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Abstract

This paper considers the data  tting of n given points in Rm by a hinge function, as it appears in Breiman
(IEEE Trans. Inform. Theory 39(3) (1993) 999) and Pucar and Sj6oberg (IEEE Trans. Inform. Theory 44(3)
(1998) 1310). This problem can be seen as a mathematical programming problem with a convex objective
function and equilibrium constraints. For the euclidean error, an enumerative approach is proposed, which is
a polynomial method in the sample size n, for a  xed dimension m. An alternative formulation for the l1
error is also introduced, which is processed by a Sequential Linear Complementarity Problem approach. Some
numerical results with both algorithms are included to highlight the e<ciency of those procedures.

Scope and purpose

The problem addressed here is found in applications of neural networks, nonlinear regression and data
classi cation. Due to its nonconvex character, the application of classical nonlinear programming tools lead
only to (usually suboptimal) local minima. This work proposes a global optimization method for the Hinge
Fitting problem, combining combinatorial optimization and quadratic programming techniques. By achieving
global optimality in reasonable time, the method compares favorably to previously proposed approaches.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Least-squares data  tting problems abound in the literature, and have important applications wher-
ever statistical methods are needed, as in Dynamical Systems, Signal Processing and so on. Linear
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and nonlinear function approximation problems can be solved by a variety of algorithms, with
solution methods ranging from Discrete and Continuous Optimization to Neural Networks, Wavelets
and Computational Geometry [1–3].
The problem of nonlinear function approximation requires the choices of an error measurement

and of the basis functions. The euclidean norm of the diLerences between the original function and
the approximating function is the most common form of error measurement; the l1 and l∞ norms are
possible alternatives that de ne diLerent approximation goals. The choice of basis functions depends
on the class of functions being approximated, and may range from indicator functions, polynomials
and splines to trigonometric and sigmoidal functions.
The hinging hyperplanes (HH) model has recently received attention as an alternative to the

sigmoidal functions of Neural Network models for nonlinear function approximation [4,5]. The HH
model uses hinge functions, i.e., functions of the form h(a) = max{at Nx + x0; at Ny + y0} or h(a) =
min{at Nx + x0; at Ny + y0}, as basis functions in expansions such as

fk(a) =
k∑
i=1

hi(a);

where fk(·) is an approximation of an unknown nonlinear function f(·). If the function f(·) is
su<ciently smooth, then [4] there exists an 
¿ 0 such that for any k ∈N there exist k hinge
functions h1; : : : ; hk satisfying∥∥∥∥∥f −

k∑
i=1

hk

∥∥∥∥∥
2

6


k
:

An approximation scheme has been proposed in [4], which consists of  tting the given data for the
function f to a hinge h1, then re tting the diLerence f−h1 to a hinge h2, then re tting the diLerence
f− h1− h2 to a hinge h3, and so on. When k hinges have been computed, one might rede ne each
of the hj’s in turn as the hinge  tting of (f −∑i �=j hi), and keep re ning the approximation until
no signi cant improvement is obtained.
An iterative procedure for the Hinge Fitting problem called the Hinge Finding Algorithm (HFA)

has also been proposed in [4]. It is a  xed-point approach that partitions the given data in two sets
and solves independently one linear least-squares problem for each set. The two linear functions
obtained are used to de ne a new partition of the original data, which is used as input for the next
iteration. The algorithm is said to converge if the partitions in two consequent iterations are the
same. When the algorithm converges, the solution found is a local minimizer of the least-squares
problem. Moreover, if the given data represents exact measures of a hinge function, and the initial
partition is not very far from the correct one, then the algorithm is guaranteed to converge [4].
Despite its simplicity and ease of implementation, this approach has severe drawbacks:

(1) If at some iteration a trivial partition, i.e., one with an empty set at one side, is obtained,
the algorithm converges prematurely. The last solution is the same as the linear least-squares
solution for the original data.

(2) The algorithm may fail to converge, in which case it cycles between a  nite number of hinges,
and no local optimality is guaranteed.
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A modi cation of this method is proposed in [5], in order to guarantee global convergence to a
(local) optimal solution. The HFA is seen as a Newton method, and a line search is introduced to
guarantee decrease of the error function at each iteration. The proposed modi cation corresponds to
a damping of the Newton method.
As is usual when applying local optimization methods to nonconvex problems, the quality of the

local minima obtained depends heavily on the starting solution. For practical applications, one is
always recommended to run these methods from multiple starting points. In [6], a technique for
generating a sequence of starting points has been proposed, in the context of data  tting using
piecewise linear sigmoidal functions. In this way one obtains a collection of local minima, but no
guarantee of global optimality.
The large variation in the quality of local minima observed in practical experiments leads one to

consider a global optimization method for the Hinge Fitting problem. This paper addresses this topic
by exploring two reformulations of the problem as mathematical programs with equilibrium (com-
plementarity) constraints (MPECs). The Hinge Fitting problem with the euclidean norm (Euclidean
Hinge Fitting problem) is formulated as a quadratic MPEC and the Hinge Fitting problem with the
l1-norm (Linear Hinge Fitting problem) is formulated as a linear MPEC.
An enumerative method for the global minimum of the quadratic MPEC is proposed, which is

polynomial in the sample size n, for  xed space dimension m. It is shown that the only comple-
mentary cones that are enumerated are the ones associated to separable partitions of the given data
(Section 2). The size of the branching tree is shown to be a polynomial function of the sample size
n, for  xed space dimension m. Some computational experiments with this enumerative algorithm
for medium-sized problems have been performed. The results reported in this paper show that the
quality of the  ttings is highly improved over those obtained by the damped HFA algorithm.
A sequential linear complementarity problem (SLCP) algorithm for processing linear MPECs has

been introduced in [7]. The performance of this algorithm for processing the MPEC associated to the
l1-norm Linear Hinge Fitting problem is also investigated. The computational experience presented in
this paper shows that this method is able to process e<ciently the same test problems with the l1-norm.
The structure of the paper is as follows. The formulation and general properties related to the

Euclidean Hinge Fitting problem are presented in Section 2. The HFA and the damped HFA algorithm
are brieQy reviewed in Section 3. The global solution algorithm is discussed in Section 4. Section
5 includes the formulation for the l1-norm Linear Hinge Fitting problem, and describes the SLCP
algorithm. Computational experience is reported in Section 6 and some conclusions are presented in
Section 7.

2. The Hinge Fitting problem

Let (ai; bi)∈Rm−1 × R; i = 1; : : : ; n be given measurements of a function b = f(a). The goal is
to approximate f(·) by a hinge function h(a) = max{at Nx + xm; at Ny + ym} minimizing the squared
euclidean norm of the approximation errors. For notational convenience the given points are written
as Ai = (ati ; 1)∈Rm and correspondingly x = ( Nx; xm), so that Aix = ati Nx + xm. The problem is

min
x;y

n∑
i=1

(max{Aix; Aiy} − bi)2:
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By modelling the error inside the summation above as a variable �i = max{Aix − bi; Aiy − bi} the
problem becomes

min
n∑
i=1

�2i

s:t: �i¿Aix − bi;
�i¿Aiy − bi; i = 1; : : : ; n;

(�i − Aix + bi)(�i − Aiy + bi) = 0

which is an MPEC problem with a convex quadratic objective function. Note that the complemen-
tarity condition guarantees that �i is either equal to Aix − bi or Aiy − bi. For future reference this
problem is written in matrix notation as

(HF)

min �t�

s:t: r = � − Ax + b;
s= � − Ay + b;
rts= 0;

r; s¿ 0

and is referred to as the (Euclidean) Hinge Fitting problem.

2.1. Feasible solutions and separable partitions

It is clear, by construction, that � = max{Ax; Ay} − b holds for any feasible solution of (HF),
where the max above is taken componentwise. This allows a solution to be expressed simply as
(x; y), since the values of �, r and s follow uniquely. Any solution (x; y) of the problem above
de nes a hinge function

h(a) = max{atx; aty}
and also a partition of the original data in the index sets

P = {k |Akx¿Aky};
Q = {k |Akx¡Aky}:

By convention, indices k such that Akx = Aky belong to the set P.
Fig. 1 shows the hinge function h(a) de ned by a solution (x; y), as well as the induced partition

of the data index set {1; 2; : : : ; n}. For the sake of simplicity, such a partition of the data index set
is also referred to as a partition of the data.

De�nition 1. A partition (P;Q) of the data is called a separable partition if there is a hyperplane
{a | atz = 0} such that

P = {k |Akz¿ 0};
Q = {k |Akz¡ 0}:
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Fig. 1. Hinges and separable partitions.

In the last example, the partition (P;Q) is de ned by the hyperplane {a | at(x−y)=0}. It is easy to
see that separable partitions correspond to strictly separable convex sets, by considering the convex
hulls conv{Ak}k∈P and conv{Ak}k∈Q of the partitioned data. It is easy to see, by a perturbation
argument, that (P;Q) is a separable partition if and only if (Q; P) is also a separable partition. This
accounts for the fact that (P;Q) and (Q; P) are considered equivalent partitions for the purpose of
this paper.
The concept of separable partitions has appeared explicitly in [8,9], under the name “partitions

induced by hyperplanes”, and is closely related to the concept of “partitions of space induced by
hyperplanes” [10]. A recent treatment of generalized separable partitions can be found in [11], for
instance.
Given a partition (P;Q), the problem

(HFPQ)

min �t�

s:t: r = � − Ax + b;
s= � − Ay + b;
rP = 0;

sQ = 0;

r; s¿ 0

is intimately connected to (HF). The constraints rP = 0 and sQ = 0, together with r; s¿ 0, de ne a
cone in Rn+×Rn+ which is called a complementarity cone, since the complementarity condition rts=0
automatically holds. If (P;Q) is separable, then this complementarity cone is associated to the closure
of the hinge functions h(a) = max{atx; aty} de ning the same separable partition (P;Q). This is a
consequence of the fact that, under complementarity, rP=0⇔ APx¿APy and sQ=0⇔ AQx6AQy.
For every feasible point of (HFPQ) the identities � = max{Ax; Ay} − b, �P = APx − bP and

�Q=AQy−bQ hold. Furthermore, any feasible solution of (HF) is also a feasible solution of (HFPQ)
for P = {k |Akx¿Aky} and Q = {k |Akx¡Aky}. This accounts for the fact that only separable
partitions are worth considering from the practical viewpoint, and only these are considered by
the algorithmic approaches here presented. Nevertheless, some analysis of nonseparable partitions is
presented in the end of this section.



106 M. Queiroz et al. / Computers & Operations Research 31 (2004) 101–122

Lemma 2. The problem (HF) admits an optimal solution. If Nb= 1=n
∑n
i=1 bi, one has

06Optimal value(HF)6
n∑
i=1

(bi − Nb)2:

Proof. The existence of an optimal solution of (HFPQ) for any separable partition (P;Q) is guaran-
teed by the so-called Frank–Wolfe Theorem [12, Theorem 2.8.1], since each of these problems is a
convex quadratic programming problem with a nonnegative objective function. Therefore the original
problem (HF) admits an optimal solution, which is one of the optimal solutions of the problems
(HFPQ).
The optimal value of (HF) is in the range

06Optimal value(HF)6
n∑
i=1

(bi − Nb)2

since the objective function is bounded below by 0, and the upper bound is given by the feasible
solution r = s= 0, x = y = (0; : : : ; 0; Nb)t and � = ( Nb; : : : ; Nb)t − b, where Nb= 1=n

∑n
i=1 bi.

In fact, the solution given above is also feasible for any (HFPQ), and therefore the optimal values
of these problems also lie within the same range.
The above considerations motivate the following question: how many separable partitions of n

points in Rm do exist? The general worst-case answer is 2n−1, since the partitions (P;Q) and (Q; P)
are equivalent. This upper bound is achieved for instance when n = m and the points are chosen
as ei = (0; : : : ; 1; 0; : : : ; 0)t . Nevertheless, for  xed dimension m the number of separable partitions is
polynomially bounded as a function of n. This is a classical result, slightly rephrased for the present
context.

Theorem 3 (Schl6aQi [10]). The maximum number of separable partitions of n points in Rm is

vm(n) =
m∑
i=0

(
n− 1

i

)
:

Furthermore, this upper bound is achieved when the given points are in general position (i.e., no
subset of m+ 1 points lie in the same (m− 1)-dimensional linear manifold).

Remark 4. The original theorem [10] considers the partition of space by n hyperplanes in general
position, and proves the result with equality. This is equivalent to considering separable partitions
of n points in general position [8].
The inductive proof establishes the validity of the recurrence relation

v1(n) = n ∀n;
vm(n) = vm−1(n) if n6m;

vm(n) = vm(n− 1) + vm−1(n− 1);
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where the “general position” assumption is a technical hypothesis to ensure that the otherwise natural
relationship

vm(n)6 vm(n− 1) + vm−1(n− 1)

holds as an equality. The solution of this recurrence relation is the expression given by the theorem
above.
The present reformulation is more readily accessible in the recent works [8,9].

Note that vm(n) = (nm), i.e., vm(n) is a polynomial in n of degree m, for  xed m. This remark
entails the polynomiality of the enumerative method presented in Section 4 with respect to the
number n of complementarity pairs of variables, which is the size of the given sample set.
Since the number of possible partitions of {1; 2; : : : ; n} is 2n−1, it is seen that at least

2n−1 − vm(n) =
n−1∑
i=m+1

(
n− 1

i

)

partitions are nonseparable, and this number is  (2n−1) for  xed m, i.e., it grows exponentially with
n, for  xed m. The remaining part of this section analyzes nonseparable partitions and properties of
the corresponding subproblems (HFPQ).

2.2. Nonseparability and degeneracy

It is natural to consider what happens to the problem (HFPQ) if (P;Q) is taken to be a generic
(nonseparable) partition. In the sequel, the relationship between nonseparable partitions and degen-
erate (HFPQ) subproblems is established.

Lemma 5. (P;Q) is a nonseparable partition if and only if the problem (HFPQ) is degenerate, in
the sense that there is a nonempty set NQ ⊂ Q such that r NQ=s NQ for all feasible solutions in (HFPQ).

Proof. As seen before, all the problems (HFPQ) are feasible and have optimal solutions. Moreover,
for every feasible solution (x; y) of (HFPQ), the inequalities APx¿APy and AQx6AQy hold.
If, on the one hand, (P;Q) is a nonseparable partition of the given points, then there exists no

hyperplane of the form {a | atx = aty} such that APx¿APy and AQx¡AQy. Together with the
previous inequalities, it follows that for any feasible solution there exists at least one index j∈Q
such that Ajx¿Ajy, which together with AQx6AQy implies Ajx = Ajy.
Since the solution set of (HFPQ) is convex, and Q is  nite, it follows that the set

NQ = {j∈Q |Ajx = Ajy holds for every feasible solution of (HFPQ)}
is nonempty. Suppose, for the sake of contradiction, that NQ = ∅. Then for every j∈Q there would
be a feasible pair (xj; yj) such that Ajxj ¡Ajyj. This implies that the convex combination (x; y) =
1=|Q|∑j∈Q (x

j; yj) would satisfy APx¿APy and AQx¡AQy, contradicting the nonseparability of
(P;Q).
It follows from the above remark that all feasible solutions of the problem (HFPQ) satisfy rj=sj=0,

for all j∈ NQ, and are thus degenerate.
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Suppose, on the other hand, that there is a nonempty set NQ ⊂ Q such that r NQ=s NQ=0 holds for all
feasible solutions in (HFPQ). Then, for any feasible solution (x; y) in (HFPQ), one has A NQx = A NQy,
and therefore there exists no (x; y) feasible in (HFPQ) such that AQx¡AQy. This proves that (P;Q)
is not separable.

One possible consequence of degeneracy, in the case where A NQ has full rank, is the collapse of the
problem (HFPQ) into an ordinary linear least-squares problem, since in this case A NQx=A NQy ⇒ x=y.
The nontrivial (HFPQ) subproblems, i.e., those that do not reduce to a linear least-squares problem,
are crucially determined by the geometrical con guration of the points AP and AQ.
The degeneracy disappears as soon as one de nes P′ = P ∪ NQ and Q′ = Q\ NQ. Then one obtains

a separable partition (P′; Q′), by the convexity argument above. The feasible region of (HFPQ) is
trivially contained in that of (HFP′Q′), so that only the nondegenerate problem (HFP′Q′) is worth
considering.
It is important to remember that every feasible solution of (HF) is also immediately a feasible

solution of at least one (HFPQ) de ned by a separable partition (P;Q). In the remaining of the paper,
only separable partitions are considered.

3. The Hinge Finding Algorithm for (HF)

The  rst approach (HFA) to solve the Hinge Fitting problem has been proposed by Breiman [4],
and tries to  nd a separable partition which is a  xed point of the function

’(P;Q) = (P’; Q’);

where P’={k |Akx’¿Aky’}, Q’={k |Akx’¡Aky’}, x’ is the solution of the (linear) least-squares
problem applied to the data {(Ai; bi)}i∈P, and y’ is the solution of the (linear) least-squares problem
applied to the data {(Aj; bj)}j∈Q.

3.1. The Hinge Finding Algorithm (HFA)

(0) Let (P;Q) be a separable partition, and let (P’; Q’)← ’(P;Q)
(1) While (P;Q) �= (P’; Q’) set

(P;Q)← (P’; Q’);

and

(P’; Q’)← ’(P;Q):

If (x∗; y∗) is a hinge corresponding to a  xed point (P∗; Q∗) of ’(·; ·), then (x∗; y∗) is a local
minimum of the problem

min
x;y

n∑
i=1

(max{Aix; Aiy} − bi)2:

This has been shown in [4]. A drawback of this algorithm is the presence of an awkward  xed
point, namely the trivial partition ({1; 2; : : : ; n}; ∅). It is not an infrequent situation to arrive at the
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trivial partition when approximating functions which are not hinges, or even when approximating
hinges, starting with a bad initial solution.
A more serious problem is the possibility of cycling, and the di<culty of identifying this case. To

overcome these problems, the use of line searches for the natural merit function ‖max{Ax; Ay}− b‖
is recommended in [5]. If the current hinge corresponding to (P;Q) is given by (x; y) and the new
hinge de ned by ’ is given by (x’; y’), then the line search aims at a new solution (x"; y") =
"(x; y) + (1− ")(x’; y’) such that

‖max{Ax"; Ay"} − b‖¡ ‖max{Ax; Ay} − b‖:

The proposed strategy is to try " = 1; 12 ;
1
4 ; : : : and take the  rst one that satis es the above descent

criterion. This is one of the many choices that guarantees global convergence, i.e., convergence
regardless of the initial point, to a local optimal solution of the (HF) [5].

4. An enumerative method for (HF)

The purpose of this section is to introduce a new enumerative method for the Euclidean Hinge
Fitting problem, which focuses on subproblems (HFPQ) for separable partitions (P;Q) of the given
points.

De�nition 6. If (P;Q) is a separable partition and I ⊆ P and J ⊆ Q, the pair (I; J ) is called a
separable subpartition. For a subpartition (I; J ) the complement set K(I; J ) is de ned as K(I; J ) =
{1; 2; : : : ; n}\(I ∪ J ). When the context is clear, the notation K ≡ K(I; J ) is adopted.

The de nition of the problem (HFPQ) is extended naturally to separable subpartitions (I; J ), by
considering the complementarity constraint restricted to the indices in K(I; J ), as follows:

(HFIJ )

min �t�

s:t: r = � − Ax + b;
s= � − Ay + b;
rI = 0;

sJ = 0;

r; s¿ 0;

rtKsK = 0 where K = K(I; J ):

A general enumerative approach to solve (HF) is stated next for reference. The algorithm constructs
an enumeration tree as follows: the interior nodes correspond to problems (HFIJ ) for separable
subpartitions (I; J ), and the leaves of the tree correspond to separable partitions. It is clear that
(HF) = (HF∅∅), so the  rst node to be processed is (∅; ∅). The discussion of important steps of the
algorithm is left to the sequel.
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4.1. Enumerative algorithm for (HF)

(0) Set
L← {(∅; ∅)}: List of nodes to investigate, and
UB←∞: best known Upper Bound.

(1) If L= ∅ stop! The optimal value is given by UB.
Otherwise, choose (I; J )∈L, and set
L←L\(I; J ):

(2) (optional) Set
I ← I ∪ {k ∈K | rk ≡ 0 in (HFIJ )} and
J ← J ∪ {k ∈K | sk ≡ 0 in (HFIJ )}.

(3) Compute a lower bound LB for (HFIJ ), by solving the relaxed problem

(LBIJ )

min �t�

s:t: r = � − Ax + b;
s= � − Ay + b;
rI = 0;

sJ = 0;

r; s¿ 0:

If the lower bound obtained satis es rtKsK = 0, set
UB← min{UB;LB}:
If LB¿UB go back to step (1).

(4) (optional) Compute new upper bounds UB1; : : : ;UBp for (HFIJ ), for some p∈N. Set
UB← min{UB;UB1; : : : ;UBp}:

(5) Branch: choose k ∈K such that (I ∪{k}; J ) and (I; J ∪{k}) are separable subpartitions, and set
L←L ∪ {(I ∪ {k}; J ); (I; J ∪ {k})}.
Go back to step (1)

The next result establishes the soundness and computational complexity of the Enumerative
Method.

Proposition 7. The above-presented method is correct, in the sense that it always <nds the global
optimal solution of (HF). Besides, the total number of nodes in the enumeration tree is bounded
above by 2vm(n)− 1 = (nm), and the method is polynomial in n for <xed m.

Proof. The soundness is a consequence of the facts that the optimal solution corresponds to some
separable partition, and that all separable partitions are implicitly enumerated by the method. The
upper bound on the number of nodes is a consequence of Theorem 3 and the fact that a binary tree
with vm(n) leaves has exactly vm(n)− 1 internal nodes. Each node solves a  xed number of convex
quadratic programming problems, each of which is polynomially solvable [13].
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The method presented above follows a branch-and-bound strategy, so the main issues are the
choice of the next node of the tree to be processed, the computation of lower and upper bounds, and
the branching strategy. Another important point is the possibility of  xing additional variables in
step (2), which depends on the geometry of the separable subpartitions. Each step of the algorithm
is now addressed in turn.

4.2. Choice of next node

One important implementational issue is the choice of a new node of the tree to be processed
after a branching step. The  rst-in- rst-out policy treats the list of nodes as a queue, and leads
to a breadth- rst exploration of the tree; this is a good choice for obtaining good lower bounds
quickly. The last-in- rst-out policy corresponds to a stack implementation of the list, and leads to a
depth- rst search, which aims rapidly at upper bounds. Other mixed strategies might also be used.
In the present computational experience, the breadth- rst strategy led to better performance, and is
used by default.

4.3. The geometry of separable subpartitions

Step (2) of the algorithm tries to enlarge the sets I and J that form a separable subpartition, by
identifying indices k ∈K such that rk = 0 or sk = 0 for every feasible solution of (HFIJ ). Consider
the sets

RIJ = {a | atx¿ aty; ∀(x; y) feasible in (HFIJ )};
SIJ = {a | aty¿ atx; ∀(x; y) feasible in (HFIJ )}:

The next result relates these sets to the indices k ∈K such that rk = 0 or sk = 0 necessarily
in (HFIJ ).

Lemma 8. Let (r; s; x; y; �) be a feasible solution of (HFIJ ). If Ak ∈RIJ , then rk = 0; if Ak ∈SIJ ,
then sk = 0.

Proof. If Ak ∈RIJ , then Akx¿Aky, and therefore sk¿ rk , which implies rk =0 due to the comple-
mentarity constraint rksk = 0. The implication Ak ∈SIJ ⇒ sk = 0 follows analogously.

A direct consequence of the previous result is the following.

Proposition 9. (HFIJ ) is completely equivalent to (HFÎ Ĵ ), where

Î = {k |Ak ∈RIJ};
Ĵ = {k |Ak ∈SIJ}:

By using the above result, step (2) of the algorithm may be reformulated as

(2′) Set I ← Î and J ← Ĵ :
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The de nition of RIJ and SIJ leads to a natural membership test: if the problem

min Akx − Aky
s:t: AI x¿AIy;

AJy¿AJx

has a nonnegative optimal value, then Ak ∈RIJ . On the other hand, if Ak �∈ RIJ , then there is some
feasible (x; y) such that Akx−Aky¡ 0, and the above problem is unbounded. Substituting z= x−y
leads to the following property.

Proposition 10. Ak ∈RIJ if and only if the problem

min Akz

s:t: AI z¿ 0;

AJ z6 0

has a nonnegative optimal value. An analogous test for SIJ is obtained by replacing min for max
in the linear problem above.

Step (2) of the algorithm can then be carried as follows. First an LP is solved to test whether
Ak ∈RIJ , and the set I is updated if necessary. If Ak �∈ RIJ , and only in this case, an LP is solved
to test whether Ak ∈SIJ , and the set J is updated if necessary. This prevents the same index k from
being introduced in both sets I and J , in the special case where Ak ∈RIJ ∩SIJ . Then at most two
LPs are solved for each k ∈K .
From the practical viewpoint, step (2) of the algorithm represents a large overhead when I and

J are small, due to the fact that in this case most of the points Ak are neither in RIJ nor in SIJ ,
and the time needed to solve the LPs above is wasted. On the other hand, if K is small compared
to I and J , this test might spare some unnecessary branching in the nodes near the leaves.
It is easy to see that the dual-based representations of the sets RIJ and SIJ are

RIJ = Conv{Ai}i∈I + Cone{Ai − Aj}i∈I; j∈J ;
SIJ = Conv{Aj}j∈J + Cone{Aj − Ai}j∈J; i∈I ;

where Cone{Xi}i∈I and Conv{Xi}i∈I denote the cone and convex hull generated by the rows of
matrix X with indices in I. This representation can illustrate better the result of Proposition 9, as
in the next example (Fig. 2).

4.4. Computation of lower and upper bounds

A natural choice for lower bounds of the subproblems (HFIJ ) is the relaxed (HFIJ ) obtained by
dropping the complementarity constraint. This is a convex quadratic programming problem that can
be solved by a variety of methods.
It is immediate that the relaxed (HF), or (LB∅∅) has a trivial solution with � = 0, by setting

x = y = (0; : : : ; 0; Nb)t and r = s = b− ( Nb; : : : ; Nb)t . however, the same is not true in general about the
relaxed (HFIJ ) problems. For instance, if I={1; 2; : : : ; n} and J=∅, then the problem (LBIJ )=(HFIJ )
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Fig. 2. The sets RIJ and SIJ .

reduces to an ordinary linear least-squares problem which, in general, does not have a solution with
the approximation error � = 0.
The solutions of (LBIJ ) are in general infeasible for (HFIJ ); when feasible, they are also optimal

for (HFIJ ), as can easily be seen. This accounts for the update of UB in step (3) of the algorithm,
which leads necessarily to the veri cation of the condition LB¿UB, and to the pruning of the tree.
The condition LB¿UB prunes the tree, by identifying subproblems which are not worthy to

solve, because the optimal solution of (HFIJ ) is in this case worse than some feasible solution
already available. The e<ciency of any enumerative method depends heavily on how many times
this condition holds during the course of the algorithm. This number depends on  nding tight lower
and upper bounds.
Since the subproblems (HFIJ ) are generally as hard to solve as the original problem,  nding good

upper bounds is usually done by heuristic methods.
Consider an optimal solution of the problem (LBIJ ), and one of the indices k ∈K = {1; 2; : : : ; n}\

(I∪J ). Because (LBIJ ) minimizes �2k and the only restriction applying to �k is �k¿max{Akx; Aky}−
bk , it follows that there are only two possible outcomes:

(1) max{Akx; Aky} − bk ¡ 0; in this case �k = 0 and rksk ¿ 0.
(2) max{Akx; Aky} − bk¿ 0; in this case �k =max{Akx; Aky} − bk and rksk = 0.

Therefore, a number of the original complementarity constraints not imposed by the relaxed problem
(LBIJ ) are implicitly satis ed because of the form of the objective function. This remark proves the
following fact.

Lemma 11. Let (r; s; x; y; �) be an optimal solution of (LBIJ ), and de<ne

I ′ = I ∪ {k | rk = 0};
J ′ = J ∪ {k | sk = 0}:

Then (r; s; x; y; �) is also an optimal solution of (LBI ′J ′).
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The solution of (LBI ′J ′) as above can easily be used to obtain an upper bound for both (HFI ′J ′)
and (HFIJ ), by setting �K ′ = max{AK ′x; AK ′y} − bK ′ , where K ′ = {1; 2; : : : ; n}\(I ′ ∪ J ′). The upper
bound thus obtained is LBIJ + �tK ′�K ′ .
A better upper bound can be e<ciently obtained by using the previous upper bound as input to

the HFA algorithm of Pucar and Breiman, presented in Section 3. In fact, the initial upper bound
in step (0) can be taken as the solution of the HFA with any chosen input.
Depending on the quality of these upper and lower bounds, additional upper bounds might be

obtained by solving new quadratic programming problems. The assignments I ′′ = I ′ ∪ K ′ and J ′′ =
J ′∪K ′ leads to two possible choices for upper bounds, namely the solutions of the convex quadratic
problems (HFI ′′J ′) and (HFI ′J ′′).

4.5. Branching

The last step of the algorithm consists in choosing some variable k ∈K , and adding two new
subproblems to the list. From the theoretical viewpoint, any choice of the branching variable is
enough for the soundness of the algorithm. However, the performance of the algorithm is sensitive
to this choice. A good heuristic is to choose k = argmax{rksk | k ∈K} in the optimal solution of
(LBIJ ). This has shown to perform well in practice.
Some care must be taken to guarantee that the new nodes generated by the branching choice still

correspond to separable subpartitions. This holds if Ak �∈ RIJ ∪SIJ , which can be tested by solving
one or two linear programming problems, as shown before. It is clear that usually only one linear
problem is necessary, according to whether Akx¿Aky or Akx¡Aky in the solution of (LBIJ ); in
the  rst case the above test reduces to Ak �∈ RIJ , in the second it reduces to Ak �∈ SIJ . In the
unlikely event that Akx=Aky in the (LBIJ ) solution, then the solution of two linear problems might
be needed.
In the case Ak ∈RIJ (or Ak ∈SIJ ) then the corresponding sets are updated, I← I ∪ {k} (or

J← J ∪ {k}, respectively) and K←K\{k}, and the next k = argmax{rksk | k ∈K} is chosen. If K
becomes empty, then (I; J ) is a partition of {1; 2; : : : ; n}; the corresponding quadratic problem (HFIJ )
is solved and the node is fathomed.
If k is a valid branching choice, then two new nodes are added to the branching tree, corresponding

to the problems (HFI ′J ) and (HFIJ ′), where I ′ = I ∪ {k} and J ′ = J ∪ {k}.

5. The Linear Hinge Fitting problem

In this section an alternative formulation of the Hinge Fitting problem is introduced, which is
based on the l1-norm instead of the euclidean norm. This leads to an MPEC with a linear objective
function, which can be solved by a variety of methods.
The original problem with the euclidean norm replaced by the l1-norm can be formulated

as

min‖max{Ax; Ay} − b‖1:
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By modelling the diLerence max{Ax; Ay} − b as a variable � and the ‖ · ‖1 as a variable ', the
problem becomes

(LHF)

min et'

s:t: r = � − Ax + b;
s= � − Ay + b;
'¿ �;

'¿− �;
r; s¿ 0;

rts= 0:

A possible algorithmic solution is to adapt the enumerative approach of the previous section to the
Linear Hinge Fitting problem. Since all the geometric considerations in Sections 2 and 4 are related
to the feasible region of the (HF), and are therefore independent of the euclidean norm, the main
diLerence is the computation of lower and upper bounds. The computation of a lower bound for
node (I; J ) of the branching tree can be done by solving the following linear programming problem:

(LLB)IJ

min et'

s:t: r = � − Ax + b;
s= � − Ay + b;
'¿ �;

'¿− �;
rI = 0;

sJ = 0;

r; s¿ 0:

The HFA (Section 3) can also be adapted to this formulation, and can be used in the computation
of upper bounds. Instead of de ning x’ and y’ as the least-squares approximations of {(Ai; bi)}i∈I
and {(Aj; bj)}j∈J in the main step of the HFA algorithm, x’ and y’ are de ned, respectively, as the
solutions of the following linear programming problems:

min et'I

s:t: 'I¿AIx − bI ;
'I¿− AIx + bI ;

min et'J

s:t: 'J ¿AJx − bJ ;
'J ¿− AJx + bJ :
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The heuristic upper bounds can also be adapted, either the solution obtained directly from the lower
bound solution, or the solution of subproblems corresponding to separable partitions, which are also
linear programs.
A drawback of this algorithmic approach is the fact that the size of the subproblems raises

signi cantly. An e<cient procedure for Linear MPECs with constraints given by a general linear
complementarity problem (GLCP) has been proposed in [7]. The GLCP takes the form

w = q+Mz + Ny;

z; w; y¿ 0;

ztw = 0:

To rewrite the (LHF) as a GLCP, the unrestricted variables x, y and � are replaced by nonnegative
variables u, un+1, v, vn+1, 
 and ,, by using the following substitutions:

x = u− un+1e;
y = v− vn+1e;
� = 
− ,;

where e= (1; : : : ; 1)t . Furthermore, by imposing the complementarity condition 
t,=0 it is possible
to express |�i| as 
i+,i. Then, after rearranging terms the following equivalent problem is obtained:

min et(
+ ,)

s:t: , = b+ 
− r − Au+ (Ae)un+1;

, + s= b+ 
− Av+ (Ae)vn+1;

r; s; 
; ,; u; un+1; v; vn+1¿ 0;

rts= 
t, = 0:

By substituting ,= b+ 
− r − Au+ (Ae)un+1 in the second equation and in the objective function,
and grouping the variables as

w =

[
,

s

]
; z =

[



r

]
and y =



u

un+1

v

vn+1


 ;

the problem becomes

(LHF)

min etb+ ctz + dty

s:t: w = q+Mz + Ny;

z; w; y¿ 0;

ztw = 0;
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where

c =

[
2e

−e

]
; d=



−Ate
cte

0

0


 ; q=

[
b

0

]
; M =

[
I −I
0 I

]

and

N =

[−A Ae 0 0

A −Ae −A Ae

]
:

The SLCP algorithm aims to  nd a global minimum of the LHF and is outlined in the sequel.
The details of the algorithm can be found in [7].
The SLCP algorithm solves a sequence of GLCPs obtained from the linear MPEC in order to

guarantee a monotonic decrease in the value of the objective function. The subproblem solved in
each step is parameterized by ", as below

(LHF")

v0 = "− etb− ctz − dty;
w = q+Mz + Ny;

z; w; y; v0¿ 0;

ztw = 0:

The algorithm is stated next. The relative accuracy for the solution depends on a given parameter
'¿ 0.

5.1. SLCP algorithm for the Linear Hinge Fitting Problem

(0) Let ' be a small positive number. Solve the GLCP corresponding to the feasible set of the
LHF, and let (z∗; w∗; y∗) be the solution. Set
UB← etb+ ctz∗ + dty∗.

(1) Let " = UB − '|UB|, and solve the (LHF"). If this problem has no solution, stop! Otherwise,
let (z∗; w∗; y∗) be the solution obtained. Set
UB← etb+ ctz∗ + dty∗
and go back to step (1).

The last step of the algorithm consists of showing that the subproblem (LHF") is infeasible, with
" slightly below the optimal value of the original MPEC. This is a very di<cult problem, as is
discussed in [7].
The termination criterion corresponding to the infeasibility of the subproblem (LHF") leads im-

mediately to the fact that the last upper bound found by the algorithm is an /-optimal value of the
LHF problem, where / is given by

/= '|etb+ ctz∗ + dty∗|:
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Furthermore the corresponding solution (z∗; w∗; y∗) is an /-global minimum for the Linear Hinge
Fitting problem.
It is also interesting to note that the matrix M in the subproblem (LHF") is positive de nite, since

for any x and y,[
x

y

]t [ I −I
0 I

][
x

y

]
=

1
2
[xtx + yty + (x − y)t(x − y)];

which is always nonnegative, and equals to zero if and only if x = y = 0.
The e<ciency of the method is directly related to the e<ciency of the procedure used to solve

the (LHF") subproblems. E<cient methods available to solve LCP problems with positive de nite
matrices [12] cannot be applied to this GLCP. These subproblems are therefore solved by a hybrid
enumerative method [7], which has no restrictions on the classes of matrices involved in the GLCP.

6. Computational experience

The damped HFA and the enumerative algorithms described before have been implemented in C,
and have been applied to 10 randomly generated medium-sized test problems, in a Pentium III 1.2
GHz running Linux 2.2.19.
For the sake of comparison, the same data has been submitted to the damped HFA algorithm of

Pucar, Sj6oberg and Breiman, to the enumerative methods of Sections 4 and 5, and to the SLCP
algorithm.
The damped HFA algorithm is used as initialization to the enumerative method, so these methods

are not intended to be compared against each other. Rather, they are used to show typical initialization
values (local minima) against optimal values of these nonconvex problems.
To initialize the damped HFA algorithm, a balanced partition is used as input, to avoid convergence

to the trivial partition. The value of the squared approximation error of the HFA solution is given,
as well as the number of iterations and running time.
The Linear and Quadratic Programming subproblems in the enumerative method are solved with

Lemke’s Complementary Pivot Algorithm [12]. The initial upper bound in step (0) is the solution
of the HFA as above. The upper bound computed in step (4) is the HFA solution using as starting
point the lower bound solution at each node. The process for  xing additional variables has not been
used in step (2). These options empirically minimize the running time for the tests presented, and
are the default settings.
The table below summarizes the computational experience for the Euclidean Hinge Fitting problem.

The sizes of MPEC formulation of the (HF) problem are given; the total number of variables is
therefore 3n+ 2m, the number of complementary pairs is n and the number of linear constraints is
2n. The performance parameters for the enumerative method are the number of quadratic problems
solved (which is equal to the size of the branching tree), the number of linear problems, the running
time and the optimal value. The last column of this table gives the improvement in the quality of
the solution of the enumerative method with respect to the damped HFA solution, computed by

Best HFA value
Optimal value

:
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Table 1
Computational tests for the Euclidean Hinge Fitting problem

Tests Initial sol. (HFA) Final sol. (enumerative)

Test # m n # Vars. # Lin. # Iters. Time (s) Value # QPs # LPs Time (s) Value Improvement
(space (# (total) constrs.
dim.) points)

1 5 30 100 60 20 0.01 1.3028 84 45 3.13 1.2023 1.08
2 10 35 125 70 11 0.01 0.9905 354 178 27.80 0.5306 1.87
3∗ 15 40 150 80 19 0.02 0.6212 1000 655 167.25 0.1256 4.94
4∗ 20 45 175 90 30 0.06 0.5404 1000 911 296.96 0.0166 32.40
5 25 50 200 100 16 0.06 2.5227 26 27 11.61 0 ∞
6 30 55 225 110 16 0.09 3.7060 56 57 53.39 0 ∞
7 35 60 250 120 29 0.23 4.9130 51 52 56.16 0 ∞
8 40 65 275 130 59 0.62 0.2089 19 20 25.73 0 ∞
9 45 70 300 140 41 0.58 0.3080 106 107 231.01 0 ∞
10 50 75 325 150 73 1.36 0.2446 105 106 284.93 0 ∞

To avoid very long runs, a maximum number of nodes has been chosen for the size of the branching
tree. In the following tests, enumeration was interrupted after 1000 nodes. The test numbers are
shown starred whenever this ocurred. Final objective function values for the enumerative method are
globally optimal in all nonstarred tests.
In Table 1, an in nite value in the “Improvement” column corresponds to a perfect  t not achieved

by the HFA algorithm. It can be seen that in those cases the number of nodes enumerated is
surprisingly small. This is due to the fact that 0 is a known lower bound for the original problem,
so the algorithm stops once a solution with value 0 is detected. If, in addition, the input is known
a priori to correspond to a hinge, then the algorithm can be accelerated by noting that every node
(I; J ) with a lower bound greater than 0 can be pruned.
The relative eLort of the enumerative method with respect to a complete enumeration of the

separable partitions is a measure of how eLective the pruning process is. This relation can be
computed for each test by

# QPs
vm(n)

;

where vm(n) is given by Theorem 3. For the above tests, this measure starts with the values 0.003017,
0.000005, and from test # 3 onwards it is identically 0. It might be inferred from these tests that
this relation goes to 0 as m; n → ∞, and this would mean that the size of the branching tree is
actually o(vm(n)).
The same 10 medium-sized problems were reformulated as Linear Hinge Fitting problems and

solved by the adapted enumerative method, and by the SLCP algorithm applied to the linear MPEC
formulation of Section 5.
The size of the branching trees for the adapted enumerative method are shown, as well as the

number of LPs solved in the branching step. The measures for the SLCP algorithm are the number
of iterations and the running time. Since the last GLCP solved has no solution, any enumerative
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Table 2
Computational tests for the Linear Hinge Fitting problem

Tests Enumerative SLCP

Test # # Vars. # Lin. # Nodes # LPs Time (s) Value # Iters Time Sol. (s) Time (s) Optimal
(total) constr. value

1 132 60 412 328 222.79 4.3626 6 0.23 7.49 4.3626
2∗ 162 70 1000 507 1419.68 2.6287 10 6.62 21.47 2.6287
3∗ 192 80 1000 504 2776.37 1.4140 21 0.59 21.85 1.1230
4∗ 222 90 1000 505 5039.91 0.3051 17 16.10 31.69 0.1456
5 252 100 691 354 5333.28 0 8 0.43 0.43 0
6 282 110 58 36 638.27 0 11 0.22 0.22 0
7 312 120 51 33 753.91 0 5 2.12 2.12 0
8 342 130 56 38 1157.89 0 4 2.80 2.80 0
9 372 140 56 39 1509.92 0 1 3.76 3.76 0
10 402 150 57 43 2410.00 0 1 4.19 4.19 0

approach has to explore the entire branching tree to detect this property. To compare the relative eLort
of the SLCP until it  nds the optimal solution, with that needed to show that the last subproblem is
infeasible, the table displays both the running time until the solution is found (marked “Time Sol.”
in Table 2) and the total running time.
The performance of the enumerative method for the Linear Hinge Fitting problem is impaired by

two main reasons: the size of the subproblems, and the number of nodes needed to be explored. The
size of the branching tree depends on the quality of the lower and upper bounds. Apparently, the
lower bound obtained by relaxation and the upper bound obtained by the adapted HFA are not as
tight in the linear case as in the former euclidean case. Additionally, the adapted HFA solves two
LPs in each step, and is therefore computationally more expensive than the original HFA, which
solves two least-squares problems, i.e., two linear systems, in each step.
On the other hand, the SLCP algorithm (implemented as in [7]) has performed very well, taking

less than 10 s to  nd the solution in the majority of the tests. The total number of iterations,
corresponding to the number of GLCPs solved, is also small.
The Euclidean Hinge Fitting and the Linear Hinge Fitting problems have the same input, and

diLer in the type of approximation obtained. If, in a practical application, the choice of the norm
for error measurements is not pre-determined by the speci c model, then the choice of the l1-norm
leads to a simpler MPEC problem, and the algorithmic solution via the SLCP is recommended.

7. Conclusion and future work

In this paper, an enumerative algorithm for the global optimization of the Hinge Fitting problem has
been introduced. Its implementational issues and computational tests have been presented, showing
that it is suited to approximate nonlinear functions with a hinge function, which is the fundamental
subproblem of nonlinear function approximation within the HH approximation model.
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A reformulation of the problem with the l1-norm as a linear MPEC has also been discussed and
has been e<ciently processed by a Sequential LCP approach.
It should be noted that the work presented here can easily be transported into a more general

setting where, instead of hinge functions, one considers the maximum of k ∈N linear functions. In
this case, the branch-and-bound method would explore a k-ary branching tree, where in each node
a structure of k-partitions is maintained, such that each pair of subsets within the k-partition form a
separable subpartition in the sense discussed here.
It is known that positive de nite matrices play a fundamental role in complementarity problems.

For instance, the classical LCP with a positive de nite matrix is equivalent to a convex quadratic
programming problem, and can be solved very e<ciently. The subproblems solved by the SLCP
algorithm are actually GLCPs, but the positive de niteness of the matrix M associated with the
complementary part of the subproblems may be exploited to speed up their solution.
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