
An Alternating Heuristic for Medianoid and Centroid Problems in the Plane 

 

By J. Bhadury, H.A. Eiselt, and J.H. Jaramillo 

 

J. Bhadury, H.A. Eiselt, J.H. Jaramillo (2003). An alternating heuristic for medianoid and centroid problems in 

the plane. Computers & Operations Research 30, 553–565. DOI: 10.1016/S0305-0548(02)00024-2 

 

Made available courtesy of Elsevier: http://www.elsevier.com/ 

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be 

missing from this format of the document.*** 

 

Abstract: 

This paper develops two heuristics for solving the centroid problem on a plane with discrete demand points. The 

methods are based on the alternating step well known in location methods. Extensive computational testing with 

the heuristics reveals that they converge rapidly, giving good solutions to problems that are up to twice as large 

as those reported in the literature. The testing also provides some managerial insight into the problem and its 

solution. 
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Article: 

Scope and purpose 

When dealing with competitive location models, one popular solution concept is the Stackelberg solution. It 

assumes that one (group of) firm(s) acts as leader, while the other(s) act(s) as follower. In the locational context, 

the follower takes the locations of the leader as given and optimizes on that basis, whereas the leader will 

exercise foresight and take into account that a follower will subsequently locate additional facilities. It is 

commonly assumed that the leader knows how many facilities the follower will locate. In this bilevel 

programming problem, the leader‘s problem is called a centroid problem, whereas the follower faces a so-called 

medianoid problem. In both cases, the objective of the facility planner is to capture as much of the market as 

possible. Since centroid problems are inherently difficult, it is necessary to devise heuristic methods for all but 

the smallest models. This paper presents two such heuristics for the planar version of the centroid problem that 

are based on the repeated application of a medianoid solution, a much simpler problem. Computational results 

attesting to their performance are also included.  

 

1. Introduction 

Competitive location models were first introduced in the late 1920s by the economist Hotelling [1]. Following 

the taxonomy suggested by Eiselt et al. [2], the main components of these models are the space firms and 

customers locate in, the number of firms involved in the planning, the pricing policy followed by the 

competitors, the objective and solution concept employed, and, finally, the behavior of the customers. Even the 

few components listed here suggest that a large number of models can be devised. Many of the results in the 

literature suggest that competitive location models are very sensitive with respect to the assumptions, so that 

special care has to be taken to avoid extrapolating available results to similar, yet distinct, situations. 

 

Among the solution concepts in the above taxonomy, one of the main ideas was put forward by the economist 

von Stackelberg [3]. It involves two planners or groups of planners, one called leaders, and the other followers. 

In the locational context, the leaders will locate in the first stage, followed by the followers who locate in the 

second stage. Often, one of the two groups has an advantage. For instance, in marketing, a ―first mover 

advantage‖ refers to a situation that benefits the leader. In the context of competitive location, a pertinent 

reference is Ghosh and Buchanan [4]. If the leader has an advantage in a specific situation, then each firm 

would prefer to be a leader. However, in case of a leader advantage, a firm must be in a position to become a 
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leader as far as its availability of resources is concerned. Once a firm has decided to become a leader, it will 

have to deal with a number of competitors who do not have the resources required to be a leader, and have 

resigned to act as followers. Given perfect information, a leader will be aware of the subsequent actions of a 

follower and consequently incorporate this information in his planning by solving an appropriate conditional 

location problem. On the other hand, a follower will take the actions of the leader(s) as a given and plan 

accordingly. The case of a follower (or second mover) advantage is much more problematic: in such a case, it 

does not benefit anybody to make the first move, and, if no incentive is introduced exogenously, none of the 

facilities will take any action. 

 

The typical solution procedure for Stackelberg games is a backward recursion: first a reaction function is 

determined that indicates the optimal course of action of a follower, given all possible actions of the leader. The 

leader will then take this reaction function into account and determine his own optimal decision based on the 

follower‘s reaction. Given such a solution strategy, it is apparent that the leader‘s problem is considerably more 

difficult to solve than the follower‘s problem. The number of contributions in the literature regarding the two 

problems confirms this; see Eiselt and Laporte [5] for a comprehensive survey of sequential location models.  

 

In the locational context, Hakimi [6] coined the phrases medianoid for the set of optimal locations of the 

followers and centroid for the set of optimal locations of the leader. He also provides a short taxonomy for these 

problems. In this scheme, an (r|Xp) medianoid is defined as the problem of a follower who intends to locate r 

facilities of his own, given that the leader has located p facilities, where the set of leader‘s locations is denoted 

by Xp. Similarly, an (r| p) centroid is defined as the problem of a leader who wants to locate p facilities, 

knowing that the follower will react and optimally locate r facilities of his own. As a medianoid problem is a 

difficult location problem in its own right and its solution determines the reaction function used by the leader to 

determine its centroid, it is obvious that in all reasonably realistic cases, no closed form solutions will exist for 

the centroid problem. For medianoid and centroid locations on networks, Hakimi demonstrated that the (r|X1) 

medianoid on general graphs is NP-hard, and so is the (1| p) centroid. Furthermore, some nice properties that 

hold in standard location models such as the node (or Hakimi) property are lost even on tree networks. A few 

heuristic methods have been suggested, most prominently by Benati and Laporte [7] and Serra and ReVelle [8]. 

However, the largest reported data set to which the suggested algorithms have been applied is the famous 55-

node problem by Swain [9] used in [8], and the largest values of p and r reported on are nine. 

 

For problems in the Euclidean plane, even fewer results are available in the literature. Drezner [10] described an 

exact algorithm for the (1|Xp) medianoid problem that runs in O(n
2
 log n) time, where n denotes the number of 

customers in the problem. For problems with r = 2 and 3 and arbitrary values of p, Infante-Macias and Muñoz-

Perez [11] provide efficient algorithms for medianoid problems, given that rectilinear distances are employed. 

However, not much is known about (r|Xp) medianoids and (r|p) centroids in the plane with general values of r 

and p; a gap that this paper attempts to fill. 

 

The remainder of this paper is organized as follows. The next section introduces the model, Section 3 discusses 

the heuristic models investigated in the paper, Section 4 describes the design of the series of computational 

tests, its results and implications, and the last section summarizes the contribution of the paper, provides an 

outlook and suggests future research. 

 

2. The model 

Consider a two-dimensional plane in which n customers are located at points ni, i = 1,…,n, so that N =    
 
   .  

The demand of a customer at ni is assumed to be fixed at wi , known as its ―weight‖. The structure of a fixed 

demand suggests that the homogeneous good under consideration is essential. The facilities all employ mill 

pricing, and prices are agreed upon or legislated, i.e., fixed and equal. Given this pricing structure, customers, 

who are assumed to have perfect information and behave rationally in the sense of minimizing their cost, will 

patronize the closest source. This assumption is justified in case of truly homogeneous goods as shown by Eiselt 

and Laporte [12]. 

 



Suppose now that two firms locate facilities that can be thought of as individual stores or facilities. This is done 

in a sequential fashion, with the location leader locating p facilities, and the location follower locating r 

facilities. Given the customer behavior discussed above, a facility will capture a customer if and only if it is 

closer to that customer than any other facility. As Hakimi [13] suggested, ties are broken in favor of the location 

leader, an assumption justified by customers who show loyalty to the incumbent facility. 

 

Suppose now that the distances are measured according to the Euclidean metric and let d(x, y) denote the 

distance between two points x and y. Also, given a set Z of points, the distance between some point x and the set 

Z is the shortest distance between x and any point in the set Z, i.e., d(x, Z) =        {d(x, z)}. Let now   
    

 
    denote a set of given points, sometimes referred to as ―seeds‖. The Voronoi set V(xi) associated with the 

seed xi is then the set of points                 
                            . The Voronoi diagram is then the 

collection of Voronoi sets            
 
    ; see O‘Rourke [14] for a more detailed coverage of Voronoi 

diagrams. If the seeds represent facilities, and customers patronize the closest facility to them, then V(xi) 

includes all customers that patronize a store at xi . 

 

The definition of Voronoi diagrams allows us now to formalize the concept of medianoids and centroids. 

Following convention, the location leader will locate p facilities at points                  and the follower 

will locate r facilities at                       the conditional notation indicating that the follower takes the 

locations of the leader‘s facilities at Xp into account. 

 

Given now the sets    and        , the follower will capture, a term coined by ReVelle [15], all customers that 

are closer to any of his own facilities than to the closest of his competitor‘s facilities. Formally, the follower 

captures all customers in the set 

 

                                    , 

 

so that the demand or weight captured by the follower is  

 

                         . 

 

The follower will now maximize his capture, i.e., find a set of locations    
     , so that 

 

    
               

 

for all feasible sets of locations        . This describes the medianoid. 

 

In addition to being the medianoid, the function    
      is also the reaction function taken into consideration 

by the location leader. Given this, the leader will determine a set   
 , such that 

 

    
    

       
      

 

for all feasible sets of locations   , where    is the solution to the leader‘s       centroid problem. 

 

3. Heuristic methods for medianoid and centroid problems 

This section will develop heuristic methods to solve medianoid and centroid problems in the plane. We first 

describe two approaches to the medianoid problem, which are subsequently applied to solve the centroid 

problem as well. 

 

 



3.1. A greedy heuristic 

The first heuristic to solve medianoid problems is based on Drezner‘s [10] exact method for        medianoids. 

In order to develop our heuristic, we first describe Drezner‘s method. It begins by finding a Voronoi diagram 

      for the existing facilities at   . For each customer location at         , a disk    is determined, so that 

   is at the center of    and    is located on the circumference of   . Define now    as the resulting intersection 

of any set of two or more such disks and define    as the set of customers whose disks generate the intersection 

  . It is then apparent that any new facility located in the interior of    is closer to all customers in    , so that the 

new facility will capture all of them. Now define                   
 as the demand captured by a new facility 

if it were to locate in   . The intersections can now be ordered, so that              , where ties are 

broken arbitrarily. The 1-medianoid problem is then solved by locating the new facility anywhere in   . Drezner 

shows that this task can be accomplished in O(n log n) time. 

 

An example may illustrate the idea behind the intersections of the disks. In Fig. 1, four customers n1, n2, n3, and 

n4 have demands of      ,     ,     , and     . The intersections          are shown in the figure, 

where                  with         ,               with          ,               with 

        ,            with         ,            with        ,            with        , 

        with        ,         with        ,         with        , and          with 

        .  The maximum number of such intersections is 2
n
. 

 

 
 

As the problem is NP-hard and the number of intersections is exponential, we employ a greedy technique to 

approximately solve the        medianoid problem; this greedy heuristic is simply a sequential repetition of 

Drezner‘s heuristic. In particular, we locate a new facility in the intersection with the largest weight, delete all 

customers that are covered by the new facility, and repeat the process until all r new facilities are located. The 

procedure can formally be described as follows: 

 

Greedy heuristic 

Let S:=N =      
 
   . 

For q = 1–r do 

If S = ∅, 

locate the qth facility anywhere, 

else 

compute the sets I1;I2,… for S, 

locate the qth facility anywhere in I1, and 

set S:=S \         
. 



 

Given that this greedy heuristic applies Drezner‘s O(n
2
 log n) method r times, its complexity is O(rn

2
 log n). 

 

3.2. Minimum differentiation heuristic 

Our second heuristic method for the (r|Xp) medianoid problem is based on Hotelling‘s observation that at 

equilibrium, the facilities of duopolists tend to cluster together at some central point of the  

 

 
 

market. While d‘Aspremont et al. [16] have shown that this observation does not hold in the case of variable 

prices, it does hold in case of fixed and equal prices. Moreover, the ―pairing‖ of multiple facilities was 

confirmed by Eaton and Lipsey [17]. Observations in practice reveal that some classes of facilities, e.g., fast 

food chains, exhibit a strong tendency to cluster. Such background evidence constitutes the rationale of our 

Minimum Differentiation Heuristic. Its idea is to position a new facility y at an arbitrarily small distance ε > 0 

away from an existing facility. The capture of the new facility can then be determined as follows. Construct a 

line that is equidistant to the existing and the new facility, and let H denote the halfplane given by that line, 

which does not include x. The new facility y will then capture all customers in H ∩ V(x). Next, we have to 

determine in which direction from the existing facility at x the new facility should be located. 

 

For this purpose, consider the following procedure. Draw a straight line through each pair (x, ni); ni   V(x) for 

some existing facility x. This generates 2|V(x)| cones Cv(x), v = 1,…,2|V(x)|. Starting anywhere, number these 

cones in, say, a clockwise direction. Each cone Cv(x), v = 1,…, |V(x)|, has an opposing cone Cv+|V(x)|(x). 

Similarly, the opposing cone for Cv(x), v = |V(x)| + 1,…,2|V(x)| is Cv-|V(x)|(x). Any hyperplane that contains the 

existing facility x and some point in Cv(x) will divide the sets of customers V(x) into two subsets   
 (x) and 

  
 (x) with   

 (x) ∪   
 (x) = V(x). Define now the weight of a set   

 (x) as w(  
 (x)) =           

     and similar 

for   
 (x). Furthermore, let V

*
(x) be a set for which w(V

*
(x)) = maxv {w(  

 (x)); w(  
 (x))}. Let C

*
(x) now be a 

cone that is generated by the union of all rays rooted at x that are perpendicular to hyperplanes through x and 

any point in V
*
(x), so that a new facility in the open set C

*
(x) captures V

*
(x). Note that C

*
(x) is not one of the 

Cv(x) cones. 

 

As an illustration, consider Fig. 2, which includes an existing facility x and four customers n1, n2, n3, and n4 

whose demands are w1=1, w2=5, w3=7, and w4=3. The cones are C1(x),…,C8(x) and the sets of customers 

captured are   
 (x)={n2} and   

 (x) {n3,n4,n1} with weights w(  
 (x))=5 and w(  

 (x)) = 11 for C1(x) and C5(x); 

  
 (x) = {n2, n3} and   

 (x) = {n4, n1} with weights w(  
 (x)) = 12 and w(  

 (x)) = 4 for C2(x) and C6(x);   
 (x) 

= {n3} and   
 (x) = {n4, n1, n2} with weights w(  

 (x)) = 7 and w(  
 (x)) = 9 for C3(x) and C7(x); and   

 (x) = 

{n3,n4} and   
 (x) = {n1,n2} with weights w(  

 (x)) = 10 and w(  
 (x)) = 6 for C4(x) and C8(x). The largest 

weight is achieved for the set V
*
(x) = {n2, n3}, so that the optimal medianoid location is at a distance of ε from x 

in the cone C
*
(x) shown as the shaded area and bordered by the broken lines. 

 



Similar to the greedy heuristic described above, the minimum differentiation heuristic first determines the 

potential captures of a new facility next to each of the existing facilities. It then ranks the potential market 

captures from largest to smallest, allocates the first new facility to the location that allows the maximal capture, 

deletes all customers captured in the process, and repeats the procedure until all new facilities have been 

located. Barring degenerate cases in which two customers are on the same straight line as an existing facility, it 

can be demonstrated that given p existing facilities, no more than 2p new facilities are required to ensure that 

the entire demand is captured by the follower. This procedure can be algorithmically described as follows: 

 

Minimum differentiation heuristic 

Let S:=N =      
 
   . 

For q = 1–r do 

If S = ∅, 

locate the qth facility anywhere, 

else 

compute the sets V
*
(xk) and their values w(V

*
(xk)) for k = 1,…,p, and  

reorder them, so that w(V
*
(x1)) ≥ w(V

*
(x2)) ≥ · · ·, 

locate the qth facility anywhere in C
*
(x1), and 

set S:=S \        
     . 

 

Having developed two heuristic algorithms for medianoid problems in the first part of this section, we are now 

able to develop a procedure that generates solutions for the centroid problem. The basic idea is as follows. 

Given the set of locations of the leader Xp, the (r|Xp) medianoid is to optimally locate the r facilities of the 

follower given the leader‘s locations. Once that is done, the follower‘s facilities are located at Yr and now the 

original leader may tentatively assume the role of the follower and reoptimize the set of its facilities by solving 

a (p|Yr) problem. This process is then repeated until some stop criterion is satisfied. In other words, the two 

players alternately solve medianoid problems. For additional results on the convergence of similar alternating 

procedures (for equilibrium problems), readers are referred to Sherali and Soyster [18]. 

 

This process is based on some results in the literature. A repeated alternate optimization process may lead to a 

Nash equilibrium, if one exists. Consider, for example, a line segment along which customers are uniformly 

distributed and on which two decision makers attempt to locate a single facility each. This is a simplified 

version of Hotelling‘s original model with fixed and equal costs. Given an arbitrary location of one facility, its 

opponent will solve the medianoid problem that is a point next to the existing facility, arbitrarily close, on the 

―longer‖ side, i.e., the side with the higher demand. If now the other decision maker relocates, he will do so 

again arbitrarily close to its opponent on its longer side. This process will converge to a locational pattern in 

which both facilities are located at or near the center of the line segment; this is Hotelling‘s original ―minimum 

differentiation‖. This locational pattern is an equilibrium, and it is easy to demonstrate that it is also a pattern in 

which one location is the centroid, and the other the medianoid. The most ambitious use of this principle was 

made by Okabe and Suzuki [19] who repeatedly reoptimized one of (up to) 256 facilities in a unit square in 

order to determine the resulting locational pattern. 

 

A similar result is known about trees. Slater [20] and later Hakimi [6] demonstrated that the (111) centroid in a 

tree is located at a median of the given tree. Bhadury and Eiselt [21] have shown that two competing facilities 

who engage in repeated optimization will—provided that an appropriate tie-breaking rule is employed—

converge to an equilibrium that exists at a median of the tree and an adjacent node that is located in the largest 

subtree spanned by the median (assuming that co-location is prohibited). Given Slater‘s result, this is also a 

centroid. Whether or not such repeated optimization always converges to an equilibrium is not known. 

Furthermore, whether or not an equilibrium —provided one exists—always coincides with the locations of a 

centroid and a medianoid is also unknown. 

 



The computational complexity of the minimum differentiation heuristic can be established as follows. 

Computing the Voronoi diagram in the first step of the ―else‖ loop is a task that can be accomplished in O(p log 

p) time using techniques from computational geometry; for details see, e.g., O‘Rourke [14]. Computing 

w(V
*
(xk)) will require O(n

2
) time, and the sorting in the next step requires O(p log p) time. As a result, the time 

complexity of each of the outer ―for‖ loops is O(n
2
). Since the outer loop itself has to be executed r times, this 

leads to a total time complexity of O(n
2
r) for the minimum differentiation heuristic. 

 

4. Computational results 

Each of the two heuristic methods discussed in the previous section, the greedy algorithm and the minimum 

differentiation heuristic, were coded in FORTRAN 90. Each of codes is about 700 lines in length. The 

computational equipment was an IBM PC with a Pentium II processor and 64 megabytes of RAM. 

 

The test problems were then generated as follows. Customers were randomly generated, following a uniform 

distribution on a 50 x 50 grid. The demand wi of customer ni was randomly generated, following a uniform 

distribution on the integers between 1 and 200. Throughout the test series, we have assumed that r = p, i.e., the 

leader and the follower have an equal number of facilities to locate. The reason for this somewhat restrictive 

assumption is that with it, leader and follower have the same initial ―strength‖ in terms of the number of 

facilities. It then becomes possible to draw conclusions regarding the leader and follower positions. A total of 

500 different problems were generated randomly. 

 

As expected for the medium-sized problems in our test series, both heuristic methods required only moderate 

amounts of computing time. An example is provided in Fig. 3, where the number of customers varies from 40 to 

100 with a fixed number of p = 20 facilities to be located by each competitor. Here, the time required by the 

minimum differentiation heuristic is almost constant at less than 10 s, whereas the time needed by the greedy 

heuristic to solve the problem increases linearly with the number of customers. All problems were solved within 

5 min. 

 

The computation times with the number of customers fixed at n =100 and the number of facilities as variable 

are similar. See, for example, Fig. 4 which shows the results for n = 100. As shown in the figure, the time 

required by the minimum differentiation heuristic is nearly constant, whereas the computation time of the 

greedy heuristic is quite high for a small number, e.g., 5, of facilities, and then drops off substantially as p 

increases. An explanation for this behavior suggests itself. As the minimum differentiation heuristic places 

competing facilities adjacent to existing facilities, its time requirement is likely to be small and dependent on p. 

On the other hand, the greedy heuristic must compute intersections I  and then locate facilities in them. As the 

number of facilities increases, the distances between customers and their closest facility decrease, so that the 

number of intersections I  decreases as well, hence requiring less computational effort. 

 

 



 

 
 

As far as convergence is concerned, both heuristics exhibit a similar behavior that is shared by many other exact 

and heuristic methods: initial improvements are great, but level off after about 40 iterations, after which only 

marginal improvements are obtained before convergence. This behavior is shown in Fig. 5, where the number 

of iterations are plotted on the abscissa, whereas the ordinate indicates the market share lost when the opponent 

of the planning facility solves its medianoid problem and relocates. 

 

The robustness of the methods with respect to different initial solutions was tested on a small set of ten 

problems and the results are summarized in Fig. 6. It turned out that while most solutions found by different 

initial solutions also differed, the market captures did not. Typically, the differences between best and worst 

solutions was within a few percentage points of the total market. 

 

As far as the quality of the solutions is concerned, the test series reveals that the solutions found by the 

minimum differentiation heuristic are consistently better by about 6 percentage points as opposed to the 

solutions determined by the greedy method in which the planning facility loses an average of 64% of its market 

share when its opponent relocates to the medianoid solution. However, it may be suspected that the solutions 

are sensitive with respect to the number of facilities to be located. More specifically, if r   p, the minimum 

differentiation heuristic may no longer perform as well as it does in this series, particularly if r > p. This is an 

issue that would be worthwhile addressing in future research. 

 

 



 
 

 
 

The solutions in the test series also reveal another interesting phenomenon shown in Fig. 7. As far as the best 

known solutions are concerned, if the values of r and p are small, then the leader ends up with about 40% of the 

total market. As the number of facilities is increased, the leader‘s capture decreases at first, until it begins to 

increase again. 

 

The reason is that when the number of facilities exceeds 40–45% of the number of customer sites, it is optimal 

for the leader to locate some of his facilities on the customer sites themselves. Once this is done, the follower 

cannot capture this site anymore even if he would locate directly at it, as by assumption, ties are broken in favor 

of the leader. As a result, once the number of facilities exceeds 40–45% of the number of customers, the 

follower ends up with less than 50% of the market. 

 

5. Summary and conclusions 

In this paper, we have designed and tested two heuristic algorithms for the centroid location problem. The basic 

idea was to use a method designed for medianoids, and repeatedly apply it, alternately designating each of the 

two competitors as leader and follower. The results of the computational testing revealed fast convergence of 

both heuristics with the minimum differentiation heuristic having the edge. Also, the minimum differentiation 

heuristic appears to be the more robust of the two. It also consistently outperforms the greedy heuristic. As in all 

competitive location problems, the solutions appear to be very sensitive with respect to the assumptions of the 

model and the relocation process. Changing, for instance, the tie-breaking rule could be expected to have a 

profound effect on the solutions. 

 

Future research could go into a variety of directions. The most obvious direction points to the investigation of 

other solution methods. Such techniques could be based on metaheuristics such as tabu search (suitably 

modified for centroid problems), or adaptations of methods developed for p-median problems, such as Rosing‘s 

[22] heuristic concentration. 

 



Other possible directions include the investigation of different allocation rules, i.e., different principles 

according to which customers are assigned to (or freely choose) facilities. Whether or not different allocation or 

choice functions change the solution or its objective (as Serra et al. [23] demonstrate they do not for medianoid 

problems) is an open question. 

 

Other challenging problems relate to the question whether or not repeated re-optimization leads to an 

equilibrium. A pertinent result was established for a competitive location model on trees by Bhadury and Eiselt 

in [20] but it is not known if their result carries over to more general problems. Similarly, it is still an open 

problem if an equilibrium, provided it exists, coincides with the locations of centroids and medianoids. 
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