∀xP ′

i
∨ . . . ∨ Pn has an I-proof in which no ∀-L rule is used. This obser-

vation can be established by a routine induction on the height of the given I-proof. Further,

it can be used together with the present induction hypothesis to yield an argument for the

only remaining case in the proof of the main claim.

✷

We can, as usual, rephrase Theorem 7 in terms of a restriction on the syntax of formulas.

Once again, consider the following classes of formulas, assuming that A represents atomic

formulas:
G ::= ⊤ | ⊥ | A | G ∧G | G ∨G | ∃xG | ∀xG

D ::= ⊤ | ⊥ | A | G ⊃ D | D ∧D | D ∨D | ∃xD.

If Γ is a (multi)set of D-formulas and F is a G-formula, then Γ ⊢C F only if Γ ⊢I F .

The following theorem identifies a fourth, and final, class of C-proofs that are of interest

from the perspective of this section.

Theorem 8 Let Γ be a multiset of formulas and let B be a formula such that Γ −→ B

has a C-proof in which no ⊃-L, ∨-R or ∃-R rule is used. Then Γ −→ B has an I-proof.

Proof. We claim that if Γ −→ B has a C-proof in which no ⊃-L, ∨-R or ∃-R rule is

used, then this sequent also has a C∗-proof in which no ⊃-L∗, ∨-R∗ or ∃-R∗ rule is used.

Towards seeing this, we first make the easy observation that, under the given assumption,

Γ −→ B must have a C+-proof in which the latter rules do not appear. Now, it is easily

determined that the C∗-proofs mentioned in the Lemmas 1 and 2 may be qualified to be

ones in which the ⊃-L∗, ∨-R∗ and ∃-R∗ rules do not appear. Finally, an argument similar

to that provided for Theorem 3 allows us to conclude that Γ −→ B has a C∗-proof that

does not contain any ⊃-L∗, ∨-R∗ or ∃-R∗ rules.

The claim easily yields the theorem: Every sequent in the C∗-proof of restricted form

must have exactly one formula in the succedent. Each occurrence of an ∧-L∗ and ∀-L∗ rule

in this derivation can be eliminated in favor of a contr-L rule paired with some number

of ∧-L and ∀-L rules, respectively, to produce a C-proof. The number of formulas in the

succedent of each sequent remains unchanged by this transformation and so the C-proof

that is produced is also an I-proof.

✷
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Towards rephrasing Theorem 8 in terms of a restriction on formulas, we define the

following classes of formulas, assuming, as usual, that A represents atomic formulas:

G ::= ⊤ | ⊥ | A | G ∧G | D ⊃ G | ∀xG

D ::= ⊤ | ⊥ | A | D ∧D | D ∨D | ∃xD | ∀xD.

It follows from the theorem that if Γ is a (multi)set of D-formulas and F is a G-formula,

then Γ ⊢C F only if Γ ⊢I F .

Theorem 9 Theorems 5-8 provide a characterization at the level of proof rules of the con-

ditions under which classical provability implies intuitionistic provability that is complete

in the following sense: for each way of violating all the restrictions on inference rule usage

described in the mentioned theorems, there is a sequent with a singleton succedent that has

a violating C-proof but no I-proof.

Proof. C-proofs may be categorized into those that do and those that do not contain

occurrences of the ⊃-R rules.

We consider first the collection of C-proofs in which the ⊃-R rules are not used. To

violate the restrictions on proof rule usage contained in Theorems 5-8, a derivation of this

kind must contain at least one occurrence of an ∨-L, a ∀-R and a ∀-L rule and of either an

⊃-L, an ∨-R or a ∃-R rule. We list sequents below that have C-proofs satisfying each of

these requirements and note that none of these has an I-proof:

(∀x p(x)) ⊃ q,∀x (p(x) ∨ q) −→ q

∀x (p(x) ∨ q) −→ (∀x p(x)) ∨ q

∀x∀y (r(x, a) ∨ r(y, b)) −→ ∃y ∀x r(x, y).

We assume in these sequents that q is a proposition symbol, p is a unary predicate symbol,

r is a binary predicate symbol and a and b are constants.

A C-proof in which an ⊃-R rule is used must also contain an occurrence of one of the

⊃-L, ∨-R and ∃-R rules in order to violate the restrictions described in Theorems 5-8. The

following sequents have C-proofs satisfying each of these requirements:

(q ⊃ s) ⊃ q −→ q

−→ q ∨ (q ⊃ s)

−→ ∃x (p(x) ⊃ p(f(x)))

In these sequents, we assume additionally that s is a proposition symbol and that f is a

unary function symbol. It is easily seen that none of these sequents has an I-proof, thus

verifying the theorem even in this case.

✷
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We stress, once again, the observation made in Section 1 that our analysis of the corre-

spondence between classical and intuitionistic provability is coarse-grained in that it pays

attention only to the rules used in a derivation and not to the particular interactions be-

tween rules in it. Thus, there are sequents whose only C-proofs violate all the conditions

in Theorems 5-8 but which, nevertheless, have I-proofs. For example, consider the sequent

−→ ((∀x (r(x, a) ∨ r(x, b))) ⊃ ((((∀x∃y r(x, y)) ⊃ q) ⊃ q) ∨ s))

in which we have used the non-logical vocabulary described in the proof of Theorem 9. Any

C-proof of this sequent must use an ∨-L, an ⊃-R, a ∀-R, a ∀-L, an ∨-R, a ∃-R and an

⊃-L rule. However, this sequent has an I-proof. We note that it is possible to conduct an

alternative analysis of the correspondence between classical and intuitionistic provability

that focuses specifically on the interactions between the rules that appear in a derivation.

Such a study has, for instance, been carried out in [PRW96] for a propositional logic that

has ⊃, ∧ and ¬ as its only logical symbols. An analysis of this sort indicates when a given

classical derivation may be interpreted as having intuitionistic force and may be used in

driving a search for a C-proof with such a force given one without it. The results of this

section are relevant to such a study in that they provide insight into the rules between which

interactions should be considered carefully.

After the completion of this paper, it has come to our attention that a study similar

to the one presented in this section has previously been conducted by Orevkov [Ore68].

In this work, the notion of a σ-class is identified as a list of logical symbols with positive

or negative markings. A sequent is said to belong to a given σ-class if a logical symbol

occurs positively (negatively) in the sequent only if it does not occur with a corresponding

positive (negative) marking in the listing denoting the σ-class. Viewed differently, a σ-class

describes a restriction to the syntax of formulas that are permitted to appear in sequents.

A completely Glivenko class is now defined to be a σ-class such that any sequent with a

singleton succedent belonging to that class is derivable in classical predicate logic only if

it is also derivable in intuitionistic predicate logic.2 Analogous to our Theorem 9, Orevkov

provides a complete description of all completely Glivenko classes. The two characteriza-

tions are not exactly identical because negation is treated in [Ore68] as a primitive symbol.

However, a comparison of the results can still be made. Ignoring the negation symbol, the

two characterizations coincide. Treating the negation symbol explicitly allows for distinc-

tions in [Ore68] that, in our context, would translate not into restrictions in rule usage,

2In reality, it is predicate logic with equality that is considered in [Ore68], but this appears not to be

significant to the analysis.
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but into distinguishing different roles for implication and paying attention to the polarity

of occurrences of ⊥.

5 Relationship to uniform provability

We consider now the relationship between classical and intuitionistic provability on the one

hand and uniform provability on the other. Our analysis covers two kinds of questions.

First, we examine restrictions in the syntax of formulas that ensure a coextensiveness be-

tween these different proof relations. Following this, we consider the reduction of classical

provability to uniform provability in situations where these relations are not coextensive.

5.1 Correspondence with uniform provability

Our first goal is to describe the sequents for which the existence of an I-proof implies the

existence of an O-proof. Since an O-proof is a special case of an I-proof, we can combine

this characterization with the results of the previous section to obtain a similar relationship

between classical and uniform provability. The following theorem provides the desired

characterization in terms of the inference rules used in the I-proof.

Theorem 10 Let Γ be a multiset of formulas and let G be a formula. If the sequent

Γ −→ G has an I-proof in which

1. either no ∨-L rule is used or no ∨-R and no ∃-R rules are used, and

2. either no ∃-L rule or no ∃-R rule is used,

then it also has a uniform proof. Moreover, this characterization is tight in that, for each

possible way of violating these restrictions, there is a sequent with an I-proof but no uniform

proof.

Proof. The first part of the theorem is an immediate consequence of the permutability

properties of inference rules in intuitionistic sequent calculi established, for instance, in

[Kle52]. To complete the proof of the theorem, we list a suitable set of sequents:

p(a) ∨ p(b) −→ ∃x p(x),

q ∨ s −→ s ∨ q, and

∃x (p(x) ∧ q) −→ ∃x p(x).
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We assume here that q and s are proposition symbols, p is a predicate symbol and a and

b are constants. None of these sequents has a uniform proof. However all of them have

I-proofs: the first has one in which an ∨-L and a ∃-R rule are used, the second has one in

which an ∨-L and an ∨-R rule are used and the last has one in which a ∃-L and a ∃-R rule

are used.

✷

The notion of uniform provability is useful in identifying logical languages that provide

a basis for programming [MNPS91]. In particular, letting D and G denote collections of

formulas and ⊢ denote a chosen proof relation, an abstract logic programming language is

defined to be a triple 〈D,G,⊢〉 such that, for all finite subsets P of D and all G ∈ G, P ⊢ G

if and only if P ⊢OG. In the programming interpretation of such a triple, elements of D

function as program clauses and elements of G serve as queries or goals. The virtue of

this definition is that it supports a broad interpretation of logic programming based on a

duality in the meaning of logical symbols: on the one hand, these symbols have a declarative

reading given by the proof relation ⊢ and, on the other, they are accorded a search-related

interpretation given by the rules for introducing each of them on the right in sequent proofs.

An interesting question is that of how rich the syntax of program clauses and goals

can be in the cases where ⊢ is interpreted as classical or intuitionistic provability. Before

answering this question, we note that these formulas must contain certain syntactic com-

ponents in order to be useful for programming: the procedural interpretation of program

clauses relies on universal quantification and implications being permitted at the top-level

in these formulas and outermost existential quantification is important in goals in making

sense of the result of finding a derivation. In light of Theorem 10, the second requirement

precludes outermost occurrences of disjunction and existential quantification in program

clauses. Thus, if ⊢ is interpreted as intuitionistic provability, the collection of G- and D-

formulas given by the following syntax rules represent the largest possible classes for goals

and program clauses:

G ::= ⊤ | ⊥ | A | G ∧G | G ∨G | D ⊃ G | ∀xG | ∃xG

D ::= ⊤ | ⊥ | A | G ⊃ D | D ∧D | | ∀xD

We assume, as before, that A represents atomic formulas in these rules. The only essential

difference between the abstract logic programming language given by these classes of formu-

las and intuitionistic provability and the language of hereditary Harrop formulas studied in

[MNPS91] is that the logical constant ⊥ is permitted to appear here in goals and program

clauses.
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In the case that classical provability is used instead to clarify the declarative semantics,

further restrictions have to be placed on formulas to ensure coextensiveness with intu-

itionistic provability, a prelude to coextensiveness with uniform provability. By virtue of

Theorem 5, one way to achieve this effect is to exclude the case involving implication from

the syntax rule for G-formulas above. The language that results from this restriction is

closely related to the Horn clause logic that underlies the language Prolog: in particular, it

extends Horn clause logic as presented in [MNPS91] by including universal quantification

in goals and allowing ⊥ to appear in goals and program clauses.

However, it is not necessary to exclude implications in goals even when the chosen proof

relation is classical provability.3 What the examples used in the proof of Theorem 9 show

is that implications must not appear negatively in program clauses or embedded within

disjunctions or existential quantifications in goals. We can modify the definition of G- and

D-formulas as follows to satisfy these requirements:

G ::= G′ | D ⊃ G | G ∧G | ∀xG

G′ ::= ⊤ | ⊥ | A | G′ ∧G′ | G′ ∨G′ | ∀xG′ | ∃xG′

D ::= ⊤ | ⊥ | A | G′ ⊃ D | D ∧D | | ∀xD

Using Theorems 5 and 10 and the easy observations that (a) Γ −→ F1 ∧ F2 has a C-proof

only if Γ −→ F1 and Γ −→ F2 also have C-proofs, (b) Γ −→ F1 ⊃ F2 has a C-proof

only if F1,Γ −→ F2 also has one, and (c) Γ −→ ∀xF has a C-proof only if, for some

constant c not appearing in Γ or F , Γ −→ [c/x]F also has one, it can be seen that these

definitions in fact yield an abstract logic programming language. Moreover, this is the

largest such language based on classical logic that also meets the mentioned requirements

for programming.

5.2 Reduction to uniform provability

The succedent formula can be used to direct the search for a uniform proof for a sequent

in a fairly deterministic fashion. By exploiting this fact, it is possible to define efficient

proof procedures for logical languages that have a derivability relation that is coextensive

with uniform provability. This idea has been used previously relative to abstract logic

programming languages; see, for instance, [Mil91, Nad93]. Now, even in situations where

the proof relation of interest deviates from uniform provability, it may still be possible to

3This is not in contradiction to Theorem 9. As noted already, the analysis in the theorem does not pay

attention to the order in which rules are used and so is not fine-grained enough to provide a tight constraint

on the syntax of formulas.
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utilize the latter notion in structuring proof search. For instance, it may be possible to

modify the sequent whose derivability status is to be verified in some predetermined and

sound way to produce a new sequent that has a derivation in the relevant sense just in

case it has an O-proof. One approach of this kind that has been considered in the past in

conjunction with classical logic [NL95, Nad96]. In this approach, the attempt to prove a

sequent of the form Γ −→ F is transformed into an attempt to prove F ⊃ ⊥,Γ −→ F

instead. As we see below, the indicated augmentation of the antecedent can be made implicit

by being built into new inference rules. The virtue of the resulting derivation system is that

it provides the basis for a goal-directed proof procedure with the characteristic that the

attempt to prove the original goal is restarted with a modified set of premises at certain

points in the search [Gab85, GR93, LR91, Nad96].

A crucial requirement in using this method is that the described augmentation of the

sequent reduce the question of classical provability to that of uniform provability. Towards

understanding the applicability of this method, we wish to circumscribe the sequents for

which this reduction is actually achieved. We begin by observing that the overall approach

is actually sound:

Lemma 11 Let Γ be a multiset of formulas and let F be a formula. Then F ⊃ ⊥,Γ ⊢C F

if and only if Γ ⊢C F .

Proof. This follows easily from the admissibility of the Cut inference rules and the fact

that −→ (F ⊃ ⊥) ∨ F has a C-proof.

✷

Since O-proofs are I-proofs of a special form, a useful first step towards the desired

characterization is to understand when the augmentation of a sequent succeeds in reducing

classical provability to intuitionistic provability.

Theorem 12 Let Γ be a multiset of formulas and let F be a formula such that Γ −→ F

has a C-proof. Then there is an I-proof for F ⊃ ⊥,Γ −→ F if any one of the following

conditions holds relative to the C-proof of Γ −→ F :

1. no ∀-R rule is used,

2. no ⊃-R and no ∨-L rule is used,

3. no ⊃-R and no ∀-L rule is used, and

4. no ⊃-L, ∨-R and ∃-R rule is used.
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Further, for each way of violating all these conditions, there is a sequent Γ −→ F with a

violating C-proof such that F ⊃ ⊥,Γ −→ F does not have an I-proof.

Proof. Using the results in [MO63], it can be established that Γ −→ F has a C-proof in

which no ∀-R rule is used, then F ⊃ ⊥,Γ −→ F has an I-proof. This fact is also indepen-

dently and explicitly established in [Nad96]. Further, it is obvious that F ⊃ ⊥,Γ −→ F

has an I-proof if Γ −→ F has one. If any one of conditions 2-4 is true, then, by virtue of

Theorems 5, 7 and 8, Γ −→ F has an I-proof. Thus, if any one of the listed conditions is

true, then F ⊃ ⊥,Γ −→ F must have an I-proof.

It only remains to be shown that, corresponding to each way of violating all the condi-

tions, there is a sequent that has a C-proof but whose augmented version does not have an

I-proof. Clearly, we need to consider only those situations in which a ∀-R rule is used in

the C-proof. Now, our analysis breaks up into two parts, depending on whether or not a

⊃-R rule appears in the C-proof. Suppose, first, that it does not. Then the C-proof must

contain occurrences of both an ∨-L and a ∀-L rule and of one of the ⊃-L, ∨-R and ∃-R rules.

The following sequents have C-proofs respectively meeting each of these requirements:

∀x∀y (p(x) ∨ q(y)), (∀x p(x)) ⊃ (∀y q(y)) −→ ∀y q(y),

∀x∀y (p(x) ∨ q(y)) −→ (∀x p(x)) ∨ (∀y q(y)),

∀x∀y (r(x, a) ∨ r(y, b)) −→ ∃y ∀x r(x, y).

We assume that p and q are unary predicate symbols, that r is a binary predicate symbol

and that a and b are constants in these sequents. Now, denoting the antecedent by Γ and

the formula in the succedent by F in each case, it can be seen that in none of these cases

does F ⊃ ⊥,Γ −→ F have an I-proof.

To complete the argument, we consider the situation in which an ⊃-R rule appears in

the C-proof. In this case, one of the ⊃-L, ∨-R and ∃-R must also appear in the C-proof.

But then consider the following sequents:

∀x ((p(x) ⊃ ⊥) ⊃ ⊥) −→ ∀x p(x),

−→ ∀x (p(x) ∨ (p(x) ⊃ s)), and

−→ ∃y ∀x (p(y) ⊃ p(x)).

In these sequents we assume additionally that s is a proposition symbol. Now, these sequents

have C-proofs respectively meeting each of the requirements. However, it can be easily seen

that none of the augmented versions of these sequents have an I-proof.

✷
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It remains only to characterize the situations in which the augmentation suffices to

reduce intuitionistic provability to uniform provability. Part of this task has already been

performed in [Nad96]. In particular, it has been shown there that if G ⊃ ⊥,Γ −→ G

has an I-proof in which no ∀-R rule is used, then this sequent also has an O-proof. In

determining the other situations in which a similar property holds, we find it convenient

to use a modified version of our calculus for constructing I-proofs. Towards this end, we

consider the following inference rules that are parameterized by a specific formula G:

B,∆ −→ F D,∆ −→ G
∨-LGB ∨D,∆ −→ F

∆ −→ G resG
∆ −→ F

We assume that B, D and F are schema variables for formulas in these rules and that

∆ denotes a multiset of formulas. These rules are obviously derived ones relative to the

calculus for constructing I-proofs in the case that ∆ contains the formula G ⊃ ⊥. Moreover,

every use that is made of the “additional” formula G ⊃ ⊥ in an I-proof of G ⊃ ⊥,Γ −→ G

can actually be transformed into a use of a resG rule. Thus, in constructing an I-proof

of a sequent of the form G ⊃ ⊥,Γ −→ G, we may use these rules and also make the

augmentation of the antecedent implicit by strengthening the proviso on the ∃-L and ∀-

R rules to disallow the use of constants appearing in G. We are actually interested in a

calculus that results from the above modifications and the removal of the ∨-L rule. Let

us refer to derivations constructed within this calculus as IG-proofs. We then have the

following observation.

Lemma 13 Let the sequent G ⊃ ⊥,Γ −→ G have an I-proof in which no ∀-L or ⊃-R

rules are used. Then there is an IG-proof for Γ −→ G in which no ∀-L and ⊃-R rules are

used.

Proof. By an I′
G
-proof let us mean a derivation that does not contain any ∀-L or ⊃-R

rules and that would be an IG-proof except for the fact that some number of ∨-L rules

appear in it. From the premises of the lemma, it follows that Γ −→ G has an I′
G
-proof.

Thus, it suffices to show that an I′
G
-proof of Γ −→ G with some ∨-L rules in it can be

transformed into one that does not contain any ∨-L rules. We do this by an inductive

argument based on the number of ∨-L rules in the given I′
G
-proof. We shall assume in this

argument that this derivation satisfies two additional properties: (a) the antecedent(s) of
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the upper sequent(s) of each left operational rule contains (contain) an occurrence of the

principal formula of that rule and (b) each ∃-L and ∀-R rule uses a distinct constant all of

whose occurrences are restricted to the part of the derivation appearing above that rule. We

may have to introduce some contr-L rules into the original derivation to make sure that the

first requirement is satisfied and a consistent renaming of some constants suffices to ensure

the second property. These ‘preprocessing’ steps may be applied with impunity since they

do not increase the number of ∨-L rules in the derivation and they also produce something

that is itself an I′
G
-proof of the same final sequent.

An explicit argument is needed only in the case that at least one ∨-L rule appears

somewhere in the derivation. Suppose this happens to be of the form

B,Σ −→ F D,Σ −→ F

B ∨D,Σ −→ F

We may replace this with an ∨-LG rule, thereby reducing the number of occurrences of ∨-L

rules, provided we can produce an IG-proof for D,Σ −→ G. It suffices, for this purpose, to

exhibit an I′
G
-proof for D,Σ −→ G with fewer ∨-L rules in it than in the given derivation

for Γ −→ G. Such a derivation can be constructed based on the one for Γ −→ G by

retaining unchanged the portion of the latter derivation above the sequent D,Σ −→ F

and by transforming the portion below this sequent as follows:

1. Replacing all left rules that are not ∨-LG rules above whose right upper sequent

D,Σ −→ F appears by the sequent D,Σ −→ F ′ where F ′ is the succedent of the

upper and lower sequents of this rule; applications of this transformation to a sequence

of such rules will result in replacement by a single sequent.

2. Erasing the portion of the derivation up to and including the left upper sequent of all

remaining ∨-LG rules and renaming these to resG rules.

3. Replacing each right rule with an instance of the same schema but with D,Σ as the

antecedent of the upper and lower sequents.

4. Replacing the derivation above the upper sequent of an ∧-R rule that is different from

the one above which the sequent D,Σ −→ F appears by one that uses the same rule

schemata but with suitably modified antecedents.

Clearly, this construction eliminates at least one ∨-L rule from the given I′
G
-proof. However,

some care is needed in ascertaining that it yields something that is indeed an I′
G
-proof. First,

each ∀-R rule below D,Σ −→ F in the new ‘derivation’ uses the same constant as is used
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in the derivation of Γ −→ G and we must verify that this is acceptable. We see this to be

the case by observing that this constant cannot appear in D,Σ since the given derivation

does not contain occurrences of either the ∀-L or the ⊃-R rules. Second, it must be possible

to construct the derivation above the other upper sequent of an ∧-R rule as described; in

particular, all the ∀-R and left rules needed in this construction must be legitimate ones.

Our assumptions concerning the constants used in ∃-L and ∀-R rules and the relationship

between the antecedents of the upper and lower sequents of each left operational rule in the

given I′
G
-proof ensure that this is the case.

✷

We now relativize the notion of a uniform proof to our modified calculus. In particular,

let an OG-proof be an IG-proof with the following characteristic: if there is a sequent in this

proof whose succedent contains a non-atomic formula, then that sequent occurs as the lower

sequent of an inference rule that introduces the top-level logical symbol of that formula.

The following may then be observed:

Lemma 14 If Γ −→ G has a IG-proof in which no ∀-L or ⊃-R rules appear, then it has

an OG-proof.

Proof. By the nonuniformity measure of a left rule in an IG-proof let us mean the count

of right rules pertaining to logical symbols in the succedent of the lower sequent of the

left rule that appear above the left rule in the derivation. Further, let the nonuniformity

measure of the IG-proof itself be defined to be the sum of the nonuniformity measures of

the left operational rules contained in it. Now, let us refer to an IG-proof in which no

∀-L or ⊃-R rules appear as an I′
G
-proof. We claim then that if Γ −→ G has an I′

G
-proof,

then it has one whose nonuniformity measure is 0. We prove this claim by induction on

the measure. We shall assume in our argument that the given derivation satisfies two

additional properties: (a) the antecedent(s) of the upper sequent(s) of each left operational

rule contains (contain) an occurrence of the principal formula of that rule and (b) each ∃-L

and ∀-R rule uses a distinct constant all of whose occurrences are restricted to the part of

the derivation appearing above that rule. We may have to apply the preprocessing steps

discussed in the proof of Lemma 13 to ensure that these requirements are met, but we can

do this without changing the nonuniformity measure of the derivation.

In order to establish the claim, it is sufficient to show that if Γ −→ G has an I′
G
-proof

with nonzero nonuniformity measure, then it has one with a smaller such measure. From

the assumption it follows that the given derivation contains a left operational rule with

right operational rules pertaining to the succedent of its lower sequent appearing above
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it. We focus on a left rule that is the first along some path in the derivation to have this

characteristic. It is easily seen that a contr-L rule can be moved above any right rule in an

IG-proof. Thus, we may assume that the left operational rule of interest appears immediately

after the relevant right rule in the given I′
G
-proof. Our objective, now, is to show that these

two rules can be reordered in a way that decreases the nonuniformity measure of the overall

derivation.

A simple transformation can be used to achieve this effect when the left rule is not a

∃-L or the right rule is not a ∃-R. We illustrate this by considering one particular case: that

when the left rule is an ⊃-L and the right rule is an ∧-R. In this case, the subderivation at

the end has the following structure:

∆ −→ B

D,∆ −→ F1 D,∆ −→ F2
∧-R

D,∆ −→ F1 ∧ F2
⊃ -L

B ⊃ D,∆ −→ F1 ∧ F2

By assumption, the nonuniformity measure of the derivation of ∆ −→ B is 0. We may

reuse the I′
G
-proofs of ∆ −→ B, D,∆ −→ F1 andD,∆ −→ F2 to produce an alternative

subderivation of B ⊃ D,∆ −→ F1 ∧ F2 that has the structure

∆ −→ B D,∆ −→ F1
⊃ -L

B ⊃ D,∆ −→ F1

∆ −→ B D,∆ −→ F2
⊃ -L

B ⊃ D,∆ −→ F2
∧-R

B ⊃ D,∆ −→ F1 ∧ F2

at the end. The nonuniformity measure of the new subderivation is obviously less than

that of the earlier one, and it also does not have any new occurrences of right rules that

could increase the nonuniformity measure of left operational rules appearing later in the

derivation. Thus, the desired effect is achieved by this transformation.

For the only remaining case, let us suppose that it occurs in a subderivation that has

the structure

[c/x]B,∆ −→ [t/y]D
∃-R

[c/x]B,∆ −→ ∃yD
∃-L

∃xB,∆ −→ ∃yD

at the end. Now, it can be shown that [c/x]B,∆ −→ G has an I′
G
-proof of smaller nonuni-

formity measure than that of the one for Γ −→ G; as in the proof of Lemma 13, we

construct such a derivation essentially by mimicking the structure of the given I′
G
-proof of

Γ −→ G and note that at least one occurrence of a ∃-L rule—the one shown above—that

makes a nonzero contribution to the nonuniformity measure is eliminated in the process.

From the induction hypothesis, it follows then that [c/x]B,∆ −→ G has an I′
G
-proof of
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zero nonuniformity measure. The proviso on a ∃-L rule ensures that c does not occur in

B, ∆ or G. Given this, we may also assume that c does not also appear in t, for, if it

does, we simply rename it to a new constant c′ that satisfies this additional requirement

and use [c′/x]B,∆ −→ G and its corresponding derivation in the rest of the argument.

Using the known derivation for [c/x]B,∆ −→ G, we may restructure the I′
G
-proof for

∃xB,∆ −→ ∃yD so that it has the form

[c/x]B,∆ −→ G
resG

[c/x]B,∆ −→ [t/y]D
∃-L

∃xB,∆ −→ [t/y]D
∃-R

∃xB,∆ −→ ∃yD

at the end. This derivation obviously has a nonuniformity measure less than that of the

earlier one and using it instead also decreases the nonuniformity measure of the overall

derivation.

We have thus shown that Γ −→ G has an I′
G
-proof, and, hence, an IG-proof, of zero

nonuniformity measure. By moving contr-L rules above any immediately preceding right

rules in this derivation, we obtain a structure that would be an OG-proof if an additional

property holds: the succedent of the lower sequent of every ⊥-R and resG rule is an atomic

formula. This may not be true at the outset, but a simple transformation process ensures

that it eventually is. To illustrate this process, suppose that there is a resG rule in the

derivation whose lower sequent has the formula F1∧F2 as its succedent. Now, there must be

a last sequent following this one in the derivation that has the same formula as its succedent.

Suppose this sequent is ∆ −→ F1 ∧ F2. By imitating the derivation of this sequent, we

obtain IG-proofs for ∆ −→ F1 and ∆ −→ F2. Further, using these IG-proofs, we may

replace the derivation of ∆ −→ F1 ∧ F2 by one that has the structure

∆ −→ F1 ∆ −→ F2
∧-R

∆ −→ F1 ∧ F2

at the end without changing the nonuniformity measure of the overall IG-proof. The virtue

of this transformation is that the resG rule in the original derivation is replaced by ones

whose lower sequent have formulas with fewer logical symbols in their succedents. In a

more detailed presentation, we associate with each IG-proof of zero nonuniformity measure

a multiset of numbers that count the logical symbols in the formulas that appear as the

succedents of the lower sequents of ⊥-R and resG rules used in the derivation. We then

use the above form of argument in an induction over the multiset ordering induced by the

usual ordering on natural numbers [Der82] to show that Γ −→ G has an IG-proof of zero

nonuniformity measure and in which the succedent of the lower sequent of every ⊥-R and
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resG rule is atomic.

✷

The following theorem states the desired relationship between intuitionistic and uniform

provability.

Theorem 15 Suppose that there is an I-proof for a sequent of the form G ⊃ ⊥,Γ −→ G

satisfying one of the following restrictions on rule usage:

1. No ∀-R rule is used.

2. No ∨-R or no ∨-L rule is used and, in addition, either no ∃-R rule is used or no ∨-L

and ∃-L rules are used.

3. no ∀-L and ⊃-R rules are used.

Then there is an O-proof for the same sequent. Furthermore, this characterization is com-

plete in the following sense: there is a sequent of the required form that has an I-proof but no

O-proof corresponding to each way of violating all the restrictions on inference rule usage.

Proof. The sufficiency of the first restriction on inference rule usage is shown in [Nad96]

and that of the second restriction follows immediately from Theorem 10. The sufficiency

of the third restriction is a consequence of Lemmas 13 and 14 and the observation that an

OG-proof for Γ −→ G can be translated into a uniform proof for G ⊃ ⊥,Γ −→ G.

We now show the completeness of the characterization in the sense claimed. To begin

with, the only situations we need to consider are those in which a ∀-R rule is used in the

I-proof. Now, we may partition these situations based on whether an ∨-R or a ∃-R rule has

been used. Considering the former possibility first, we note that in these situations an ∨-L

rule and one of the ∀-L and ⊃-R rules must also have been used. The following sequents

have I-proofs respectively satisfying these requirements on rule usage:

(∀y (r(b, y) ∨ r(a, y))) ⊃ ⊥,∀y (r(a, y) ∨ r(b, y)) −→ ∀y (r(b, y) ∨ r(a, y)), and

(∀y ((r(b, y) ∨ r(a, y)) ⊃ (r(a, y) ∨ r(b, y)))) ⊃ ⊥ −→

∀y ((r(b, y) ∨ r(a, y)) ⊃ (r(a, y) ∨ r(b, y)));

we assume that r is a binary predicate symbol and a and b are constants in these sequents.

It is easily seen that neither of these sequents has an O-proof, as is required.

To finish the proof, we have to consider those situations in which the violation of the

restrictions arises from the use of a ∃-R rule. In these cases, one of the ∨-L and ∃-L rules

and also one of the ∀-L and ⊃-R rules must also have been used. We list four sequents of

the required form that have I-proofs respectively satisfying these requirements:
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(∀y ∃x r(x, y)) ⊃ ⊥,∀y (r(a, y) ∨ r(b, y)) −→ ∀y ∃x r(x, y),

(∀y ((r(a, y) ∨ r(b, y)) ⊃ ∃x r(x, y))) ⊃ ⊥ −→ ∀y ((r(a, y) ∨ r(b, y)) ⊃ ∃x r(x, y)),

(∀y ∃x r(x, y)) ⊃ ⊥,∀y ∃x r(x, y) −→ ∀y ∃x r(x, y), and

(∀y ((∃x r(x, y)) ⊃ ∃x r(x, y))) ⊃ ⊥ −→ ∀y ((∃x r(x, y)) ⊃ ∃x r(x, y)).

Once again, it can be verified that none of these sequents has an O-proof.

✷

Combining Theorems 12 and 15, we see that if Γ −→ G has a C-proof satisfying

one of the following restrictions on rule usage, then there must also be an O-proof for

G ⊃ ⊥,Γ −→ G: (i) no ∀-R rule is used, (ii) no ⊃-L, ∨-R and ∃-R rule is used, and (iii) no

⊃-R and ∀-L rule is used. These restrictions can be recast in an obvious manner into ones on

the syntax of formulas in the sequent for which a derivation is to be constructed and are, in

fact, more useful in this form. Of all these conditions, the one that is most easily ensured in

practice is that there be no universal quantifiers occurring negatively in the antecedent and

positively in the succedent—any sequent can be transformed in one that is equivalent from

the perspective of classical provability and that satisfies this additional property through

the use of Herbrand functions [Sha92]. A proof procedure based on these observations is

described in [Nad96] and connections with other previously presented procedures is also

discussed there.

We observe, finally, that the results of this section are also relevant from the perspec-

tive of structuring proof search in intuitionistic logic. In particular, the augmentation of

sequents is sound with respect to intuitionistic provability whenever the structure of the

sequent ensures a coincidence with classical provability. Such an augmentation may then

be used to obtain a reduction to uniform provability. One interesting situation in which

this approach may be utilized is that when implications and universal quantifications do

not appear positively in the succedent and negatively in the antecedent of a sequent. This

situation epitomizes disjunctive logic programming and is discussed in more detail in [NL95].

6 Conclusion

We have explored the interrelationships between the notions of classical, intuitionistic and

uniform provability in this paper. We have also examined the relevance of our results

to proof search in classical and intuitionistic logic and to identifying logic programming

languages. We believe there are other applications to our observations as well, especially to

our characterization of the correspondence between classical and intuitionistic provability.
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Another matter that is only partially studied here and that is worthy of further consideration

is the usefulness of uniform provability in designing proof procedures for intuitionistic logic.
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