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Abstract

We present simple semi-definite programming relaxations for the NP-hard mini-
mum bandwidth and minimum length linear ordering problems. We then show how
these relaxations can be rounded in a natural way (via random projection) to obtain
approximation guarantees for both of these vertex-ordering problems.

1 Introduction

Let the vertices of an undirected graph be ordered 1,2,...,n. We define the dilation of an
edge (i, 7) as the difference |¢ — j|, i.e., the length of the edge when the vertices of the graph
are placed on the line in the order 1,2,...,n.

Given an undirected graph G' = (V, E), we consider the following two problems:

1. Minimum Bandwidth : find an ordering that minimizes the maximum dilation among
all the edges, i.e., minimizes
max dilation(e).
ecel
2. Minimum-length Linear Ordering : find an ordering that minimizes the length (the
L norm) of the ordering, which is defined as:

Z dilation(e)?.

eely

That is, the squared length is the sum of the squares of dilations of the edges.
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We present new approximation algorithms for both these problems. Our main algorith-
mic tool is semi-definite programming. Using a simple semi-definite relaxation we derive an
O(\/%log n) approximation for the minimum bandwidth on an n-node graph with band-

width b. A refinement of this relaxation allows us to get an O(log® n) approximation for
the minimum-length linear ordering problem®.

Recently (and independently) Feige [6] introduced the notion of a volume-respecting
embedding of an undirected graph, and used it to achieve a poly-logarithmic approximation
for the bandwidth problem. Interestingly there are many similarities between the two
approaches. Specifically, the rounding procedure of our algorithm, projection to a random
line, is also a key step in his algorithm. Our relaxation for the minimum-length ordering
problem was developed after Feige’s results were announced, and was inspired by his work.

Early interest in these kinds of ordering problems in the 1950’s was fueled by research
in the area of solvers for sparse symmetric linear systems of equations, using Gaussian
elimination (such as in the finite element analysis of steel frameworks). As a heuristic
to minimize the space, time and total work in the elimination procedure, it is desirable
to reorder the rows (and columns) of the matrix so as to collect all the non-zero entries
within a band of small width centered at the diagonal. When the (symmetric) non-zero
elements of the matrix are viewed as vertex adjacencies in an undirected graph, then the
reordering problem is the minimum bandwidth problem on this graph. Another application
of bandwidth minimization is in search algorithms, where the minimum-bandwidth ordering
of the vertices of the problem’s constraint graph can be used as a branching order that
reduces backtracking. For a survey on the bandwidth problem and early approaches, see [2].

The minimum bandwidth problem was first shown to be NP-hard in 1976 [15], and later
even for trees of degree at most three and for caterpillars [7, 13]. Approximations algorithms
have been known only for some special families of graphs, such as caterpillars or asteroidal
triple-free graphs [11, 12].

2 The Semi-Definite Relaxation

Our approximation algorithm begins with an SDP (Semi-Definite Programming) relaxation.
First we motivate and describe the relaxation for the bandwidth problem and then the
relaxation for the minimum-length linear ordering problem.

Semidefinite programming is the optimization of a linear function over variables drawn
from a symmetric matrix subject to linear constraints on these variables and the added
requirement that this symmetric matrix be positive semidefinite. Semidefinite programs
can be solved to within an arbitrarily small additive error in polynomial-time [8] - for
more background, see the description in [9]. Our semidefinite relaxation for the bandwidth
problem is inspired by the pioneering work of Goemans and Williamson [9] on the Maximum
Cut problem, and is based on the following observation that their work motivates and uses:
An n X n symmetric positive semidefinite matrix A can be decomposed into A = BTB
where B is an m x n matrix of full row rank (hence m < n) via an incomplete Cholesky
factorization (see, e.g., [10]). Moreover, if we insist that a;; = d for all 7, then the matrix
A corresponds via the decomposition to a set of equal-length vectors by, by, ..., b, in R™

'The preliminary version of this paper [1] erroneously claimed an O(log% n)-approximation ratio for this
problem. We thank Seffi Naor [16] for bringing the error in the analysis to our attention.



(each of Euclidean length v/d), namely, b; is the i"* column of B, where a;; = b;-b; (the dot
product of b; and b;). This allows us to view the solution to a SDP equivalently as a set of
vectors in R™ for some m < n, obeying some extra linear constraints that we stipulate on
the dot products of these vectors.

2.1 Bandwidth

The minimum bandwidth problem on an undirected graph G = (V, E) is equivalent to the
following geometrical embedding problem: Assign the nodes of the graph to distinct equi-
spaced points along a quarter-circle of radius n in the positive quadrant of a 2-dimensional
plane, such that the maximum value of the FEuclidean length of any edge of the graph is
minimized. The projection of this ordering on either of the co-ordinate axes bounding this
quadrant recovers the optimal bandwidth ordering since the objective functions (Euclidean
distance in the quarter-circle and linear distance in the line) are monotonically related.
The following is then a non-convex quadratic programming formulation for the bandwidth
problem. We use & and § to denote the basis vectors along the z and y co-ordinates
respectively. Also |v] is used to denote the Euclidean length of a vector v.

minimize b (1)
lv;] = n Vie{l,...,n} (2)
|v; — U]‘| < b V(l,j) er (3)

and the v;’s are two-dimensional vectors each distinctly assigned to a point of the form

ncos(;r—i)i + nsin(g—i)ﬁ for some positive j.

The last set of constraints cannot be enforced if we wish to carry out the optimization in
polynomial time, so we relax the dimensionality of the vectors v; and add more constraints to
strengthen the resulting program. The extra constraints we add are “spreading” constraints,
in the spirit of Even, Naor, Rao and Schieber [5]. With only constraints such as (2) and
(3), the program will simply produce one single vector as its solution to all the v;. We want
instead that the vectors be spread out as in a line. For instance, on a line, for any point
p there are at most 2k other points within distance & of p. We add some new constraints
((8) in the formulation below) to enforce this condition. We finally arrive at the following
semidefinite programming formulation,

minimize b (4)
0 Vi,je{l,...,n} (5)
lv;] = n Vie{l,...,n} (6)
(7)
(8)

v - U

loi—wvj| < b VY(i,j)eFE 7
| L /ls |
EPDCETNEE 6<|2—|+1)(|S|+1) VS C{l,....n}, Vie {l,....n} (8

jes

The goal of the above constraints is to enforce a near-linear embedding of the vertices while
minimizing the value of b, which is the maximum dilation of any edge in the relaxation.



Formally, constraint set (7) states that for any edge in the graph, the distance between
the corresponding vectors should be at most the optimal bandwidth. From our discussion
above, it is perhaps easier to see that (7) is a legal SDP constraint if we rewrite it as
(vi = vj) - (vi = v;) < b7

Constraints (5) are primarily for ease of analysis. Constraints (8) are the spreading
constraints motivated earlier. These constraints are useful in the analysis of the rounding
algorithm where we bound the probability that two given points in the vector representation
of the solution fall into an interval of fixed width in a random projection to a line (i.e.,
when all the points are projected to their dot product with a random unit vector? passing
through the origin). This probability is inversely proportional to the distance between the
points (Lemma 5) and the spreading constraints allow us to upper bound this probability
effectively.

Although there are exponentially many constraints in (8), it is not hard to construct
a separation oracle for them, and hence the SDP can be solved in polynomial time (see
Grotschel, Lovasz, Schrijver [8]). To answer the separation problem for (8) for a given node
i, simply sort the vertices j # ¢ in increasing order of (v; — v;)? and check for violation
each of the n — 1 sets that occur as prefixes in this order. It is easy to see that if any set
S violates (8) for vertex ¢, then the prefix of vertices in this order of size |5| also violates
(8) for . This is also the same separation oracle used by Even et al. [5] in their work on
spreading metrics.

Let us refer to the above formulation as the bandwidth SDP. Suppose b* is the optimal
bandwidth. Then by lifting the optimal bandwidth ordering to the equi-spaced embedding
in the quarter-circle described above, it is easy to verify that all the constraints are satisfied
to give an objective function value of at most Fo™.

2.2 Minimum-length ordering

The SDP formulation for the Minimum-length ordering problem is similar to the bandwidth
SDP. Technically, the analysis in this case will require bounding the probability that three
points fall into a fixed width interval in a random projection (instead of just two points as
in the bandwidth analysis). This probability can be shown to be inversely proportional to
the area of the triangle formed by the three points (Lemma 6). For this reason, we add
constraints in this case that lower bound the areas of triangles formed by points in the vector
representation of the solution. Specifically, if we let A(4, j, k) denote the area of the triangle
formed by v;, v;, vg, our SDP relaxation of the minimum-length linear ordering problem is
the following. (The fact that it is indeed a relaxation will be established in Lemma 8.)

minimize Z (v; — v;)?
(¢,7)eE
vi-v; > 0 Vi, jedl,...,n}
1 9 L /15] .
EONCETE (7+1) (IS|+1) VS C{l,....n}, Vi€ {1,...,n}

JjE€S

?Here and henceforth, we use the term “unit vector” to denote a vector of unit length, not only those
along the co-ordinate axes.



1
EZAz(h]vk) > 6|U2'_U]4|2|S|2 VSg{lvvn}v V’L,]E{l,ﬂl} (9)

kes

The first two sets of constraints are identical to (5), (8) above. Instead of constraining
the length of each individual edge as in (7), we minimize the squared length of the ordering
(sum of squares of edge lengths). This is a linear function of the v;-v;. The constraint set (9)
was motivated earlier and will be useful in the analysis; € is a constant greater than 0 that
can be calculated from Lemma 11 in the Appendix. We address below the incorporation of
constraints (9) in the semidefinite formulation.

Fact 1 For two vectors v;, v;, the square of the area of the triangle they form with the origin
is given by

itV U U

1w
41 v;- v; o vy -0y

Hence, for any three vectors, v;, v;, vy, the area A(4, j, k) of the triangle formed by them,
which is the same as the area of the triangle formed by v; — v;, vy — v; and the origin, can
be computed using

(vj — i) (v —vi)  (vj —v5) - (vk — i)

AN R) = (vj = vi) - (or —vi) (k= v5) - (0 — 3)

I

Further, the constraint, A%(4, j, k) > ¢ for a real number ¢ is a convex constraint. Note
that for an arbitrary matrix X, the constraint DET(X) > ¢ may not be convex; however
when X is restricted to being positive semi-definite (as in our case), it becomes convex.
(See, e.g., [14], pp. 239.)

3 The Algorithm

Given an undirected graph G' = (V, F), the approximation algorithm for both problems is
as follows. The only difference between the two problems is in the S D P formulations.

1. Solve the SDP relaxation for . Let the solution obtained be vy, ..., v,.

2. Pick a random line through the origin, i.e., a random unit vector £.

w

. Project vy,...,v, on to the line /.

e

. Output the vertex-ordering along this line, i.e., in increasing values of v; - £.

We show that the algorithm with the bandwidth SDP finds an ordering of bandwidth
at most O(\/%log n) times the optimum with high probability. For the minimum-length

ordering problem we will show that this algorithm gives an ordering of length at most
O(log® n) times the optimum, with high probability.



3.1 Overview of Bandwidth analysis

The outline of the analysis for the Bandwidth performance guarantee is as follows. Imagine
slicing up the ball of radius n into strips orthogonal to ¢ of width b/y/n. The first claim is
that with high probability, no edge in G crosses more than O(y/Togn) strips. The reason
is that for any edge (7, ) we have |v; — v;| < b (by constraint 7) and since ¢ was chosen
randomly, with high probability we have |(v; —v;) - €| < c|v; —vj|\/Togn/y/n (i.e., the vector
v; — v; is “nearly orthogonal” to the line ¢; see Lemma 3). So, to prove an ON(\/H) approxi-
mation for the minimum bandwidth it suffices to prove that with “reasonable” probability,

every strip has at most ON(\/E) points inside.

For a given strip s (say, the strip corresponding to the interval [¢b/\/n, (i + 1)b/+/n] on
line (), the probability over the choice of ¢ that a given point v € G falls into s is at most
O(b/n). (This is because there are O(ny/n/b) strips total, and the middle n/b of them
roughly equally divide up most of the probability.) Thus, the ezpected number of points in
any given strip is only O(b).

What about the variance? To calculate this we need to upper-bound the probability
that a given pair of points v;,v; both fall into a given strip s. This is roughly equal to
Prv; falls into s] - Pr[|v; — v;| - € < b/+/n]. The first quantity, as described above, is O(b/n),
while the latter quantity is O(b/d) if |v; — v;| < d. At this point, we use constraints (8) to
show that there cannot be too many pairs of points v;, v; that are too close together. This
allows us to bound the variance which then yields the final results. For slightly improved

bounds, we use strips of width O(by/logn//n) instead of b/\/n.

3.2 Overview of Minimum-length Ordering analysis

The analysis is very similar to the analysis of the bandwidth guarantee. The first step is
to show that the optimal ordering can be turned into a solution for the SDP formulation
without much worsening in the objective function. We do this in Lemma 8 by using a lifted
embedding of the optimal solution in log n-dimensions so as to obey the triangle lower-bound
constraints.

The proof of the rounding guarantee relies on bounding the expected value of the dif-
ferent terms in the objective function, one for each edge (¢,7) in the graph G. This term
for the edge (7,7) is the square of the number of points that fall between ¢ and j in the
random projection. Algebraic simplification shows that what is required to be bounded is
the probability that a pair of other points k and [ both fall between ¢ and j in the ran-
dom projection. As before, since ¢ was chosen randomly, with high probability we have
|(v; — v;) - €] < e|lv; = vj|\logn/y/n, and so we are left to bound the probability that the
three vectors v;, vy and vy all fall in an interval of width c|v; —v;|v/log n/y/n. We accomplish
this by relating this inversely to the area of the triangle A(i7, k,[) formed by these vectors
and using the lower bounds on the triangle areas.

We present the formal analyses in the next section.

4 Approximation Guarantees

We start with a useful lemma about any set of vectors satisfying the constraint set (8).



Lemma 1 Letvy,...,v, € R" satisfy the constraint set (8). Then for any ball B of radius
r>1in R" (not necessarily centered at the origin)

|BNA{v,...,v} <O(r).

Proof. Let S = {j : v; € B} and suppose for contradiction that [S| > 7r. Pick an
arbitrary ¢ € S. By constraint set (8), the average value of (v; — v;)% over j € S is at
least £(|S|/24 1)(|S|4+ 1) > &(7r/2)(7r) > 4r®. But, this is clearly impossible because the
maximum value of |v; — v;] is at most the diameter 2r. O

Next, we make a few observations regarding random projections.

Lemma 2 Let v, v9,v3 € R”. Let £ be a random unit vector. Let y; = v; - £. Let 8 be the
angle between the vectors (vo — v1) and (vs — vy). Then the probability that y, lies between
y2 and y3 is exactly 6/7.

Proof. The probability that v; when projected to £ falls in between the projections of
vg and vs is
Prlvg -0 < vy -4 <wg- ]+ Prlvg- £ < vy - £ <wg-{]

which is the same as
Pr{((v1 = v3) - ) ((vs —v1) - £) > 0]

which is exactly the angle between the vectors (v — v2) and (vs — vq) divided by 7. |

Fact 2 The volume of the n-dimensional ball of radius r is equal to 72171;71(2%2; and its surface

. gpn=l,n/2
area 1s 71—\(77‘/2) .

Here I'(z) is Euler’s Gamma function; for a positive integer z, ['(z) = (z — 1)L

Lemma 3 Let v € R™. For a random unil vector £,

T

Proof. The desired probability is the surface of a central band of thickness 2¢/y/n on
a unit sphere, divided by the surface area of the whole sphere. Denote the surface area
of the n-dimensional sphere of radius r by A, (r). Then the area of the region outside the
central band is less than the area of an n-dimensional sphere of radius y/1 — ¢?/n (since
the remaining portions of the unit ball after slicing out the central band is a convex body
that can be inscribed in a ball of the smaller radius). Using A,(r) = K,r"~!, for K, as
in fact 2, we can lower bound the area of the central band as the area of the unit sphere

minus the area of a sphere of radius /1 — ¢2/n. Thus the desired probability is at least

An(l)—An<ﬂ) ) 1_<1_i)n/z

An(1) -

Pr [|v-€| < |v|] > 1—e /4,

n
1— e/,

v



Lemma 4 Let v € R™. For a random unil vector £,

1

A=0(5):

Proof. The desired probability can be upper-bounded by 4/c¢y/n times the surface area
of the (n — 1)-dimensional unit ball, divided by the surface area of the n-dimensional unit
ball. The factor of 4 is due to loosely upper-bounding the curvature of the n-dimensional
ball within a width of 1/c¢y/n in both directions above and below the origin. This is at most

e L0 <o (h).

Prjv- (] <

a

We consider the following event: two points z,y on the surface of the ball of radius n,
at a distance d from each other are projected on to a random line. What is the probability
that z and y fall in any fixed interval of width W on the line? The following lemma, crucial
to our analysis, bounds this probability.

Lemma 5 Let x,y be arbitrary vectors of length n in R" such that |x—y| = d and x-y > 0.
Let £ be a random unit vector. Then, for any fized o and width W,

W2
Pria <z -/, y-Kﬁoe—l—W]:O(T).

Proof. For convenience, rotate the sphere so that

v = (=d/2,\/n? — d?/4,0,...)
y = (d/2,y/n? — d2/4,0,...).

Let vectorv =y—a = (d,0,...), and let £ = ({1, (3, ...) be our randomly chosen unit vector.
Note that in order for the event in question to occur, it must be the case that |v - (] < W.
Therefore,

and

Prla<z-l,y-4<a+W] < Prflv- ] <W]-Prla<z-{<a+W]||v- ] <W]

Since |v - | = |{4] - d, we have Pr[|v- (] < W] = Pr[|¢;] < W/d], which is O(W+/n/d) by
Lemma 4.

Given the event that |[(;| < W/d, the inequality @ < z - < a+ W can be relaxed to
a—W/2 <z -0 <a+3W/2, where 2’ and { are n — 1-dimensional vectors consisting of
the last n — 1 components of z and £. Since x; = 0 for all ¢ > 2, this is equivalent to

a—W/2 <ly/n?—d?/4 < a+ 3W/2.

The probability of this last event can be upper-bounded by computing the area of the
largest possible strip of this width W (the one centered around the equator). By assumption,
z -y > 0, implying that d < nv/2, so /n% — d2/4 > n/v/2. We can now bound the fraction



of the sphere covered by this strip by O(W/\/n) as in the proof of Lemma 4. Thus, we
finally get

Prla<z -l y-L<a+W] = O(Wﬁl)

a

The following lemma will be useful in the analysis for the minimum length ordering
problem.

Lemma 6 Let vy, vy, vg be vectors in R"™. Then on projection to a random line, the proba-
bility that there exists an interval of width W that all three fall into is

(i)

Proof. Consider the triangle vyvovs. Assume without loss of generality that its smallest
angle is the one at v3, and that |vy — v3| < |ve — v3|. Notice that the event in question is
invariant under translation of the space; thus we may also assume without loss of generality
that vz is the origin.

In order for all three points to fall into an interval of width W, it must be the case that
vy and vy both fall into the interval [—WW, W]. We bound the probability of the latter event
using Lemma 5. Specifically, let v = nvy /|v1|, let v} = nvy/|vy|, and let d' = |v, — vi|. The
event that vy and vy both fall into the interval [—-W, W] implies the event that v] and v}
both fall into the interval [=Wn/|vi|, Wn/|v1]] since |vi| < |vg|. Since v{ and v} are both
length n (and v} - v} > 0 by the assumption that the smallest angle is at vs), Lemma 5
bounds the probability of this event by

W2n2
O|l———].
vy [2d’
Since vs is the smallest angle of the triangle v vyvs, the area of vivyvs is at most twice

the area of vvjvs where vl = vy|vy|/|v2|. This area equals (|vq|/n)? times the area of vjvhuvs,
and that area is at most nd’/2. Thus, A(1,2,3) < |v(|?d’/n, and the desired probability is

0 W2n? _ 0 W?2n
log2d’ | A(1,2,3) )

4.1 Bandwidth
We begin with the following lemma.

Lemma 7 Suppose vy, ...,v, satisfy the constraint set (5), (6), and (8). For a random
line £, let X be the random variable denoting the number of points v; whose projection onto
C falls into a given interval I of width W. Then,

E[X] = O(Wv/n) and E[X?] = O(W?nlogn).



Proof. Define X; to be the random variable that is 1 if the projection of v; onto £ falls
in I and 0 otherwise. Then from Lemma 4, E[X;] = O(W/\/n), which implies

E[X] = O(W/n).

Now consider pairs v;, v;. By Lemma 5 we have E[X; X ;] = O(W?/d;;), where d;; = |v;—vj].
Therefore,

EX?] = E[_X?+2> X;X]]
~ oy )
= O(I/VQ?”LIOE_);TL)’7

where the last line follows from Lemma 1, since Lemma 1 implies that for any fixed ¢,

Zj 1/dij:O(logn). O

Theorem 1 The algorithm finds an ordering whose bandwidth is at most O(y/n/blogn)
times the minimum bandwidth with high probability.

Proof. Let vy,...,v, be the set of vectors of length n found by solving the SDP.

First, using Lemma 3 we have that every edge of GG, of length at most b in the SDP,
when projected down to a random line has length no more than W = 8by/logn/\/n with
high probability.

Let £ be a random line and partition £ into intervals of width W. Using Lemma 3 one
more time, with high probability, all vertices on projection fall within the middle n/b inter-
vals (since these have total width 8y/nlogn). Since each edge spans at most two intervals
(with high probability), it suffices now just to prove that with reasonable probability, none
of these n/b intervals has more that O(v/nblogn) vertices that project into it.

At this point we simply use Lemma 7. By Lemma 7, the random variable X denoting

the number of vertices that on projection fall into a given interval of width W satisfies
E[X?] = O(W?nlogn). Therefore, by Chebychev’s inequality

b
™ > Pr[X>\/4n/b\/W2nlogn]

= Pr[X > 16vVbnlogn].

Thus, with reasonable probability (3/4), each of the n/b intervals has only O(v/nblogn)
vertices that project into it, proving the theorem. a

4.2 Minimum-length ordering

Let e = (7,j) € £, and upon projection to a random line, let Y;; be the random variable
whose value is the dilation of e in the ordering on the line, i.e., the number of points that
fall in the span of the edge.

First, we use Lemmas 1 and 2 to show that the expectation of Y;; is at most |v; —v;|log n
as follows. Let P denote the center of the geodesic joining v; and v;, and let [ = |v; — v;].
Consider balls with radii [, 21, 41, ... centered at P. Let xy be at distance rl from P. By

10



lemma 2 the probability that zj is projected between z; and z; is at most % By lemma 1,
the number of points at a distance of between r{ and 2rl from P is O(rl). So the expected
number of vertices that fall in between the projections of z; and z; is at most

1
5 logn

1
E O2™l)— = O(llogn).
m=1 2m

However we need to bound the second moment, E(Yj) For this we need to bound the
probability that a pair of vertices falls in the span of e. Lemma 6 bounds this probability
as at most 1 over the area of the triangle formed by the two points and any one of the
endpoints of the edge. So, on the whole we would like to ensure that the sum of the inverse
areas of the triangles formed by every pair with one endpoint of e is small. This is precisely
what the triangle constraints (9) achieve. Just the spreading constraints (8) do not suffice
for this.

Below we describe this formally. First we show that the SDP is indeed a near-relaxation
(there exists a solution to the SDP with value < OPT+/logn). Then we give the approxi-
mation guarantee for the rounding step.

Lemma 8 Let OPT be the value of the minimum length ordering, and OPTspp be the
objective value found by the SDP. Then,

OPTipp < OPT*logn

Proof. Without loss of generality, let 0,...,n — 1 be the minimum length ordering of
G'. Let the value of this ordering be OPT, i.e.,

OPT = [ > (i—j)?

(ig)eE
We will now construct an embedding of the vertices as vectors ug, ..., 4,1 € RUogn]+1
such that
[ui = uj| < [o—jly/[logn] +1
and further ug, ..., u,_1 satisfy the constraints of the minimum length ordering SDP. The

lemma follows from these facts.

First, an example. For n=17 points, the embedding is:

(0,0,0,0,0)
(1,1,1,1,1)
(2,2,2,2,0)
(3,3,3,1,1)
(4,4,4,0,0)
(5,5,3,1,1)
(6,6,2,2,0)

11



(7,7,1,1,1)
(8,8,0,0,0)
(9,7,1,1,1)
(10,6,2,2,0)
(11,5,3,1,1)
(12,4,4,0,0)
(13,3,3,1,1)
(14,2,2,2,0)
(15,1,1,1,1)
(16,0,0,0,0)

The first coordinate is just i¢. The second coordinate is ¢ for i < n/2 and n — @ after
that. The third coordinate goes up to n/4, down to zero, back up to n/4 and back down
to zero again. And so on.

In general, let d be the smallest integer such that 2% > n. Then 7 is mapped to
(i, ]i mod 2771 — 2(i mod 297%)|, ..., i mod 2?71 — 2(i mod 2¢71)],...,i mod 2).

That is, the I coordinate of u; is |i mod 2471 — 2(i mod 2¢74)|, for [ = 1,...,d.

Since the [th coordinate of w; differs from the [th coordinate of u; by at most |¢ — j|,
we have (u; — u;)? < d(i — j)*. So, we have |u; — u;| < |i — j|\/[logn] + 1 as desired.
Constraints (8) are satisfied because the construction of the first coordinate ensures that
for any ¢, 7, |u; — u;| > i — j|.

Finally, we just need to show that constraints (9) are satisfied. This follows from the
fact, given as Lemma 11 in the appendix, that for any ¢ < j < k the area of the triangle
formed by u;, uj, uy is Q|7 — ||k — j]).

These observations imply that wo, ..., u,_1 satisfy the SDP, and their objective value is
O(OPT/logn). O

Let vy, ..., v, be the set of vectors found by solving the SDP.

Lemma 9
E(Y}) = O(Jvi — v;|* log® n)

Proof.  Fix some edge (¢,7). Define the random variable X} for each £ = 1,...,n,
k # i,j to be 1 if on random projection vy is projected in between v; and v; (falls in the
span of the edge) and 0 otherwise. Then

Yz’]‘IZXk

ki
and
EY) = Y EXH+ ) EXxX)
ki ki)
= Z E(X;) + Z Prlk, ! fall between ¢, j]
ki kii,)
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IN

Yi;) + Z Pr [k, [,7 fall in an interval of width Iy logn| — v;|, or ¢, 5 do not
ki,
16 log n|v; — vj|?

< o —vjllogn+ 14 Z AL

ki,

(by Lemmas 3 and 6)

= O(lv; — v;]* log® n).
The last step above follows from the constraint set (9) as follows:
Pt A(k,l,z iy zkl

For each pair ¢, k the inner sum is O((logn)/|vy — v;|). To see this, order the remaining
vertices according to their distance from ¢ (say) and then the constraints imply that the
triangle induced by the p'” point in this order has area at least Q(p|v; — vg|). Hence

1 1

< —
ZZ zkl - CZ|U¢—Uk| ZP
k#it l#0,k k#z 1<p<n

1
< clogn
g&:i |v; — v
= Of(log® n)
Here ¢ is a constant. The last step is implied by the constraint set (8). a

Theorem 2 The expected length of the ordering found by the algorithm is O(log? n) times
the optimum.

Proof. The expected value of the square of the length of the ordering found by our
algorithm is

BE(Y Y = 3 BV
(i,7)EE (i,7)EE
Z O(|v; — v;]* log® n)
(7,4)eE
< O(OPTZpplog®n)
= O(OPT?log"n),

IN

where OPTspp is the objective value of the SDP and hence (within a factor of y/logn) a
lower bound on the minimum length of any linear ordering The result on the length of the

ordering follows with high probability using Markov’s inequality and taking square roots.
O

5 How good is the SDP?

What is the integrality gap of our first SDP? While our rounding procedure for the first
SDP gives us an upper bound on the gap, it is possible that the gap is much smaller in

13



reality. Note that our analysis is tight only for the specific rounding procedure we used, not
the SDP itself.

Here we give some facts that indicate that the gap might be much smaller. One of the
known lower bounds for the bandwidth of a graph is called the density lower bound [4]. Tt
is defined as

. 1| -1
= max ————

R diam(H)’

where the maximum is taken over all connected subgraphs of G.

It is interesting to note that the density lower bound is approximately computable
(within a factor of 2) in polynomial time as follows: Imagine picking a center node in the
subgraph H* achieving the bound, and consider the breadth-first tree rooted at this center

truncated at level [dlﬂrgﬂw The bound achieved by this subgraph is at least half the
density lower bound. We can now search for the best such bound by looking over all choices

of the root at all truncated breadth-first trees, for the best such subgraph.

The exact strength of the density lower bound is an open problem, but the largest
known gap is O(logn) for an n-vertex graph. One of the known constructions of graphs
which achieve this gap, the so-called Cantor combs, was described by Chung and Seymour
[3].

The following lemma says that the integrality gap of our simple relaxation is no larger
than the gap between the density lower bound and the optimum.

Lemma 10 Let (z,b) be the optimal solution of the bandwidth SDP. Then b = Q(Bjy).

Proof. Let H be the subgraph of GG that achieves the maximum density. Since
the average distance d;; between points in the solution corresponding to vertices of H is
Q(|H|), there is a vertex v of H such that the total sum of distances between z, and the
other points in H is Q(]H|?). But this sum is at the same time at most b| H|diam(H ), and
so b|H|diam(H) = Q(|H|?). That is,

ST}

The results of Feige [6] imply that the optimum bandwidth is at most a poly-logarithmic
factor higher than the density bound, thus implying a similar integrality gap for our SDP
formulation of the bandwidth problem. This leaves open the tantalizing possibility of better

a

rounding schemes of the SDP solution to the problem.

6 Conclusions and further work

Along the lines of the constraint set (9), and Feige’s result [6], it is possible to refine the
semi-definite relaxation further (by using the spreading constraints on k-simplices instead of
just edges and triangles). This yields poly-logarithmic approximations for any Ly norm in
O(n%) time and also a poly-logarithmic approximation for minimum bandwidth in quasi-
polynomial time (no(log”)) by considering subsets of size logn. It is an open question as to
whether we can solve this latter relaxation in polynomial time.
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Appendix

Lemma 11 [f uy,...,u, are the points in the (|logn| + 1)-dimensional space defined in
the proof of lemma 8, there is a constant ¢ > 0.02 such that A(i, j, k) > ¢(j —1) - (k—j) for
all v < j < k.

Proof. The idea of the proof is as follows: for a triangle defined by wu;, u; and wuy, we
consider its projection on a two-dimensional plane F; spanned by the coordinate vectors ey
and ey, for different values of £. Clearly, the area of each such projection is a lower bound
on the area of the original triangle. The area of a triangle can be calculated as %ab sin ¢
where a and b are two sides of the triangle and ¢ is the angle between them. If wju’uj is
the projection of w;ujuy onto P, then |uj — | > (j — i) and |u} —uy| > (k — j). Thus, if
we can show that for each triple ¢, 7, k there exists a coordinate £ such that the angle at u;
(the projection of u; onto Fy) is bounded above by some universal constant ¢, we will be
done. In what follows we use an inductive case analysis to show that we can always ensure
¢ < 177.5° (sin¢ > 0.04).

We assume without loss of generality that j <n/2 and k> n/2. (If k <n/2ort>n/2
then we can work with n/2 instead of n and the claim holds by induction. The two cases,
Jj > n/2 and j < n/2 are the same by symmetry so we only work with the first one.) If
k > 9n/16 then after projecting to I, the angle at u’; is at most sin™1(1/8) < 173°, so we
can assume n/2 < k < 9n/16.

If j < n/4, then projecting onto P3 works since the slope of the line through u; and
uy, is at most 1/16, so the angle at u) is roughly 135° (precisely, the angle is at most
135° + tan~'(1/9) < 142°). If ¢ > n/4 the claim holds by induction.

Now there are four cases left.

1. If i < n/8 and n/4 < j < 3n/8, then the angle at u; in P53 is at most 180° —
tan=1(1/3) < 162°.

2. If n/8 <i<n/4and n/4 < j < 3n/8 we consider two subcases:

(a) (j—n/4) <5/3(n/4—1): Project onto P5. The slope of the line through ) and
u; is > —1/4 and the slope of the line through w’ and uj is < —1/3. So, the
angle at u’; is at most 176°.

(b) (j —n/4) > 5/3(n/4—1): Project onto Py. The slope of the line through u; and
u’; is > 1/4 and the slope of the line through u} and u} is < 1/5, so the angle at
is at most 177.5°.

i L)

(7
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3. If i < n/8 and 3n/8 < j < n/2, then note that the slope in Pj of the line between
u) and u; is > —1/3. So, if the slope of the line through u; and u) in Py is < —1/2
then the angle at u; < 172°. Otherwise, it must be the case that the slope of the line
through u; and u), in P; is < 1/2 (and the slope of the line through «} and u; in P,
is 1), so in P, the angle at u; < 162°.

4. Finally, if n/8 < ¢ < n/4 and 3n/8 < j < n/2 then this is analogous to the previous
case but using P, instead of P5. In other words, in Py, the slope of the line between
u) and u; is > —1/3. So, if the slope of the line through u; and u) in Py is < —1/2
then the angle at u; < 172°. Otherwise the slope of the line in P, between u; and u},
must be < 1/2 so in P, the angle at u; < 162°.
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