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CHAPTER 1
INTRODUCTION

1. Design of Communication Networks

Change is rapidly occurring throughout the information technology domain, but
nowhere is this change more dramatic and more evident than in the area of
telecommunications and networking. A communications revolution is taking place that is
directly or indirectly affecting the performance of every business. To respond to the global
and international orientation of many companies, a large number of firms are now
competing to develop and market telecommunications equipment and services. Partially
because of this increased competition, innovation in the telecommunications and
networking area is developing quickly. Digital networks, fiber optics, and the ability to
send both voice and data simultaneously over the same lines have been major components
of the revolution.

In order to adjust more quickly to market opportunities and competitors’ moves,
many firms have decentralized and geographically deconcentrated their operations. This
has resulted in a growing need for more reliable voice and data communication among the
different parts of the companies and with the customers and suppliers.

There are different incentives for networking. One of them is that networking
allows various users on the network to share important and often expensive resources. For

example, it is very common for mainframes or supercomputers to share magnetic disk
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devices and high-speed line or laser printers. Another incentive is that distributed data
processing depends upon highly reliable telecommunication networks in order to provide
an acceptable level of service and response time to users.

There are many applications that require telecommunications. First, the basic of
these is simply the access of remote databases such as information and financial services
available to personal computer users. More complex applications involve remote updating
of databases, in addition to accessing the data. Airline reservation systems, automatic teller
machines, inventory control systems provide a number of examples. Another application
involves using a remote computer system for some computational task. This could happen
if there is no local computer, or it is not operational or if the remote computer can carry out
the task more efficiently.

Many factors affect the operations and performance of a telecommunication
network. One major factor is the routing and capacitiy assignment policies for the network,
main topic of our dissertation. In the design process tradeoffs have to be made between the
response time to users and the cost of the network. If high capacities are assigned to the
links in the network, connection costs will be high while response time will be low. On the
other hand, if low capacity links are installed the reverse will be true. This argument
shows that the tradeoffs between response time and connection costs are integral part of the
network design. The main focus of this research is on issues concerning routing and
capacity assignment in telecommunication networks. Currently, network designers use
heuristic solution techniques during the design process. However, its is not possible using
only such techniques to analyze the quality of the resulting design in terms of cost and

response time. This dissertation develops mathematical programming techniques that



directly consider both costs as well as service quality to design and operate
telecommunications networks.

Telecommunications networks can be classified as 1) local area networks, 2)
metropolitan area networks or 3) wide area networks. A local area network is typically a
network that connects different computing devices such as terminals or personal computers
and other data processing devices such printers and file servers located in a small
geographical area such as a university campus. A local area network may represent a
subnetwork that connects a collection of terminals to a wide area network through various
types of concentrators.

Metropolitan networks are a type of networks which are larger than local area
networks. Typically, these networks are designed to connect different buildings of an
organization located within a metropolitan area or to connect factories and offices located
within a distance of several miles. In general this type of networks is used to fill the gap
between local area networks and wide area networks.

Wide area networks are used to connect devices spread over a wide geographical
area of hundreds or even thousands of square miles. These networks are designed to allow
users to use the computing and storage capabilities of some remotely located mainframe
host computers in the network. The users may emply simple terminals or devices with
some limited data processing such as personal computers.

There are two classes of wide area networks 1) centralized computer networks and
2) distributed computer networks. Centralized computer networks usually include a single
mainframe host computer. Figure 1.1 provides a schematic description of a centralized
computer network. User nodes are either directly connected to the central computer or

connected via concentrators and point-to-point lines or multi-point lines. Distributed



networks contain several mainframe host computers. A subnet or backbone of nodes or
switches, usually connected with high speed communication links, is used as an integral
part of the network to tie together the various computers and connect the users to those
computers (figure 1.2). User nodes are usually connected to the switches through
concentrators and point-to-point lines or multi-point lines. Messages originate at these user
nodes, pass into the subnet, pass from a backbone switch to another on the communication
links until they reach their final destination which is either a host computer or another user
node. The switches of the backbone, usually computers in their own right, serve primarily
to route the messages through the backbone network typically in store and forward fashion
using packet switching techniques.

The cost of a wide area network is presently dominated by transmission costs as
opposed to local or metropolitan area networks. Thus, it is critical to use the
communication links efficiently, even at added computational costs. With the deployment
of high-speed fiber optics, the efficient use of a transmission facility becomes less
important. However, the issue of reliability of the network takes an increased importance
during the design process. In this dissertation, we will discuss this issue in relation with
costs and service quality in wide area networks. In the next sections, we will review in

more details the design issues that are addressed in this dissertation.

2. The Routing Problem in Backbone Communication Networks

Routing policy in backbone communication networks is an important aspect of the

design and operation of the networks. It has a significant effect on the response time

experienced by the network users and on the utilization of the network resources (e.g. node
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Figure 1.1: Schematic Representation of a Centralized Communication
Network.
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Figure 1.2: Schematic Representation of a Decentralized Communication
Network.
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buffers and link capacities). A good routing policy could also allow new users to use the
network without significant deterioration of the quality of service to existing users and
without incuring the costs of establishing new links or upgrading the capacities of existing
links.

In backbone networks, messages or packets are transmitted from the source node to
the destination node through intermediate links and nodes along paths which are either
predetermined or determined dynamically. If a link is busy, messages sent through that
link wait at the network node from which that link emanates. Given a particular network
topology and link capacities, the queueing and transmission delays can be significantly
reduced with improved routing schemes.

Routing policy is the policy of setting up a path between every pair of
communicating nodes along which messages are transmitted. There are several alternative
routing methods such as fixed routing, random routing and adaptive routing. In fixed
routing, the path along which the messages are sent is fixed for every source/destination
pair. The path does not reflect the dynamic conditions of the network, but it is adjusted and
left unchanged for periods of time large compared to normal fluctuations in the
network. In random routing, one of the potential routes from source to destination is
randomly selected using probabilities of choosing a particular link emanating from a node
based on traffic load, line capacity, and other network conditions. Finally adaptive routing
techniques determine routes according to the instantaneous states of the queues at the
various links in the network. Each node (switch) has a routing table that indicates the best
route for any destination in the network depending on current network conditions such as

traffic congestion and link or node failure.



Another method of classification of routing schemes is based on whether they are
bifurcated or nonbifurcated. In bifurcated routing, messages between an origin node and
destination node can be sent through several routes. In nonbifurcated routing, there is only
one route over which messages between a communicating node pair are sent.

In this dissertation, the routing method is assumed to be static and nonbifurcated.
Most of the commercially available networks such as DATAPAC [7,39], TELENET[57],
TRANPAC [12] and TYMNET [51,57] have adopted static or semidynamic routing
schemes. Even in designing networks which use adaptive routing, fixed routing is usually
assumed because network configurations optimized with fixed routing are (near) optimal
for adaptive routing operations [29].

Given the network topology, link capacities, and traffic requirements between
communicating node pairs, the routing problem to be studied here can be further described
as that of selecting, for every source/destination pair, one route from among all possible
routes over which all messages for that pair will be routed. In this dissertation, two
objectives will be considered. The first one is to minimize the maximum link queueing
delay encountered by messages at the network nodes. The second objective is to minimize
the average queueing delay. The second objective is commonly used as a criterion for
solving the routing problem. However, the first objective is also valid for two reasons.
First, one fast way to minimize the average queueing delay in the network is to minimize
the maximum link delay. Second, this criterion leads to a more balanced distribution of the
traffic load over the network links. Thus, in the case of a failure of the most utilized link,
less traffic would be disrupted than in the case of minimizing the average queueing delay.

We also examine the problem of selecting primary and secondary routes for each

communicating node pair to minimize the average delay encountered by messages at



network switches. That is, we address the routing problem in backbone networks that are
survivable under single-link failures. Survivability, in this context, is the ability to reroute
messages through alternate routes in the network in case of a link failure. In our model,
survivability is achieved by selecting a primary route and a link-disjoint alternate route.
Because the two routes are link disjoint, one route will always be available in any single
link failure scenario. Although capacity is reserved on the network links for both the
primary and secondary routes, messages are normally routed via the primary routes. If the
failed link is on the primary route of a communicating node pair, messages between that
pair are rerouted over the secondary route. It is expected that all communicating node pairs
are switched back to their primary routes as soon as the failed link is back in service.

The routing problem is very difficult to solve because of its combinatorial nature.
In chapters III-V, mathematical programming formulations of the problem are presented
and efficient solution procedures based on a Lagrangean relaxation of the problem are
developed. The results of extensive computational experiments showing the effectiveness

of the solution procedures are also reported.

3. The Routing and Capacity Assignment Problem in Backbone

Communication Networks

Even though the routing problem which minimizes the maximum link delay or the
average delay is very important, it is only one aspect of the design problem of a packet
switched communication network. A more general problem is to determine simultaneously
the link capacities and routes over which messages between communicating node pairs are

transmitted. The goal is to design a network with minimum overall system costs. Systems
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costs are composed of connection costs which depend on link capacities and delay costs
incured by users due to the limited capacities of the links and the resulting queueing at
intermediate nodes.

The routing and capacity assignment problem captures the tradeoffs that should be
made between connection and message delay costs during the design process. If high
capacity links are used in the network, connection costs will be high while delay costs will
be low. On the other hand, if low capacities are assigned to links, the opposite will be true.
This shows that tradeoffs between delay and capacity costs are an important aspect of a
proper design and operation of a communication network.

The routing and capacity assignment problem can be specifically described as
follows. Given the network topology ( location of the nodes and links), the traffic
requirements between source/destination pairs, a set of link types with different capacities
and costs, and a unit cost of delay, ome must determine: (1) the capacity to assign to each
link and (2) the best route between communicating node pairs. The objective is to minimize
the overall system costs. The routing policy is assumed to be static and nonbifircated. The
route for each source/destination pair is to be chosen from among all possible routes for
that pair, contrary to what has been done in most of the previous studies where the routes
are chosen from among a prespecified subset of all possible routes.

The routing and capacity assignment problem is studied in chapter VI. A
mathematical formulation of the problem is presented. Lagrangean relaxation embeded in a
subgradient optimization procedure is used to obtain tight lower bounds. An effective

solution method is developed and extensive computational results are reported.
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4. Lagrangean Relaxation Technique

It is well known that there are two classes of combinatorial optimization problems. The first
class, called P, includes "easy" problems that can be solved in time bounded by a polynomial
function of the input length. The second class, called NP-Complete, includes "hard" problems for
which the computing time required by any known exact solution algorithm grows exponentially with
the problem size. It is believed that it is unlikely that exact solution procedures for this class of
problems can be developed which can be used to provide optimal solutions in reasonable amount of
computing time.

Many of the problems in class NP-Complete problems may be viewed as easy problems
complicated by a number of side constraints. The Lagrangean relaxation method is based on this
observation. It involves relaxing (dualizing)the side constraints by using dual multipliers. The new
problem is called the Lagrangean problem whose optimal value is a lower bound (for minimization
problems) on the optimal value of the original problem. Frequently the solution to the Lagrangean
problem can be used to construct a feasible solution to the original problem. The quality of this
feasible solution is estimated by comparing its value to the lower bound which is used as an estimate
of the unknown optimal solution value of the original problem. This ability to evaluate the quality of
the feasible solutions is an important feature of heuristics based on the Lagrangean relaxation
technique.

The use of the generalized lagrangean multipliers was first suggested by Everett [15]. The
successful application of the Lagrangean method to the travelling salesman problem by Held and
Karp [33] has led to its use in a variety of other problems such as location problems|11,14,43,45],
scheduling problems [ 16] computer network problems [24,44]. In this section we briefly present the

Lagrangean relaxation method. For a survey of this method the reader is referred to [4,17,18].
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Consider the following integer programming problem (P):

Problem (P):
Zp = Min f(X) (1)
subject to:
AX <b )
HX <e | 3)
X 2 0 and integer 4)

where Xisnx 1,bismx 1, eis k x 1 and matrix A is of dimension m x n, and matrix His £k x n
and f{X) is function of X.

We assume the constraints of problem (P) have been partitioned into sets (2) and (3) so that
after the constraints in set (2) are dualized, the lagrangean problem (L) formulated below is relatively
easy to solve.

Problem (L):

Zj(w)=Minf(X) + w (AX-b) (5)
subject to:
HX <e (6)
X 2 0 and integer @)

where 0 =(w1, @,..., W) 1s a vector of nonnegative multipliers.
Zi(w ) is a lower bound.

Even though the theory behind Lagrangean relaxation is straight forward and
generally well understood [4], the use of this technique to solve optimization problems still
remains a challenge. There are very important issues that must be dealt with when using

the Lagrangean relaxation method. Among these issues are:
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(1) How does one select an appropriate value for w? Can one find a value for w for
which Z; (w ) is equal to or close to Zp?

(2) How does one choose among the various possible relaxations of problem (P),

i.e. different Lagrangean relaxations and LP relaxation?

(3) How might the solutions to problem (L) be used to obtain feasible solutions for
(P)? How good are these feasible solutions likely to be?

It is clear that the best choice for @ would be an optimal solution to the dual
problem (D):

Zp = max Zi(®) (D)

Most schemes for determining @ have as their objectives finding optimal or near optimal
solutions to (D).

In this section we review three approaches that have been used in Lagrangean
relaxation applications to solve problem (D): (1) the subgradient method, (2) various
versions of the simplex method employing column generation techniques, and (3)
multiplier adjustment method.

The subgradient method is a modified version of the gradient method in which subgradients
replace gradients [34]. Given an initial multiplier vector oY, usually set to zero, a sequence of
multipliers is generated by updating the vector at the iteration & using the formula

whtl = ok + 1 (AXK-b),
where ¢! and @k are the multiplier vectors at iterations k+/ and & respectively, XK is the optimal
solution to the Lagrangean Problem L with multiplier vector ok, I} is a positive scalar step size, and
AXk < b is the set of constraints being relaxed. Itis well known that lim sup Zj ( wk) converges to

oo

Zy(w*)if ip — 0 and kE 1y — o= [47]. Since in general these conditions are very difficult to
=0
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satisfy, this method is always used as a heuristic. In this study, we use the following step size that
has been found to be satisfactory in practice

t = A Zf - ZL(ek )N AXK - b 112,
where Zf is the value of the best feasible solution found so far and 4, is scalar satisfying

0 < Ay, <2. This scalar is set to 2 at the beginning of the algorithm and is halved

whenever the bound does not improve in 20 consecutive iterations. The algorithm is
terminated after a specified number of iterations unless an optimal solution is reached
before that point. The algorithm is also terminated if the gap between the best lower bound
and the best feasible solution found is less than 0.1% of the best lower bound, or the best
lower bound does not improve in 100 consecutive iterations by at least 0.01%.

The second group of methods to solve problem (D) is based on applying a variant
of the simplex method to (). The primal simplex method with column generation has been
used frequently. However, this approach is known to converge very slowly and and does
not produce monotonically increasing lower bounds [20,21]. Generally, the simplex-based
methods are harder to program and required more computational time than has the
subgradient method.

The third set of procedures that have been used for determining Lagrangean
multipliers consists of multiplier-adjustment methods. Multiplier-adjustment methods are
heuristics for the dual problem of (D) that are developed for an application for which some
special structure of the dual problem can be exploited. If a multiplier-adjustment method
can be developed for some problem class, then one is usually able to improve on the
subgradient method. However, because the subgradient method is easy to program and

has performed robustly in a wide variety of applications it will be used in this dissertation.
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Two properties are important in evaluating a particular relaxation: the tightness of
the bounds produced and the amount of computation required to obtain these bounds.
Usually selecting a relaxation involves making tradeoff between these two properties;
tighter bounds usually require more time to compute. However, it is usually possible to at
least compare the bounds and computational requirements for different relaxations and then
choose the best.

It is important to state a sufficient condition for which Lagrangean relaxation and

linear programming relaxation are equivalent [27], that is for which Zp = Z; p. Namely,

Zp =Zj p whenever Zp(®) is not decreased by removing the integrality restriction on X

from the constraints of the Lagrangean problem. This is called the integrality property. It
should be emphasized that the integrality property is not defined relative to a given problem
class but relative to a given integer programming formulation of a problem class. This is an
important distinction because problem (P) may have more than one formulation.

Solutions to problem (L) can be used to obtain feasible solutions for (P). The
method which is used for this purpose is called the Lagrangean based solution method. It
is possible in the course of solving (L) that a solution to this problem will be discovered
that is feasible in (P). Because dualized constrained Ax = b are equalities, this solution is
also optimal for (P). If the dualized constraints include some inequalities, a Lagrangean
problem solution can be feasible but suboptimal for (P). However it is rare that a solution
of either type be identified. On the hand, it often happens that a solution to (L) obtained
while solving (L) will be "nearly" feasible for (P) and can be made feasible with some

judicious thinking.
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5. Significance of the Research

The results of the models developed in this dissertation are significant in terms of
their theoretical and practical contributions. Theoretically, we present new efficient
approaches to solve several large scale telecommunication problems using mathematical
programming techniques. These techniques are used to obtain good feasible solutions to
the problems and to assess the qualities of these solutions. The results of this research are
also beneficial to the analysis and design of networks in other areas such transportation and
telephone networks. They also represent a significant contribution to the research on
nonlinear combinatorial optimization. As we will see in the following chapters, the
objective functions of the problems discussed in this dissertation are nonlinear. Previous
research on nonlinear programming has mainly focused on solving small problem instances
and studying the quadratic assignment problem.

Practically, the approaches developed here can be used by commercial network
vendors to design new computer networks. They can also be used to reduce capacity costs
of existing networks, specially when it has been noticed that many operational
communication networks are characterized by excessive capacities. Network managers can
also use these approaches to study the effect of adding new users on the current level of

service to existing users.



CHAPTER II
LITERATURE REVIEW

1. The Routing Problem in Backbone Communication Networks

In this section the literature on routing in backbone network is reviewed. As
mentioned in the previous chapter, one method of classifying routing schemes is based on
whether they are bifurcated or nonbifurcated. In bifurcated routing, messages between an
origin node and destination node are sent through several routes. In nonbifurcated routing,
there is only one route over which messages between a communicating node pair are sent.
Most of the previous research in computer communication networks has concentrated on
the bifurcated routing. Early research efforts on bifurcated routing have been devoted to
develop heuristic algorithms [21,28,38] . With the advances in mathematical programming
techniques, some researchers such as Frank and Chou [20], Canter and Gerla [8], and
Bertsekas [5] devoleped improved algorithms to determine the optimal routes in backbone
networks with bifurcated routing. These algorithms are based on the formulation of a
continuous mathematical programming problem with nonlinear convex objective function
representing the average network delay. These algorithms have employed the gradient
projection , flow deviation, and textermal flow methods among others.

Courtois and Semal [10] developed a heuristic based on a modified version of the
flow deviation method to solve the nonbifurcated routing problem. They tested their

heuristic on a variety of networks and were able to generate good solutions for lightly

17



18

loaded networks. Gavish and Hantler [23], Narasimhan et al. [42], and Tcha and
Maruyama [56] have all used solution procedures based on mathematical programming
techniques to solve the nonbifurcated routing problem. In [23] Lagrangean relaxation was
used to obtain lower bounds as well as feasible solutions to minimize average message
delays. They reported results of computational experiments with reasonable gaps between
lower bounds and feasible solutions. Narasimhan et al. presented a new formulation for
the same problem. This formulation led to a new relaxation which was shown to be
capable of yielding tighter lower bounds than those reported in [23]. They report
computational experiments that confirm their claims. Tcha and Maruyama [56] discussed a
related problem of minimizing the maximum link utilization factor. They described a linear
programming bound and outlined a technique to obtain feasible solutions and applied them
to small problem instances with up to 34 links and 95 communicating node pairs.

Pirkul and Narasimhan [47] extended their model to include reliability
considerations. For each communicating node pair a primary and secondary route must be
selected from among a set of predetermined candidate routes. The model captures
situations where a single link or node failure would divert traffic to the appropriate
secondary routes. A mathematical programming formulation was presented and an
effective solution procedure based on Lagrangean relaxation of the problem was developed.

The studies reported in [23,42,47,56] share one shortcoming. In all of them, a set
of prespecified candidate routes is assumed to be given for every communicating node pair.
Obviously, the quality of the solutions obtained by these methods depends heavily on the
choice of the candidate route set generated before the procedure is applied. Gavish and
Altinkemer extended the algorithm in [23] to overcome this shortcoming by considering all

possible routes for every communicating node pair [26]. This routing scheme is used as an
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integral part of a procedure to solve the routing and capacity assignment problem. One
drawback of their algorithm is that when link utilization exceeds moderate levels the
procedure frequently terminates without a feasible routing scheme. In this dissertation we
present new formulations of the routing problem and discuss improved heuristics for
generating feasible solutions for even heavily loaded networks. With these new methods

the gaps between the lower bounds and the feasible solutions are generally very small.

2. The Routing and Capacity Assignment Problem in Bacbone

Communication Networks

Many heuristic solution procedures have been suggested to solve the topological
backbone design problem. Frank, et. al. [19] were the first to describe a branch (link)
exchange technique (BXC) based on branch deletion and addition. Starting with an
arbitrary topology, the BXC method iteratively adds, deletes or exchanges links. If there is
improvement in terms of cost and throughput, the modified topology is accepted. This
process continues until no more improvement is possible. The criterion for selecting the
links to add and/or delete is somewhat arbitrary. The use of information about network
properties in deciding which links to add and/or is limited. A large number of
transformations is required before reaching a local minimal solution, which makes this
approach computationally inefficient.

The Concave Branch Elimination (CBE) method is another heuristic technique for
the optimization of topological network design [6,30]. The CBE method assumes that the
discrete costs can be reasonably approximated by concave curves. The method starts from

a fully connected topology and eliminates the most uneconomical link. The flow deviation



20

method [21] is then used to reroute the traffic. This process of deletion and rerouting
continues until a local minimum is reached or the removal of a link would disconnect the
network.

An extension and improvement of the BXC and the CBE in terms of the quality of the
solution and computational efforts is the Cut Saturation (CS) algorithm proposed by Gerla
et. al. [31]. The CS algorithm uses a basic property of the network flow problem called "
cut-saturation”. A cutis a set of links whose removal will disconnect the network. A cutis
saturated if the flows in all the links in the cut equal the capacities. The traffic flow in the
network can increase until a cut is saturated, and in this situation, the only way to increase
traffic flow in the network is to increase the capacity of the cut. The CS algorithm is based
on this principle. Thus, the idea behind the CS algorithm is to relieve the most heavily
congested portion of the network (which corresponds to the saturated cut set). Adding new
links in the neighborhood of that cut set or increasing the capacities of its links should be
more effective in improving the network throughput than adding links in other portions of
the network. While maintaining the throughput within a specified range, the algorithm tries
to reduce the communication costs subject to the demand, connectivity and response time
constraints.

The algorithm has been shown to perform better than the BXC in terms of closeness to
the optimal solution and computational efficiency. However, it has some serious
drawbacks as noted by Sapir [53]. These include

1. It lacks generality because it was exclusively developed for the ARPANET.

2. CS requires a good starting topology to perform efficiently. A lot of human effort is

needed to design a reasonable initial topology since no criteria for a good one were given.
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3. Parallel links are not allowed, even though parallel links can be cost effective and
increase network connectivity and therefore reliability.
A new Generalized Cut Saturation ( GCS ) algorithm has been proposed by Sapir [53] and
Chou and Sapir [9] to overcome the above limitations.

A related problem to the routing and capacity assignment problem to be studied in
chapter VI is the general concave cost network flow problem where the total cost is a
concave function of the flow along the arcs. Some of the methods used to solve this
problem include branch and bound [54], dynamic programming [13,61] and other heuristic
approaches [45,50]. The authors in [2] studied the special case of piecewise linear costs in
directed networks where each link is assigned a capacity and a path is identified for each
source/destination pair. They formulated the problem as a mixed integer program and
developed a composite algorithm to generate both lower bounds and feasible solutions.
The model does not take into account the delay issue that arises when link capacity
utilization reaches certain levels.

Gershet and Weihmayer [32] studied the problem of assigning capacities to network
switches and potential links in order to accommodate traffic demand between nodes and
satisfy a performance requirement that specifies an upper bound on the link utilization. The
goal is to minimize switch and link capacity costs which are assumed to be continuous. A
solution procedure which alternates between solving an uncapacitated design/routing
subproblem and a capacity assignment subproblem is presented. The procedure was
applied to a real network with 20 nodes and two levels of link capacities.

Monma and Shallcross [40] studied the problem of designing a minimum cost
communication network subject to reliability constraints requiring node-disjoint paths

between every pair of communicating nodes. Heuristic solution methods have been
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presented and computational results have been reported. A drawback of this study is that
no procedure to check the quality of the feasible solutions was developed.

Ng and Hoang [43] examined a special case of the routing and capacity assignment
problem where 1) each link's capacity must equal a multiple of fixed capacity C
corresponding to a specified line type and 2) full-duplex capacity is approximated by
modeling separate one-way capacities and then choosing the larger of these. They
formulated the problem using continuous link capacity variables, and used the flow
deviation method for solution. A procedure based on dynamic programming was used to
discretize the link capacities. Numerical examples of networks including six and eighteen
nodes were given.

Rosenberg [52] studied the problem of computing link capacities in a multi-hour
alternate routing communication network. For each source/destination, only two
predetermined candidate routes are assumed to be given. The first one is formed by direct
link from source to destination and the second includes only two links. Obviously this
assumption is unrealistic in the case of backbone network. Moreover, the model developed
in [52] has a nonlinear constraint for each source/destination pair (for each hour of the day,
since it is a multihour model). This makes the problem very difficult to solve for large
network with hundreds or thousands of source/destination pairs.

Gavish and Newman [25] formulated the routing and capacity assignment problem
as a mixed integer programming model. The routing policy is assumed to be static and
nonbifurcated. They developed a solution procedure based on Lagrangean relaxation
technique. Narasimhan [41] studied a similar problem where the goal is to design a
minimal cost network subject to some performance criterion specifying an upper limit on

the average delay experienced by messages in the network. He presented a nonlinear
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integer programming formulation of the problem and used Lagrangean relaxation to obtain
feasible solutions and lower bounds. Computational results across a variety of networks
show that the solution procedure yields solutions with gaps ranging between 0.0 and
24.5%.

The models in the previous three studies share one shortcoming. They assume that
a set of prespecified candidate routes is given for every communicating node pair.
Obviously, the quality of the solutions obtained by using these models depends heavily on
the choice of the candidate route set generated before the procedures are applied.

LeBlanc and Simmons [37] formulated the routing and capacity assignment
problem using continuous link capacity variables. They also suggested a new convex delay
function and showed that, for their assumed message length distribution, this new function
predicts delay more accurately than the conventional delay function when flow-capacity
ratios are less than 0.80. Computational results for networks with up to 100 nodes are
reported.

Gavish and Altinkemer [26] extended the work in [25] by considering all possible
routes for every communicating node pair. They formulated the problem and used
Lagrangean relaxation embedded in a subgradient optimization procedure to obtain lower
bounds as well as feasible solutions to the problem. They included cut constraints which
are redundant in the original problem to improve the lower bounds. These cut constraints
are assumed to be defined before the solution procedure starts. Obviously the quality of the
solutions depends heavily on the number and choice of the cuts.

In this dissertation we present a new formulation of the routing and capacity
assignment problem that treats the routing and capacity assignment policies simultaneously.

Our model overcomes the shortcomings in the previous methods, namely the assumptions
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that a candidate route set for every source/destination pair is given and that a set of
predetermined cut constraints is required. A procedure that generates improved solutions
when compared to solutions produced by previous methods is developed. We study also
the effects of adding the cut constraints in the formulation on the quality of the solutions to
the routing and capacity assignment problem.

The remaining of this dissertation is organized as follows. In chapters III and IV,
we consider the routing problem in backbone communication networks in which the
maximum link delay and average queueing delay are minimized, respectively. Chapter V
addresses the reliability issue in the case of link failures. For each communicating node
pair, a primary route and a link disjoint secondary route have to be selected in order to
minimize the weighted average queueing delay. The routing and capacity assignment
problem is considered in chapter VI. Finally, some concluding remarks are presented in

chapter VIL



CHAPTER III
THE ROUTING PROBLEM IN BACKBONE COMMUNICATION
NETWORKS: MINIMIZING THE MAXIMUM LINK
QUEUEING DELAY

1. Introduction

Route selection in backbone communication networks is an important factor in
determining the response time experienced by network users and affects the efficiency of
the utilization of network resources such as node buffers and link capacities. A good
routing scheme can allow the addition of new network users without significant
degradation of the service level to current users and without increasing link capacities.

In this chapter we study the problem of determining the optimal set of routes for all
communicating node pairs in a backbone communication network with static, nonbifurcated
routing. Given the topological configuration of the network, link capacities, and the traffic
requirements between communicating node pairs, the problem can be more specifically
described as that of determining, for each source/destination pair, one route over which all
messages for that pair of nodes will be routed. This route is to be chosen from among all
possible routes. The objective is to minimize the maximum link queueing delay
encountered by messages at the network nodes. This criterion of minimizing the maximum
link delay is appropriate for two reasons. First, one fast way to minimize the average

queueing delay in the network is to minimize the maximum link delay. Second, this
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proposed criterion leads to a more balanced distribution of the traffic load over the network
links. Thus, in the case of a failure of the most utilized link, less traffic would be disrupted
than it would be if the network had been designed to minimize the average queueing delay.
The remaining of this chapter is organized as follows. We present two mixed
integer nonlinear programming formulations of the problem in section 2. A Lagrangean
relaxation of the problem obtained by dualizing a subset of the constraints in the second
formulation is presented in section 3. In section 4, we discuss a method for solving the
relaxed problem and present a procedure to generate feasible solutions to the original
problem using the information obtained from the solution of the relaxed problem. In
section 5, we present results of computational experiments on four network topologies to
show the effectiveness of the solution procedures. Finally, some concluding remarks are

presented in section 6.

2. Problem Formulation

As noted earlier, response time (defined as an average source-to-destination packet
delay) is an important factor in the performance of packet-switched networks. In these
networks, messages of different sizes between pairs of communicating nodes arrive at
random intervals. Packets of these messages travel over the network forming queues at
intermediate nodes waiting for an outgoing channel to become available. Thus, it is
possible to model packet-switched networks as networks of queues [35].

In order to formulate the problem of minimizing the maximum link delay in the
backbone network, we assume that the network topology, the capacities of the links, and

the traffic requirements between every pair of communicating nodes are given. We also
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make the usual assumptions which are used in modeling the queueing phenomena in
backbone networks. Specifically, we assume that nodes have infinite buffers to store
messages waiting for transmission links, that the arrival process of messages to the
network follows a Poisson distribution, and that message lengths follow an exponential
distribution. We further assume that the propagation delay in the links is negligible, that
there is no message processing delay at the nodes, and that there is only a single class of
service for each communicating node pair.

The backbone network is modeled as a network of independent M/M/1 queues
[35,36] in which links are treated as servers with service rates proportional to the link
capacities. The customers are messages whose waiting areas are the network nodes. The
queueing and transmission delay in link (7,j) is 1/(u Qjj - A /) where 1/u is the average
message length, Q;; is the capacity of link (i,j), and A;; is the arrival rate of messages to
link (i,j).

We use the following notation:

N the set of nodes in the network
E the set of undirected links in the network
M the set of communicating node pairs

A™  the message arrival rate for communicating node pair m € M
O(m) the source node for communicating node pair m € M

D(m) the destination node for communicating node pair m € M



The decision variables are

1 if the route for communicating node pair m traverses link
Y. = (i,j) in the direction of i to j

0 otherwise

X ;7 = flow of communicating node pair m on link (i,j)

D = maximum link delay

If T is defined as T= 1 Y A™ | then the problem can be formulated as :

HmeMm
Min D
subject to
ifi = O(m)
ZYrg- EYﬂ ifi = D(m) V ieN and meM
JEN .
otherwise
L —AM (Y X V (i,j)eE and meM
U
1 s AM (Y ij) ¥ X’Z. Y (ij)eE
/"meMl meM
X7 < = am V (ij)eE and meM
lJ
U
2 X —sz V (ij)eE
meM
m
2 Xij
1 meM
7 <D V (ij)eE
Qij- x XY
meM

X’; >0 V (ij)eE and meM
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D=0 ©)
y;;’ , YZ? e (0,1) Y (ij)eE and meM (10)

In this formulation, the objective function minimizes the maximum queueing delay
for messages. Constraint set (2) contains the flow conservation equations which define a
route (path) for each communicating node pair. Constraints in set (3) link together the Xlrjn
and Y ;n variables. They ensure that the flow for communicating node pair m on link (i,j) is
at least equal to the traffic requirement for that pair if its assigned route uses link (i,j);.
Constraints in set (3) hold as equalities at the optimum. Constraints in set (4) represent an
aggregate form of the constraints in set (3). Even though these constraints are redundant
in, they are helpful in obtaining better lower bounds in the Lagrangean relaxation suggested
in the next section. Constraint set (5) guarantees that the flow for communicating node pair
m on arc (i,j) does not exceed its traffic requirement. Constraint set (6) enforces the
capacity limitations on the links. Constraints in set (7) define D, the maximum link delay in
the network. Constraint sets (8) and (9) restrict the XZ” and D variables to be nonnegative,

respectively and constraint set (10) enforces integrality conditions on the YZZ variables.

This problem can be reformulated as the following integer linear programming model.

Problem P:
Zp=Max V (11)
subject to

1 ifi = O(m)
LYy XYy =3-1 ifi=D(m) VieNandmeM (12)
JjeN JEN

0 otherwise



1 m m ..
;Am (Yy + Y;;l) < Xj; VY (i,j)eE
Lisamymevhs< 5 x7 V (ij)eE
j i ij
HmeM meM
XZ.‘ < Lym V (ij)eE
7]

> X'Z-}- + 0y Sij =0y V (ij)eE
meM
Sij 2V V (ij)€E
XZ? >0 Y (ij)eE
Sij >0 V (ij)eE
V>0
YZZY;? e (0,1) V (i,j)eE

and meM

and meM

and meM

and meM
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(13)

(14)

15)

(16)

(17)
(18)

(19)

(20)
21)

IfS ij is interpreted as the residual utilization factor of link (i,j), then the goal is to

maximize the minimum residual utilization factor. This means that minimizing the

maximum link delay is equivalent to maximizing the minimum residual utilization factor.

By allowing the best route for each communicating node pair to be chosen from the

set of all possible routes, our solution method based on the above formulation eliminates a

shortcoming that the methods presented in [23,41,56] suffer which is the theoretical

possibility of generating lower bound values that are higher than the optimal solution values

to the routing problem when all possible routes are considered.
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3. A Lagrangean Relaxation of the Problem

Problem studied in [34] is a special case of problem P and is known to be NP-hard.
Consequently, it is highly unlikely that real world instances of P can be solved optimally in
reasonable computation time. Therefore, we propose a composite upper and lower
bounding heuristic solution procedure based on a Lagrangean relaxation of the problem.
Consider the Lagrangean relaxation of problem P obtained by dualizing constraint set (13)

m
and (14) using nonnegative multipliers oy and ﬁij forall (i,j) e Eand m e M,

respectively.
Problem L:
(ij)eE meM
1
D L (ay+l3y><Y’” Yj?) (22)

HmeM (ij)e E
subject to constraint sets (12), (15)-(21).
Problem L can be decomposed into two subproblems:
Problem L1 :

Zpp =Max V+ I % (o + B Xj; (23)
(i,j)eEmeM

subject to constraint sets (15)-(20).

and
Problem L.2:
Z; o =Max —1— S T AM (aU +[3U)(Ym Ym) 24)

K mem (i,j)eE

subject to constraint set (12) and (21).
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problem L2 can be decomposed into IMI subproblems (one for each sourced/destination

pair) as follows:

1 m

Max - — 3 A™ (o + B (¥ + ;) (25)

H(ij)eE
subject to
1 ifi=0(m)

):Y’g- ZY?;= 1 ifi=D(m) VY ie N (26)
JeN JEN 0 otherwise

YZ.‘ Y;:l e (0,1) V (ij)eE @27

In the next section, we discuss the methods for solving the Lagrangean problem L and the

original problem P.
4. Solution Techniques

4.1 Solution of Problem L/

For any given vector of multipliers oqrjn and ﬁijn problem L/ is a continuous linear
programming problem that can be solved using an LP package. However, if the capacities
of the links as well as the traffic requirements are equal, then problem L/ can be solved
more efficiently using the following greedy type procedure.

Procedure-LAG1
Step 1: Reorder the XZ-z variables by sorting them in nonincreasing order of agl

for all links; assume that the variables are reindexed in this order and that the

indices are the same for all links. Let m=0 and set S=0.
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Step 2 : Let m=m+1 and set for every link (i,j)

) m
XM Xo if ..Z(Ocij+ﬁij)>l/Q
y - (ij)eE
0 otherwise

where X() = min{ 1 A (Q-S) }, Q is the value of capacities of the links.
U

Set § =5 +Xp

Step 3: If m=IMI stop; If X < L A™M then stop and set Xz((j =0 for
U

k=m+1,...,IMI, and every link (i,j). Otherwise go to step 2.
The value assigned to Xgl in step 2 is determined in a such a way that it increases

the objective function of the problem the most.

4.2 Solution of Problem L2
Each subproblem of problem L2 is equivalent to a shortest path problem from O(m)
m
to D(m) with (og; + Bi /) as the nonnegative costs on the links. In our study Dijkstra’s

algorithm [55] is used for solving these subproblems.

4.3. Heuristic Solution Methods

In this section we introduce a heuristic solution procedure for solving problem P.
This is a two phase procedure which first generates an initial routing schedule (possibly
infeasible) and then improves this schedule by reallocating traffic from overloaded links to
links that are lightly utilized. This procedure is used to generate a feasible solution which is
used as the starting solution for the the subgradient optimization procedure. Additionally at
every iteration of the subgradient optimization procedure feasibility of the Lagrangean

solution is checked. In fact, the improvement phase of the heuristic procedure can be used
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at every iteration of the subgradient procedure to either convert an infeasible solution to a
feasible one or to improve a feasible solution. We have chosen not to do this as it was
found to be very time consuming. Instead, the improvement phase is applied at the
termination of the subgradient search to the best feasible solution generated during that
search. In our computational experiments this step typically leads to significant
improvement in solution quality as it will be seen in the computational results reported in
the next section.
The heuristic used to generate an initial feasible solution can be described as
follows.
Procedure-Init
Step 1: For each communicating node pair determine a route with the minimum
number of links.
Step 2: If for every link the total flow on the link does not exceed the link
capacity, then a feasible solution is at hand (stop); otherwise go to step 3.
Step 3: Pick the most violated link (i,j). Among all communicating node pairs
using that link, reroute the traffic requirement of the communicating node
pair k£ which, using the "alternative path" would decrease the following
cost function the most:

Zinit = Max_ {cost(i,))}, where
(ij)eE
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m
s X'
1 meM . m
T if Y Xl'j < Ql]
m
Qij' ) Xij meM
cost(i,j) =3 meM
m
> x'
meM
kJ”[, o5 otherwise
i

(M is a large positive number.)

This artificial cost function decreases when the capacity utilization of link (i,j)
(and possibly of other links on the original route for commodity & ) decreases.
The "alternative path" is the path from O(k) to D(k) such that the most utilized link
on the path has a lower utilization than the most utilized link on any other path
from O(k) to D(k). The problem of finding such path is known as the bottleneck
shortest path problem and can be solved using a modified version of Dijkstra's
algorithm [55] and therefore can be solved in O(INI2) operations. If the traffic
requirement of no communicating node pair can be rerouted, then stop since no
initial feasible solution can be obtained; otherwise, repeat step 3 until no link

capacity is violated.

Although Procedure-Init was created to simply find a feasible solution, it can be
modified to attempt to improve a given feasible solution. Consequently at the termination
of the subgradient optimization procedure the best feasible solution may be further
improved by utilizing Procedure-Init which would include only step3 with some

modifications. The only modifications to be made to step 3 are : (1) to consider "the most



36

utilized link" rather than "the most violated link" and (2) to change the stopping criterion to

"repeat step 3 until no further improvement can be effected".

5. Computational Results

The solution procedures presented in the previous section were coded in Pascal. A
number of computational experiments were performed using IBM-3081D running under
MVS/XA 2.1.7. Two networks (ARPA and OCT) used in previous studies [23,25,26,42]
were utilized in the tests. In ARPA there are 21 nodes and 26 links and in OCT there are
21 nodes and 29 links (figures 4.1 and 4.2 in chapter IV). In addition, a set of randomly
generated networks with 10 and 15 nodes were used.

The following test problem generator was used to generate the random networks.
First, the generator locates the specified number of nodes on a 100X100 grid. Each node
has a degree equal to 2, 3 or 4 with probability of 0.6, 0.3 and 0.1, respectively. We
repeat the following procedure for each node ie N. Determine node i's closest neighbor (in
terms of Euclidean distance) with unsatisfied degree requirement, call this node j. Add arc
(i,/) and repeat this until 1) node i's degree requirement is satisfied or 2) all the nodes with
unsatisfied degree requirements have been considered. In the latter case, connect node i to
its closest neighbors to which it is not already connected until the degree requirement of
node i is satisfied. At the end check to see if the network is connected; if not, add links
necessary to make it connected. For each network size tested (10 and 15 nodes) we
generated 5 different instances by changing the seed value used in the random number
generator. The average number of links in the networks with 10 nodes is 15 and it is 22

for networks with 15 nodes.
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In all of the networks used in this study each node communicates with every other
node and sends one message. In both ARPA and OCT networks the capacity of the links is
set equal to 50000 bps. For networks with 10 nodes, the capacity of each link is set equal
to 25000 bps. For networks with 15 nodes, the capacity is 30000 bps. Tables 3.1 and 3.2
summarize the computational results for ARPA and OCT, respectively. Tables 3.3 and 3.4
give the average (over the five problem instances) performance measures for the networks
with 10 and 15 nodes, respectively. The results of the experiments are described by
providing the values of average message length (in bits), the percentage gap between the
value of the best feasible solution found and the lower bound, and the average and
maximum link utilizations. The percentage gap is computed as (Feasible Solution Value -
lower Bound) / Feasible Solution Value.

The mean message length capture a variety of traffic loads for all networks tested.
They range from light loads to cases where the load is beyond the normal operating levels.
In general, the gap between the feasible solution values and lower bounds is small and
ranges from 0.95 to 7.83%. This gap usually increases as the traffic load increases. The
computing times were of the order of 0.9 and 1.5 seconds per iteration of the subgradient

optimization technique.
6. Conclusion

In this chapter we studied the nonbifurcated static routing problem in backbone
networks. In this problem, a route for every pair of communicating nodes is to be
identified in order to minimize the maximum link delay faced by messages. A mathematical

programming formulation of the problem is presented. An efficient solution procedure
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based on Lagrangean relaxation of the problem is developed. Computational results across
a variety of networks are reported. These results indicate the procedure to be very

effective.



Table 3.1. Summary of Computational Results for ARPA Network.

Average Message Gap Average link Maximum Link

Length Utilization Utilization

50 0.95 5.7 8.4

100 2.09 11.4 16.3

150 1.89 17.7 24.0

200 2.61 23.0 32.0

250 3.83 30.0 40.0

300 4.21 35.1 47.2

350 7.83 41.8 56.0

Table 3.2. Summary of Computational Results for OCT Network.

Average Message Gap Average link Maximum Link
Length Utilization Utilization
100 0.97 20.1 23.2
150 3.66 29.9 36.0
200 5.87 39.7 48.0
250 4.19 50.0 58.0

300 3.45 60.5 68.4




Table 3.3. Summary of Computational Results for Networks With 10 Nodes.

Average Message Gap Average link Maximum Link
Length Utlization Utilization
300 1.72 15.6 27.6
350 2.16 18.7 31.5
400 2.68 20.7 36.8
450 3.29 23.3 38.3
500 4.04 26.1 46.1
550 4.89 30.4 49.3
600 6.01 35.6 55.5

Table 3.4. Summary of Computational Results for Networks With 15 Nodes.

Average Message Gap Average link Maximum Link
Length Utilization Utilization
300 1.40 24.6 45.3
350 1.92 28.7 52.9
400 2.53 32.3 60.47
450 3.77 36.4 68.0
500 4.30 40.5 75.5
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CHAPTER 1V
THE ROUTING PROBLEM IN BACKBONE COMMUNICATION
NETWORKS: MINIMIZING THE AVERAGE
QUEUEING DELAY

1. Introduction

This chapter extends the problem studied in the previous chapter to the case where
the objective is to minimize the average queueing delay in backbone communication
networks. Given the network topology, link capacities, and traffic requirements between
communicating node pairs, the problem studied in this chapter can be described as that of
selecting, for every source/destination pair, one route over which all messages for that pair
of nodes will be routed. The objective is to minimize the average queueing and
transmission delay encountered by messages at the network nodes. This delay is the result
of the finite transmission capacities of links and the resultant queueing at intermediate
nodes.

The previous studies [23,42] which have treated this problem share one major
shortcoming. Specifically, they assume that a set of prespecified candidate routes is given
for every communicating node pair. Obviously, the quality of the solutions obtained by
these methods depends heavily on the choice of the candidate route set generated before the
procedure is applied. Gavish and Altinkemer [26] avoid this shortcoming by considering

all possible routes for every communicating node pair. However, when link utilization
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exceeds moderate levels, the procedure developed in [26] frequently terminates without a
feasible routing scheme. In this chapter we present a new formulation of the problem and a
new heuristic procedure for generating feasible solutions for even heavily loaded networks.
With this new procedure the gaps between the lower bounds and the feasible solutions
measuring the solution quality are generally very small.

The remaining of this chapter is organized as follows. We present a mixed integer
nonlinear programming formulation of the problem in section 2. A Lagrangean relaxation
of the problem obtained by dualizing a subset of the constraints is presented in section 3.

In section 4, we discuss a method for solving the relaxed problem and present a heuristic
procedure to generate feasible solutions to the original problem using the information
obtained from the solution of the relaxed problem. In section 5, we present results of
computational experiments on four network topologies to show the effectiveness of our

solution procedures. Finally, some concluding remarks are presented in section 6.

2. Problem Formulation

In order to formulate the problem of minimizing the average end-to-end delay in the
backbone network, we assume that the network topology, the capacities of the links, and
the traffic requirements between every pair of communicating nodes are given. We also
make the usual assumptions which are used in modeling the queueing phenomena in
backbone networks. Specifically, we assume that nodes have infinite buffers to store
messages waiting for available transmission links, that the arrival process of messages to
the network follows a Poisson distribution, and that message lengths follow an exponential

distribution. We further assume that the propagation delay in the links is negligible, that
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there is no message processing delay at the nodes, and that there is only a single class of
service for each communicating node pair.
We use the following notation:
N the set of nodes in the network
the set of undirected links in the network
M the set of communicating node pairs
A the message arrival rate for communicating node pair m € M
O(m) the source node for communicating node pair m € M

D(m) the destination node for communicating node pair m € M

The decision variables are

1 if the route for communicating node pair m traverses link
Y. = (i,j) in the direction of i to j

0 otherwise

X Zl = flow of communicating node pair m on link (i,j)

If Tisdefinedas T = 1 ¥ A™ | then the problem can be formulated as :

H meM
Problem P:
m
s X

i 1 meM
Zp =Min T S

(i,j)GEQl.j _ Z X’S
meM

M
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subject to
1 ifi=0(m)

sYi- 2Yi =31 ifi=D(m) V ieN and meM ()
JEN JEN 0 otherwise

Lam (YY) < X7 V (ij)€E and meM (3)
P jo i i

1 )

T A (Yi+vi)s T X V (ij)eE (4)

meM meM

X7 < Lam V (ij)eE andmeM  (5)

u

T Xy <0y V (ij)eE (6)
meM
XZ.’ >0 V (ij)eE and meM (7)
YZ.’ Y;:l e (0,1) V (ij)eE and meM  (8)

In this formulation, the objective function minimizes the average queueing delay for
all messages. Constraint set (2) contains the flow conservation equations which define a
route (path) for each communicating node pair. Constraints in set (3) link together the X:n
and Y;n variables. They ensure that the flow for communicating node pair m on link (i,j) is
at least equal to the traffic requirement for that pair if its assigned route uses link (i,j);
constraints in set (3) hold as equalities at the optimum. Constraints in set (4) can be seen as
the aggregate form of the constraints in set (3). Even though these constraints are
redundant in problem P, they are helpful in obtaining better lower bounds in the
Lagrangean relaxation suggested in the next section. Constraint set (5) guarantees that the
flow for communicating node pair m on arc (i,j) does not exceed its traffic requirement.

Constraint set (6) represents the capacity constraints on the links. Constraint set (7)
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restricts the X:n variables to be nonnegative and constraint set (8) enforces integrality
conditions on Y;"

By allowing the best route for each communicating node pair to be chosen from the
set of all possible routes, our solution method based on the above formulation eliminates a
shortcoming that the methods presented in [23,42] suffer which is the theoretical possibility
of generating lower bound values that are higher than the optimal solution to the original
routing problem when all possible routes are considered.

This formulation (1)-(8) may be viewed as a disaggregate formulation of the routing

problem solved in [26]. Specifically, if one were to drop constraint sets (3) and (5) and

substitute the terms Y, Xr; by variables which represent the total flows on link (i,j), one
meM

would have the formulation in [26]. The variable set X:Jn and constraint sets (3) and (5)
are introduced to represent flows between each pair of communicating nodes separately.
This disaggregate formulation leads to better lower bounds and feasible solutions than does
the formulation in [26] but at the expense of added computational effort as shown in section
5. Other researchers have also observed a similar effect regarding the disaggregation of

flows within the context of other classes of problems [3,59,60].
3. A Lagrangean Relaxation of the Problem

Problem studied in [25,42] is a special case of problem P and is known to be NP-
hard. Consequently, it is highly unlikely that real world instances of P can be solved
optimally in reasonable computation time. Therefore, we propose a procedure based on a

Lagrangean relaxation of the problem to obtain lower bounds and feasible solutions to the
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routing problem. Consider the Lagrangean relaxation of problem P obtained by dualizing
m
constraint set (3) and (4) using nonnegative multipliers oyj and ﬁij forall (ij) € Eand m

€ M, respectively.

Problem L:
z X
1 meM
ZL:Mm T 2z - X 2 (azj +,Bz])Xrn
(Lj)eEgij - v xT (ij)eEmeM
y
meM
vLosx amag e g off + Y ©)

HmeMm (ij)eE
subject to constraint sets (2), (5)-(8).

Problem L can be decomposed into two subproblems:

Problem L1:
S X
] 1 meM
ZL] = Min T 2 -
(L)EEQij - 5 X7
meM
S5 (o + By (10)

(ij)eE meM

subject to constraint sets (5)-(7).

and
Problem L2:
. 1
Zip =Min © S5 AM(ag + B O + V) (11)

K mem (i,j)eE

subject to constraint set (2) and (8).
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Problem L1 can be decomposed into |El subproblems (one for each link) as follows:

> X7
M / m
. 1 me
Min 7 T +ﬁl-j)ng (12)
Qij- 3 X7 meM
meM
subject to
¥ < Lam V meM (13)
i
7l
m
X Xy <0 (14)
meM
X" >0 Y meM (15)

Similarly, problem L2 can be decomposed into IM| subproblems (one for each

source/destination pair) as follows:

Min L3 AM(af + B O + Y] (6)

H(ij)eE
subject to
1 ifi=0(m)
srh- syl=91 iti=D(m) V ie N (17
JEN JEN 0 otherwise
Yy, Y;? e (0,1) V (ij)eE (18)

In the next section, we discuss the methods for solving the Lagrangean problem L and the

original problem P.
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4. Solution Techniques

4.1 Solution of Problem L/

For any given vector of multipliers agl and ﬁij’ each of the IEl subproblems of
problem L1 is a continuous knapsack problem with nonlinear objective function that can be
solved optimally using the following greedy type procedure.

Procedure-LAG1
Step 1: Reorder the XZI variables by sorting them in nonincreasing order
a’i}l ; assume that the variables are reindexed in this order. Let m=0.
Step 2 : Let m=m+1 and set

. m
m Xo ifay + Bj;>0and Xy >0

0 otherwise
il T
where X = min{ - A™ (Ql-j-S)_[_lle 1172} and
K o + Bij

k
NEEDID ¢F
k<m Y

Step 3: If m=IM| stop; If XZ-l < 1 AM then stop and set ng =0 for
7l

k=m+1,....IMI. Otherwise go to step 2.
The value assigned to X:-;-2 in step 2 is determined in a such a way that it decreases
the objective function of the subproblem the most.
The subproblems of problem L/ are different from those corresponding to the
routing problem treated in [26]. In the former, the total flow passing through each link

depends on the individual communicating node pairs because the objective function of each
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subproblem contains terms related to the communicating node pairs and constraint set (5) is
included in the model. In the latter, the total flow is determined independently of the
communicating node pairs because no disaggregate constraints similar to those in sets (3)
and (5) are present. It is this disaggregation of flows included in our formulation that leads

to better feasible solutions and tighter lower bounds but requires more computational time.

4.2 Solution of Problem L2

Each subproblem of problem L2 can be solved as a shortest path problem from
O(m) to D(m) with (aZ? + ﬁij) as the nonnegative costs on the links. In our study
Dijkstra’s algorithm [55] is used for solving them. These subproblems are similar to those
in [13] with one major difference. In [26] the “lengths” of the links are the same for all
communicating node pairs, hence all the subproblems can be solved with one run of
Floyd’s algorithm [55] which finds shortest paths between all pairs of nodes
simultaneously. In our subproblems, the “length” of a link depends on the commodity
flowing through it. This requires that shortest paths be determined separately for each
communicating node pair. This is a direct result of the disaggregated treatment of the
flows. Even though it is more time consuming it results in better solutions and helps solve

problems that could not be solved using the aggregated flow formulation of the problem.

4.3 Complexity of Solving Problem L
The complexity of procedure-LAG1 is O{IMllogIMl}, and since this procedure
must be applied |El times (once for each link), the complexity of solving problem LI is

O{IElIMIloglMI}. Each of the IM| subproblems of problem L2 can be solved in O{INI2}
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using Dijkstra's algorithm. Thus, the complexity of solving problem L2 is O{IM INV2}.
Therefore, the complexity of solving problem L is O{IMImax(IEllogIM| , INIZ)}.

4.4. Heuristic Solution Method

The heuristic solution procedure for solving the routing problem which minimizes
the average queueing delay in the network is similar to the one used to solve the routing
problem which minimizes the maximum link delay. The only modification is that the cost

function used in step 3 should be

Zinit= 2 cost(i,j) instead of Zjpir = Max_ {cost(i,))}
(ij)eE Jek

5. Computational Results

The solution procedures presented in the previous section were coded in Pascal. A
number of computational experiments were performed using IBM-3081D running under
MVS/XA 2.1.7. A variety of previously used problems were utilized in the tests. We
tested the procedures on the four networks shown in figures 4.1-4.4, i.e. ARPA, OCT,
USA and RING. These networks and traffic parameters are similar to those tested by
Gavish and Hantler [23], Narasimhan et al. [42], and Gavish and Altinkemer [26]. In all
four networks each node communicates with every other node. In ARPA network (Fig. 1)
there are 420 communicating node pairs with 4 messages per second being sent between
each pair. The corresponding values are 650 and 1 for OCT, and 650 and 4 for USA and
992 and 1 for RING.
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Table 4.1 summarizes the results of the computational tests. The results of our
solution procedure and of those of the procedure described in [26] are reported. The
Gavish and Altinkemer results were obtained using a code provided by the those authors.
The results of the experiments are described by providing the values of average message
length, best feasible solution (upper bound), best Lagrangean bound (lower bound), the
"gap" between the upper and lower bounds, and the maximum and average percentage link
utilizations. The mean message length is measured in bits and the lower and upper bounds
in milliseconds.

In all the cases our solution procedure produced better feasible solutions and
smaller "gaps" between the upper and lower bounds than those produced by the procedure
reported in [26]. The improvement in the feasible solutions obtained by our procedure is
between 0.1% and 13.5%. But more importantly, the procedure reported in [26] does not
generate feasible solutions beyond moderate levels of traffic. For example the procedure
reported in [26] did not identify feasible solutions beyond average link utilization of 51%
for ARPA, 71.4% for OCT, 34.5% for USA and 24.2% for RING networks. However,
our procedure finds good feasible solutions even for heavily loaded networks. This
improved effectiveness is obtained at the expense of increased computational time. For the
test problems one iteration of the procedure reported in [26] takes between 0.05 and 0.2
seconds whereas our procedure takes between 1 and 5 seconds.

The routing problem is a subproblem in the overall solution procedure for the
routing and capacity assignment problem. Consequently, the results obtained here clearly
have significant implications for not only solving the routing problem but also solving the

routing and capacity assignment problem. The ability to find feasible routing schedules for
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networks with higher link utilization levels implies that better capacity assignment can be
made.

It is worthwhile to note that when we minimize the maximum link delay the
maximum link utilization is reduced by approximately 3% and the average link utilization is
increased by approximately 2% compared to the utilizations obtained when the average

queueing delay in the network is minimized.

6. Conclusion

In this chapter we studied the nonbifurcated static routing problem in backbone
networks. In this problem, a route for every pair of communicating nodes is to be
identified in order to minimize the mean delay faced by messages. The route is to be from
chosen among all possible routes. A mathematical programming formulation of the
problem is presented. An efficient solution procedure based on Lagrangean relaxation of
the problem is developed. Computational results across a variety of networks are reported.
These results indicate the procedure to be very effective in generating feasible solutions for

even heavily loaded networks.
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Figure 4.1: The ARPA network.
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Figure 4.2: The OCT network.
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Figure 4.3: USA Network
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Figure 4.4: The RING network.
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Table 4.1. Summary of Computational Results

Gavish and Altinkemer's Method

Net- Mess- Upper Lower Gap* Max.% Ave.% Upper Lower Gap* Max. % Ave. %

work age bound bound link link bound bound link link
Length utili.  utili. utili.  utili.
ARPA 75 8.53 853 002 52.80 33.40 8.54 853 0.18 54.00 3341

ARPA 100 14.87 1486 0.11 65.60 45.20 15.06 14.86 1.37 68.80 44.86
ARPA 112 19.65 1961 020 71.70 50.80 20.02 19.61 210 7530 50.57
ARPA 113 20.11 20.09 0.10 74.10 51.20 20.53 20.01 2.61 7590 51.03
ARPA 125 2745 2741 0.13 80.00 56.80 no feasible solution
ARPA 130 31.80 31.72 025 83.20 59.10 no feasible solution
ARPA 140 4543 4501 094 89.60 63.80 no feasible solution

OoCT 225 36.25 3624 0.02 57.60 44.00 36.28 36.23 0.16 56.70 44.40
oCT 250 44.64 4462 0.04 6200 49.00 44.66 44.61 0.10 63.00 49.00
OoCT 275 55.11 5509 003 68.20 54.10 55.13 55.08 0.10 6820 54.12
OCT 300 68.61 68.57 006 7320 59.00 68.68 68.57 0.16 72.00 59.03
OoCT 325 8698 8682 0.18 78.00 63.90 87.03 86.81 0.25 7930 63.97
OoCT 350 113.43 11323 0.18 84.00 68.90 113.71 113.21 0.44 84.00 68.94

ocCT 360 127.78 12758 0.16 85.00 70.90 128.26 127.51 0.59 8640 70.92
OCT 362 131.23 130.76 0.36 85.40 71.30 131.56 130.76 0.61 86.90 71.40
oCcT 375 156.25 15558 0.44 88.50 74.00 no feasible solution
ocT 400 242.12 240.75 0.57 92.80 79.30 no feasible solution
USA 25 5.25 524 0.11 48.00 23.30 5.33 524 1.71 4830 23.70
USA 30 6.94 693 0.17 5570 28.20 7.15 6.86 4.12 5720 29.30
USA 31 7.33 731 0.16 5650 29.20 7.63 7.08 7.81 5810 30.30
USA 32 7.75 7.71 047 59.40 30.30 8.10 690 17.49 6040 31.20
USA 33 8.16 8.13 038 60.20 31.30 942 217 334 7695 34.50
USA 35 9.08 9.03 0.60 63.80 33.30 no feasible solution
USA 40 1190 11.71 156 71.70 38.50 no feasible solution
USA 45 1574 1547 171 80.60 43.50 no feasible solution
USA 50 22.09 2156 246 89.60 48.80 no feasible solution

RING 150 17.73 17.61 0.66 33.60 2230 17.86 17.61 1.39 3391 2230
RING 160 1934 19.19 0.79 36.80 23.80 19.50 19.18 1.64 37.10 23.90
RING 161 19.52 1951 0.05 38.30 24.10 19.68 19.34 1.76 3840 24.15
RING 162  19.67 19.51 0.84 3830 24.10 19.84 1951 1.71 3842 24.20
RING 200 2645 2621 092 43.60 29.80 no feasible solution
RING 250 3751 3711 1.06 54.50 3730 no feasible solution
RING 300 5238 5155 1.60 63.60 45.00 no feasible solution
RING 325 61.90 60.71 196 67.00 48.90 no feasible solution
RING 350 7324 71.64 223 7210 5290 no feasible solution
RING 375 87.28 8492 278 68.60 57.40 no feasible solution




CHAPTER V
THE PRIMARY AND SECONDARY ROUTE SELECTION
PROBLEM IN BACKBONE COMMUNICATION
NETWORKS

1. Introduction

Given the topology of a network (location of switches and links), link capacities
and external traffic (messages) characteristics, we study the problem of selecting primary
and secondary routes for each communicating node pair in order to minimize the average
delay encountered by messages at network switches. We consider static, nonbifurcated
routing since this routing scheme is used in most operational networks [23].

The model developed in this chapter addresses the routing problem in backbone
networks that are survivable under single-link failures. Survivability, in this context, is the
ability to reroute messages through alternate routes in the network in case of a single link
failure. In our model, survivability is achieved by selecting a primary route and a link-
disjoint alternate route. Because the two routes are link disjoint, one will always be
available in any single link failure scenario. Although sufficient capacity to handle all
messages between communicating node pairs is reserved on the links for both the primary
and secondary routes, messages are normally routed via the primary routes. If the failed

link is on the primary route of a communicating node pair, messages between that pair are
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rerouted over the secondary route. It is expected that all communicating node pairs are
switched back to their primary routes as soon as the failed link is back in service.

Pirkul and Narasimhan [47] addressed the problem of selecting primary and
secondary routes for every pair of communicating nodes. They developed a mathematical
programming model which captures situations where a single link or node failure would
divert interrupted traffic to the designated secondary routes. They assumed that a
predefined set of route pairs is given for each origin/destination pair. Each route pair
consists of a primary route and a secondary route. In this chapter we present a new
mathematical programming model which addresses the problem of a single link failure. We
also extend the work in [47] by considering all possible route pairs for each
origin/destination pair.

The remaining of this chapter is organized as follows. We present a mixed integer
nonlinear programming formulation of the problem in section 2. A Lagrangean relaxation
of the problem obtained by dualizing a subset of the constraints is presented in section 3.
In section 4, we discuss a method for solving the relaxed problem and present a procedure
to generate feasible solutions to the original problem using the information obtained from
the solution of the relaxed problem. In section 5, we present results of computational
experiments on different network topologies to show the effectiveness of our solution

procedures. Finally, some concluding remarks are presented in section 6.

2. Problem Formulation

The backbone network is modeled as a network of independent M/M/1 queues

[35,36] in which links are treated as servers with service rates proportional to the link
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capacities. The customers are messages whose waiting areas are the network nodes. We
assume a link failure follows an i.i.d. Poisson process. When such failure occurs, the

traffic on the affected primary routes is diverted to the secondary routes. Even though the
failure processes are not Poissonian because of the single link failure assumption, we use

the Poisson process approximation to develop the model.

We use the following notation:

N the set of nodes in the network
the set of undirected links in the network

M the set of communicating node pairs
Am the message arrival rate for communicating node pair m € M
O(m)  the source node for communicating node pair m € M
D(m)  the destination node for communicating node pair m € M
1/u the mean of the exponential distribution from which the message lengths are

drawn

The decision variables are

1 if the primary route for communicating node pair m

WZ-I = traverses link(i,j) in the direction of i to j

0 otherwise

1 if the secondary route for communicating node pair m
V- traverses link(i,j) in the direction of i to j

0 otherwise
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X Zz = flow of communicating node pair m on link (i,j) and (i) is used in the primary
route for pair m
Y? = flow of communicating node pair m on link (i,/) and (i,j) is used in the secondary

route for pair m

ZZ;- k)= flow of communicating node pair m on link (,j) and (i,j) is used in the secondary

route for pair m and link (k,/) in the primary route for pair m fails

U(rg_ kl) = flow of communicating node pair 7 on link (i,j) and (i,j) is used in the primary

route for pair m and link (4,/) not in the primary route for pair m fails

In terms of the above notation, the average queueing delay in the network, when there is no

m
I g
meM

link failure, equals % 2
. m
(L)EE Qi - 3 X'
J y
meM

where T = L Y A™ is the total arrival rate of messages to the network. The expected
H meMm

network delay when a link (%,/) fails is

m m
2 (Zijeny *Yijan)
1 meM

= 3
T (i etk

m m
Qjj - ZM(Z (ij.kt) *Yij k)

me

In order to obtain the expression for average delay in the network, we multiply each of the

above two expressions by their respective weights, i.e. (1 - Y, 7x7) and g , where
(kl)eE

represents the fraction of time link (4,/) is not operational.
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The primary and secondary route selection problem can now be formulated as

follows
Problem P:
m
> X
| meM
Zp=Mm T(l- Yy tkl) 2 +
(k,))eE (ij)eE Qij' > X’Z'
meM

m m
EM(Z (ij k1) *Yij ki)

m
T Xk , .)E(k ) M
keE (W#KL) 5 m m
kl)e Qij - T Zyijpn Uiy )
meM
subject to
1 ifi=0(m)
zwl.l.- zwﬂ. =93-1 ifi=D(m) V ieNand meM )
JEN JEN 0 otherwise
1 ifi =0(m)
m m e .
Zvij' zvﬂ. =4-1 ifi=D(m) V ieN and meM 3)
JEN JEN 0 otherwise
m m ..
Wij +le. +Vg.l +V§? <1 Y (i,j)e E and meM 4)
1m (WZ? + WJ?) < XZ? Y (i,j)eE and meM (5)
7
_]_‘,Am (VZ? + \/Zl) < YZ.‘ V (ij)eE and meM (6)
U
m m 1 m .. ..
Xp+ Yij - ;Am SZ(ij,kl) Y (i,j)eE (ij)#(k,l)and meM (7)
m .m m . -
Xij -Xy < U(ij,kl) Y (i,j)eE (i,j)#(k,l)and meM (8)
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X7 < L am V (ij)eE and meM )
U
e L pm Y (ij)eE and meM (10)
7l
zZm < Lam Y (ij)€E (i,j)#(kl) andmeM (11)
(k) =
< Lam Y (ij)eE,((ij)#(k]l) andmeM (12)
(ij.kl) = )y
S X <Qj V (ij)eE (13)
meM
S Y <Qj V (ij)eE (14)
meM

S (2 i) < Qi V (ij)€E (k1) #(i,j) andmeM (15)
eM

m

wgf WZ’ e (0,1) Y (i,j)eE and meM (16)
v';]'.’ ,V;;le (0,1) VY (ij)eE and meM (17)
X'; >0 VY (ij)eE and meM (18)
YZ‘ >0 V (ij)eE and meM (19)
z('g,'kl) >0 V (ij)eE ((i,j)#(k,l) andmeM (20)
U(rg.’kl) >0 Y (ij)€E ((i,j)#(k,]) andmeM (21)

The first term in the objective function measures the weighted queueing delay in the
network when all links are operational and the second term captures the weighted message
delay when link failure occurs. Constraint sets (2) and (3) contain the flow conservation
equations which define, for each communicating node pair, a primary and secondary route,

respectively. Constraints in set (4) specify that a link can be used either in the primary or in
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the secondary route but not both for every communicating node pair. This guarantees that
the primary and secondary routes are link disjoint. Constraints in set (5) ensure that the
flow for communicating node pair m on any link (i,j) is at least equal to the traffic
requirement for that pair if its assigned primary route uses link (7,j). Similarly, constraints
in set (6) ensure that the flow for communicating node pair m on any link (i,j) is at least
equal to the traffic requirement for that pair if its assigned secondary route uses link (i,j).
However, constraints in sets (5) and (6) hold as equalities at the optimum because of the
nature of the objective function. Constraint set (7) reserves space for secondary routes on
each link in case any other single link fails. A constraint in set (7), for communicating
node pair m, ensures that the traffic flow from pair m on link (i,j) is equal to the traffic
requirement for pair m whose primary route has become unavailable due to failure of link
(k,l) and consequently must use its secondary route which happens to use link(i,j).
Constraints in set (8) serve two purposes. First, they specify, for each communicating
node pair m, the normal flow on link (i,j) due to the primary route using it when the failed
link (k,[) is not on the primary route for that pair. Second, they guarantee that when link
(k,1) fails there will be no flow on link (i,j) from pair m which uses both (i,j) and (k,[) on
its primary route. Constraints in sets (9)-(12) state that the flow on any link for the
different communicating node pairs can not exceed their traffic requirements. Constraint
sets (13)-(15) ensure that the total flow on each link does not exceed its capacity when no
link failure occurs, when the link is used only on the secondary routes, and when there is
one single link failure. Constraints in sets (16)-(21) are the nonnegativity and integrality
constraints on the decision variables.

By allowing the best route for each communicating node pair to be chosen from the

set of all possible routes, our solution method based on the above formulation eliminates a
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shortcoming that the method presented in [47] suffer which is the theoretical possibility of
generating lower bound values that are higher than the optimal solution to the original

routing problem when all possible routes are considered.
3. A Lagrangean Relaxation of the Problem

Problem studied in [47] is a special case of problem P and is known to be NP-hard.
Consequently, it is highly unlikely that real world instances of P can be solved optimally in
reasonable computation time. Therefore, we propose a composite upper and lower
bounding heuristic solution procedure based on a Lagrangean relaxation of the problem.

Consider the Lagrangean relaxation of problem P obtained by dualizing constraints in sets

(4)-(8) using nonnegative multipliers %; , Pjj, Sjj .0 (j k1) and Bjj k1) for all (ij) € E,

(k1) #(i,j) and m € M, respectively.

Problem L:

m
T X
meM

.1
Z; =Min T(l- X ki) X
(k,l)eE (ij)eE Qij- % X’g
meM

m m
2 2 Ui
1 meM
T

Tt (i .)g(k y
;J ) . m m
(ki)eE Q- 2 (ijit) Uiy ar))
€

m



XS (S @iy + Bl - Bli)) - Py)XZ-’
(ij)eE meM (k)#(i))

Y S (Sj+ s a(ljkl))ym

(ij)eE meM / (k,D)=(i,j)

+ X )y 2 (-am-kl Z(m _ﬁ”.l.kl Um )
e ey ) k) PO i)
fLS S A ) W+ W)

K meM (ij)eE
Los s e oy v
‘umeM(lj)eE

+ X )y (Yy )+ )y > )y (a(kaI)Am)
(ij)eE meM K ijyeE (RD#(L)mem

subject to

(2), 3), O)-21)

Problem L can be decomposed into five subproblems:

Problem L1:

ZX

meM

ZL] = Min lf(l— Y [k[) Yy
(k,))eE (ij)eE QlJ D X
meM

v T CF @k Bk - B - P,)X’”
(i,j))eE meM (k.D)#(i.j)

subject to

9), (13) and (18)

(22)

(23)
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Problem L2:

m m
X (Z i k) *Yij k)
meM

.1
ZL2 = Min T

2L )
2, ’ m m
(kl)eE Qjj- X (Z(ij,kl) +U(ij,kl) )
meM

m m m
+ 3 S 2 ikl Zgjuy - Blijk) Ui )
e oty M) i) PO Sl

subject to

(11), (12), (15), (20) and (21)

Problem L3:

Ziz=Min S % (Sp o+ 3 agi )Yy

L3 =™ S agijkl )Y
(i,j)EE meM / (k,1)#(i,j) J Y

subject to

(10), (14) and (19)

Problem L4

.1 m m
Zj4=Min = ¥ ¥ Am(Pij+yij)(WZ-l +WJ’{‘)
K meM (ij)eE

subject to
(2) and (16)

and
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(24)

(25)

(26)
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Problem L5:
Zis=Min T 3% AmGH g0V @7
K meM (ij)eE
subject to
(3) and (17)

m
The initial values of all the the multipliers are set equal to zero except the P

multipliers whoose values are determined as follows. First, the routing problem addressed

m
in chapter 1V is solved. If we let 8ij and hjj denote the values of the multipliers that yield

m m
the best lower bound to the routing problem, then we set Py =gjj +hij for(ij)e E and

me M.

For ease of the presentation in the remaining of the chapter, let

m
B:: =

m m m m
i B Sk Bk - Bkt - Py
CZ'I ='S)ij7'l + Y ,qzlj,kl) and Dz%(l_ Y 1)
(k,)#(i,j) (kDeE

In the next section, we discuss the methods for solving the Lagrangean problem L and the

original problem P.
4. Solution Techniques

4.1 Solution of Problem L/

Problem L/ can be decomposed into |El subproblems (one for each link). For any given vector of
m

multipliers Bj;  each of the IEl subproblems of problem L1 is a continuous knapsack problem with

nonlinear objective function that can be solved using the following greedy type procedure.



69

Procedure-LAG1
Step 1: Reorder the XZI variables by sorting them in nondecreasing order of Birjn ; assume
that the variables are reindexed in this order. Let m=0.
Step 2: Let m=m+1 and set
o] Xo if B <0and Xg >0

Yy
0 otherwise

D .s
where X) = min { L Am (Qij -5) - [—lel]I/z} and
H -Bjj
k

S= ¥ X"
k<mlj

Step 3: If m=IMI sto ;IfX’Zz <l A then stop and set Xk =0 for
p Y ij u p ij

k=m+1,...,IMI. Otherwise go to step 2.
The value assigned to ijn in step 2 is determined in a such a way that it decreases the

objective function of the subproblem the most. The complexity of solving problem L/ is

O(EIMILogIMl).

4.2 Solution of Problem L2

Problem L2 can be decomposed into |El |E-1] subproblems (one for every link and every
other link). For any given vector of multipliers a(r?j’kl ) and ﬂ?,;', ki) each of those
subproblems of problem L2 is a continuous knapsack problem with nonlinear objective
function that can be solved similarly to subproblems of problem L2 . The complexity of

solving problem L2 is O(IEI?‘IMILogIM ).



70

4.3 Solution of Problem L3
Problem L3 can be decomposed into |E| subproblems (one for each link). For any given
vector of multipliers C{jn each of the IE|l subproblems of problem LI is a continuous
knapsack problem that can be solved using the following greedy type procedure.
Procedure-LAG2:
Step 1: Sort the commodities in nonincreasing order of C]rJn ; assume that the
commodities are reindexed in this order. Let m=0.

Step 2: Let m=m+1 and set
m | A7 if c’g <0

j
0 otherwise
where § = ZYI{C-, A] = Min { 1 A ,Qjj - S}
k<m Y u

Step 3: Repeat step 2 until m=IMI.
The complexity of solving problem L3 is O(ElIMILogIMl).

4.4 Solution of Problem L4 and L5

Both problems L4 and L5 can be further decomposed into IM| subproblems (one for
each communicating node pair). Each subproblem can be solved as a shortest path problem
from O(m) to D(m) . In our study Dijkstra’s algorithm [55] is used for solving the

subproblems. The complexity of solving problem L4 and L5 is O(IM INI2).

4.5 Heuristic Solution Procedure
In the begining of the procedure an attempt is made to generate an initial feasible

solution using the following procedure.
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Procedure-Init:
m
Step 1: Solve the routing problem addressed in the previous chapter. Let gj;
andhjj , for (i,j)e E and me M, be the multilpiers that yield the feasible
solution with the lowest objective function value.

Step 2: Identify, for each sommunicating node pair m, a primary route as the

m
shortest path from O(m) to D(m) using g;; + hjj as the lengths of the links

in the network.
Step 3: Identify, for each sommunicating node pair m, a secondary route using
only links that are not included in the primary route for pair m. The

secondary route is defined as the shortest path from O(m) to D(m) using

m
gjj +hij asthe lengths of the links. If, for a particular pair m, a secondary

route can not be identified, then stop; no initial feasible solution is
generated. Otherwise, go to step 3.

Step 3: If the capacities of the links can support the routes selected in steps 2 and 3
in cases of a link failure and no link failure, then an initial feasible solution
1s obtained.

In every iteration of the subgradient optimization algorithm an attempt is made to
generate a feasible solution to problem (P) using procedure-Grad described below. The
best feasible solution is retained when the subgradient algorithm is terminated.

Step 1: Use the solution of problem (L4) as the primary routes for the

communicating node pairs.
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Step 2: Identify a secondary route, for every pairm , as the shortest path using only
the links which are not included in the primary route with (ng + yZ'l) as the
lengths of the links.

Step 3: If a secondary route is identified for each communicating node pair and the
links have enough capacities to support the traffic flows in cases of a link
failure and no link failure, then a feasible solution is available and it is
retained if its value is the best so far. Otherwise, the next subgradient
iteration is executed without generating a feasible solution at the current

iteration.
5. Computational Results

The solution procedures presented in the previous section were coded in
Pascal. A number of computational experiments were performed using IBM-3090D
running under MVS/XA 2.1.7. To evaluate the effectiveness of those procedures, we
used the same set of randomly generated networks with 10 and 15 nodes that were
used in chapter III. We used also networks with 20 nodes generated in the same way
the previous networks were generated. The average number of links in the networks
with 20 nodes is 28. The capacity of all links is set equal to 25000, 30000 and 35000
bps for networks with 10, 15 and 20 nodes, respectively. In all networks used in this
study each node communicates with every other node and sends one message. The
parameter Zj; is set equal to 0.1% for all links in the networks.

Table 5.1 gives the average (over the five problem instances) performance

measures for the different networks. The results of the experiments are described by
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providing the number of nodes in the network, the values of average message length
(in bits), the percentage gap between the feasible solution value and the lower bound
and the average and maximum link utilizations. These utilizations represent link
utilizations when there is no link failure. The maximum link utilizations when there is
a single link failure are also reported in the last column of table 5.1. The percentage
gap is computed as (Feasible Solution Value - Lower Bound) / Feasible Solution
Value.

The mean message length captures a variety of traffic loads for all networks tested.
They range from light loads to cases where the load is beyond the normal operating levels.
In general, the gap between the feasible solution values and lower bounds is small and
ranges from 0.17% to 0.73%. The actual CPU computation time taken by the solution
procedure is on average 115, 150 and 250 seconds for networks with 10, 15 and 20 nodes,

repectively .

6. Conclusion

In this chapter we studied the primary and secondary route selection problem in
backbone networks. In this problem, a primary route and a secondary link disjoint route
for every pair of communicating nodes are to be identified in order to minimize the
weighted average delay faced by messages. The selection of two link disjoint routes for
each communicating node pair is a popular way to consider reliability issue in
communication networks. The primary route is normally used for sending messages.
However, in case a primary route is unavailable due to link failure, its corresponding

secondary route 1s used.
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A mathematical programming model of the problem was presented. An efficient
solution procedure based on Lagrangean relaxation of the problem was developed.
Computational results using two types of randomly generated networks are reported.
These results indicate the procedure to be effective. Future work can be directed at
developing fast procedures to solve the routing and capacity assignment problem which

considers the reliability issue in backbone communication networks.
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Table 5.1. Summary of Computational Results.

Number Average Message Percent Average link Maximum Link Maximum Link Util.
of Nodes Length Gap Utilization Utilization in Case of a Link Failure
10 300 0.17 15.5 27.6 51.0

10 350 0.20 18.1 32.2 59.5

10 400 0.29 20.6 36.8 70.5

10 450 0.19 232 41.4 76.5

10 500 0.31 25.8 46.1 80.4

15 50 0.53 4.1 83 15.3

15 100 0.54 8.4 154 28.1

15 150 0.47 124 24.0 42.6

15 200 0.45 17.1 34.2 60.3

15 250 0.33 213 44.7 77.8

20 50 0.35 6.8 13.2 23.0

20 100 0.37 11.5 23.0 39.5

20 150 0.45 17.2 33.9 59.3

20 200 0.57 23.0 441 71.5

20 250 0.73 27.1 533 87.0




CHAPTER VI
THE ROUTING AND CAPACITY ASSIGNMENT PROBLEM
IN BACKBONE COMMUNICATION NETWORKS

1. Introduction

In this chapter, we consider the problem of determining simultaneously the link
capacities and routes over which messages between communicating node pairs are
transmitted in a backbone communication network. The network topology (location of the
nodes and links), the traffic requirements between source/destination pairs, a set of link
types with different capacities, and costs and a unit cost of delay are given. The goal is to
design a communication network with minimum overall system costs composed of
connection costs which depend on link capacities and delay costs incured by users. Delays
are caused by the finite capacities of the links which result in queueing at the intermediate
nodes of a communication route.

This study overcomes three serious shortcomings of previous methods suggested in
past research. The first one is the treatment of route selection and link capacity assignment
separately. Given link capacities, the routing problem seeks to select the best routes for
communicating node pairs in order to minimize the average queueing delay in the network.
In the capacity assignment problem, the routing strategy is assumed to be given and the
goal 1s to assign capacities to links in the network at minimum costs. Here the routing and

link capacity assignment decisions are made simultaneously. The second shortcoming is
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that these methods assume that a set of prespecified candidate routes chosen from among all
possible routes is given for every communicating node pair. Obviously, the quality of the
solutions obtained by these methods depends heavily on the choice of the candidate route
sets generated before the methods are applied. The use of only a subset of all possible
routes by these methods results in a theoretical limitation which is the possibility of
generating lower bounds higher than the values of the optimal solutions to the routing and
capacity assignment problem. Qur solution method eliminates this theoretical limitation by
considering all possible routes for every communicating node pair. The third drawback is
that one of the previous methods assumes that a prespecified set of cut constraints is given.
However, it is very difficult to generate good cut constraints. Our method does not use
such cut constraints. The elimination of the three limitations by our method makes it easier
to use by communication network designers.

The remaining of this chapter is organized as follows. We present a mixed integer
nonlinear programming formulation of the problem in section 2. A Lagrangean relaxation
of the problem obtained by dualizing a subset of the constraints is presented in section 3.
In section 4, we discuss a method for solving the relaxed problem and present a procedure
to generate feasible solutions to the original problem. In section 5, we present results of
computational experiments on four network topologies to show the effectiveness of our
solution procedure. In section 6 we study the effect of adding the cut constraints on the

quality of the solutions. Finally, some concluding remarks are presented in section 7.
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2. Problem Formulation

In order to formulate the routing and capacity assignment problem in backbone
networks, we assume that the network topology, the capacities of the links, and the traffic
requirements between every pair of communicating nodes are given. We also make the
usual assumptions which are used in modeling the queueing phenomena in backbone
networks. Specifically, we assume that nodes have infinite buffers to store messages
waiting for available transmission links, that the arrival process of messages to the network
follows a Poisson distribution, and that message lengths follow an exponential distribution.
We further assume that the propagation delay in the links is negligible, that there is no
message processing delay at the nodes, and that there is only a single class of service for
each communicating node pair. Under these assumptions, the backbone network is
modeled as a network of independent M/M/1 queues [35,36] in which links are treated as
servers with service rates proportional to the link capacities and messages whose waiting
areas are the network nodes as customers.

The organization using the network incurs a cost associated with the queueing delay
encountered by messages in the network. This cost can be estimated by the cost of the
waiting time of its employees waiting in front of the terminals for network services and the
cost associated with decisions not made on time. Alternatively, artificial delay costs can be
used to achieve a desired level of tradeoff between network costs and average response
time. Line costs consist of 1) fixed costs which include a fixed setup cost per unit of time
and a cost proportional to the length of the link, 2) variable costs which are assumed to be

proportional to the traffic carried over the line and correspond to the estimated processing
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cost of messages at the network computers. The objective of the problem addressed in this

chapter is to minimize the total connection and message delay costs.
We use the following notation:

N the set of nodes in the network

E the set of undirected links in the network

R the set of available capacity levels

M the set of communicating node pairs

AM  the message arrival rate for communicating node pair m € M

O(m) the source node for communicating node pair m € M

D(m) the destination node for communicating node pair m € M

C:. variable cost for capacity level r for link (i,j) ($/month/bps)

F., fixed cost for capacity level r for link (i,j) ($/month)

capacity of type r for link (i,j) (bps)

D unit cost of delay ($/month/message)

The decision variables are

1 if the route for communicating node pair m traverses link
Yo = (i,j) in the direction of i to j

0 otherwise

m

X ij " = flow of communicating node pair m on link (i,j) with capacity level r

{ 1 if link (i,j) is assigned capacity level r
1

0 otherwise



The problem can now be formulated as follows:

Problem P:
2 X X
) reR meM
Zp=Min D Y — —
A
(Lj)eE ¥ QWy- X XXy
reR reR meM
+ 3 3C XY o+ 3FLW
(ijJjeEreR ' meM®  (ij)eEreR
subject to
1 ifi=0(m)
> Y- ZY =<S-1 ifi=D(m) V ie N
JeN JEN 0 otherwise
Lam % vl < s x7 Y (ij)eE and meM
j i ij
H reR
Lo am (Y + YZ’)S s zx’z‘.’ VY (ij)€E
HmeM meM reR
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In this formulation, the objective function minimizes the sum of the delay cost and
the fixed and variable costs. Constraint set (2) contains the flow conservation equations
which define a route (path) for each communicating node pair. Constraint set (3) links
together the XZz " and Y:Jn variables. They ensure that the flow for communicating node
pair m on link (i,j) with capacity level r is at least equal to the traffic requirement for that
pair if its assigned route uses link (i,/). Constraints in set (3) hold as equalities at the
optimum. Constraints in set (4) represent an aggregate form of the constraints in set (3).
Even though these constraints are redundant, they are helpful in obtaining better lower
bounds in the Lagrangean relaxation suggested in the next section. Constraint set (5)
guarantees that the flow for every communicating node pair m on arc (i,j) with capacity
level r does not exceed its traffic requirement. Constraint set (6) enforces the capacity
limitations on the links. Constraint set (7) specifies that exactly one capacity level must be
selected for each link. Constraint set (8) restricts the X:Jn variables to be nonnegative and
constraint sets (9) and (10) enforce integrality conditions on tthZ-l and Wz variables,
respectively.

By allowing the best route for each communicating node pair to be chosen from the
set of all possible routes, our solution method based on the above formulation eliminates a
shortcoming that the method presented in [25] suffers which is the theoretical possibility of
generating lower bound values that are higher than the optimal solution to the original
routing problem when all possible routes are considered.

This formulation is related to the one used in [26]. It may be viewed as a
disaggregate formulation of the routing and capacity assignment problem solved in [26].

Specifically, if one were to drop constraint sets (3) and (5) and substitute the terms
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Y X’Z- " by variables which represent the total flow on link (i,j), one would obtain the
meM

formulation in [26] without the predetermined cut constraints. The variable set Xijn d

together with constraint sets (3) and (5) is used to represent flows between each pair of
communicating nodes separately. This disaggregate formulation leads to better lower
bounds and feasible solutions than does the formulation in [26] but at the expense of added
computational effort as shown in section 5.

Another advantage of the method presented here is that it does not require
identification of cut constraints. Since cut constraints are specific to a problem instance,
and since determining good cut constraints is not a trivial task, network designers may find

our procedure easier to utilize than the one outlined in [26].
3. A Lagrangean Relaxation of the Problem

Problem P is a combinatorial optimization problem with a nonlinear objective
function. Consequently, it is highly unlikely that real world instances of P can be solved
optimally in reasonable computation time. Therefore, we propose a composite upper and
lower bounding procedure based on a Lagrangean relaxation of the problem. Consider the
following Lagrangean relaxation of problem P obtained by dualizing constraint set (3) and

m
(4) using nonnegative multipliers o and ﬁij for all (i,j) € E and m € M, respectively.
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Problem L:

ZEX

reR meM

Z;=Min D Y
',' E r r B myr
(L)ek's Quwyi- = 2 X7

reR reR meM

+ 2 DIED) (alj ﬁzj+c )er > EF;J-WZ-

(ij)JeEreR meM (i,j)eEreR
Ly oy oam (alj+ﬁu)(yg.’ LY (11)

K meM (ij)eE
subject to constraint sets (2), (5)-(10).

Problem L can be decomposed into the following two subproblems:

Problem LI:

ZEX

reR meM

Z;; =Min D ¥
(LJ)GEZQ WJ- Y zxj

re reR meM

+ S S S Coy-BeCpXy+ I SFLW (12)
(ijJjeEreR meM (ij)eEreR

subject to constraint sets (5)-(8), (10).

and
Problem L2:
Zip=Min & 3 % A+ By v V7 (13)

HmeM (i,j))eE

subject to constraint set (2) and (9).



84

Problem L1 can be decomposed into |El subproblems (one for each link) as follows:

mr
D P ¢
Min D reR meM
in
ro.r mr
s oWy s 3 X7
reR reR meM
m r
+ T T GO Xy + SFW (14)
reR meM reR
subject to
mr 1 m
Xij < —A Y meM andreR (15)
U
ZMX’Z-rSQ:j Ffj V reR (16)
me
Y Wﬁj =1 a7
reR
mr
Xij >0 VYV meM andreR (18)
ng e (0,1) V reR (19)

Similarly, problem L2 can be decomposed into IM| subproblems (one for each

sourced/destination pair) as follows:

.1 m

Min — ¥ A7 (a + B (y}j’.‘ + YJ’.{‘) (20)
/J' . .
(i,j)eE
subject to
1 ifi=0(m)

sYi- =Y =91 ifi=D(m) V ieN 1)

jeN JEN

0 otherwise

mn e (0,1) Y (ij)eE (22)

Yij

m
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In the next section, we present methods for solving the Lagrangean problem L and the

original problem P.
4. Solution Techniques

4.1 Solution of Problem L/

To solve a subproblem of problem L! for link (i,j), we observe that constraint set
(17) requires that exactly one capacity level must be selected for link (i,j). Let r be a trial
value for the best level. In this case, W;j =1, XZ»IP =0, and W‘Z =( for p # r. The optimal
values of X’; " can then be determined as follows. For any given vector of multipliers oq’jn
and f3; j» and a capacity level r, the subproblem for link (i,j) is a continuous knapsack
problem with nonlinear objective function that can be solved optimally using the following

greedy type procedure.
Procedure-PROC1
ro_. . . . . m
Step 1: Reorder the XZI variables by sorting them in nonincreasing order of 04 5
assume that the variables are reindexed in this order. Let m=0.
Step 2: Let m=m+1 and set

. m r
mr Xo if oy + B -Cl-j>0andX0 >0
XU =

0 otherwise
’

DQ..
where X = min{ 1 A (Q;j- - p Y - 12} and
H o + Bij - Cij

S=3YX

kr
k<m Y
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Step 3: If m=IM| stop; if XZ‘ " < 1 A then stop and set Xg-r =0 for
k=m+1,...,IMI. Otherwisfai go to step 2.

The value assigned to XZ‘ " in step 2 is determined in a such a way that it decreases
the objective function of the subproblem the most. Suppose we solve the subproblem for
each capacity level r = 1,2,... IRI. If r* is capacity level with the minimum objective
function value, then r* is the capacity level to be selected for link (7,/).

The subproblems of problem L/ are different from those solved in [26]. In the
former, the total flow passing through each link depends on the individual communicating
node pairs because the objective function of each subproblem contains terms related to the
communicating node pairs and constraint set (5) is included in the model. In [26], the total
flow is determined independently of the communicating node pairs because no
disaggregation constraints similar to those in sets (3) and (5) are present in the formulation
of the problem. It is this disaggregation of flows included in our formulation that leads to

better feasible solutions and tighter lower bounds.

4.2 Solution of Problem L2

Each subproblem of problem L2 can be solved as a shortest path problem from
O(m) to D(m) with (ag-l + B j) as the nonnegative costs on the links. In our study
Dijkstra’s algorithm [55] is used for solving them. These subproblems are related to those
in [26] with one major difference. In [26] the “lengths” of the links are the same for all
communicating node pairs, hence all the subproblems can be solved with one run of
Floyd’s algorithm [55] which finds shortest paths between all pairs of nodes
simultaneously. In our subproblems, the “length” of a link depends on the communicating

node pair using it. This requires that shortest paths be determined separately for each
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communicating node pair. This is a direct result of the disaggregated treatment of the

flows.

4.3 Complexity of Solving Problem L

Since the ordering of the communicating node pairs is done only once for each link
in the network, the complexity of solving problem LI is O{|ElIMImax(IRl,logIMl)}. Each
of the IM! subproblems of problem L2 can be solved in Of INI2) using Dijkstra's algorithm.
Thus, the complexity of solving problem L2 is O{IMIINI2}. Therefore, the complexity of
solving problem L is O{ max(IElIMImax(IRl,logIM1) , |M|INI2)}.

4.4. A Heuristic Solution Method

In this section, a three phase heuristic solution procedure to solve problem P is
discussed. In phase O, an initial feasible solution is generated using the following
procedure similar to Procedure-Init presented in chapter II1.
Procedure-Initl:

Step 1: For each communicating node pair determine a route with the minimum
number of links.

Step 2: Each link is assigned the smallest capacity r that supports the flow along
the link. A link is assigned the largest available capacity anl if the flow
along the link exceeds this capacity. If, for every link, the total flow on the
link does not exceed the maximum available capacity, then a feasible

solution is at hand (stop); otherwise go to step 3.
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Step 3: Pick the link (i,j) with the largest amount of flow which exceeds the
maximum available capacity. Among all communicating node pairs
using that link, reroute the traffic requirement of the communicating
node pair k which, using the "alternative path" would decrease the

following total cost function the most:

Zinit= Y cost(ij), where

(i,j)eE
-
> X
1 meM m r
- if 3 x5 <0’
ij- > X’g_ meM
cost(ij) =3 meM
T X7
meM .
LM —@Q_l— otherwise

(M is a large positive number.)

This artificial cost function decreases when the capacity utilization of link (i,j)

(and possibly of other links on the original route) for commodity k decreases. The
"alternative path" is the path from O(k) to D(k) such that the most utilized link on
the path has a lower utilization than the most utilized link on any other path from
O(k) to D(k). The problem of finding such path is known as the bottleneck
shortest path problem and can be solved using a modified version of Dijkstra's

algorithm [55] in O(INI2) operations. If the traffic requirement of no
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communicating node pair can be rerouted, then stop since no initial feasible

solution can be obtained; otherwise, repeat step 3 until no link capacity is violated.

Phase 1 uses the information provided by the Lagrangean relaxation. In every
iteration of the subgradient optimization algorithm an attempt is made to generate a feasible
solution to problem P. The best feasible solution is retained when the subgradient
algorithm terminates. Phase 1 can be outlined as follows.

Stepl: Check the feasibility of the Lagrangean solution for problem P .

Step2: For each link (i,j), find the smallest capacity which accommodates

the traffic determined in the Lagrangean solution of problem L2. If the
maximum available capacity is exceeded for one or more links stop, no
feasible solution is generated. Otherwise, a feasible solution is determined.

Step3: For each link (i,j), check whether the next higher capacity level would

reduce the overall cost of the network, if so increase the capacity. Stop
when all links are examined.

Phase 2 of the heuristic solution procedure is only applied at the end of the
subgradient optimization algorithm. It solves a routing problem which consists of finding
the best possible route for each communicating node pair using the capacities selected at
the termination of phase 1. This routing problem can be solved very efficiently using the
method described in chapter IV. It should be note that phase 2 of the heuristic solution
procedure can be used at every iteration of the subgradient optimization algorithm to
improve a given feasible solution. We have chosen not to do this as it was found to lead to

excessive computational efforts.
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5. Computational Results

The solution procedures presented in the previous section were coded in Pascal. A
number of computational experiments were performed using IBM-3081D running under
MVS/XA 2.1.7. A variety of previously used problems were utilized in the tests. We
studied the four topologies shown in figures 4.1-4.4, viz. ARPA, OCT, USA and RING
in chapter IV. These networks along with traffic parameters and cost structure are similar
to those tested in [25,26]. Note that the appropriate line capacities would most likely
correspond to T1, T2, T3, ect. lines. The capacity/cost structure used here is chosen to
facilitate comparison with previously developed procedures. In all four networks each
node communicates with every other node. In ARPA network there were 420
communicating node pairs with 4 messages per second being sent along the chosen route.
The corresponding values were 650 and 1 for OCT, and 650 and 4 for USA and 992 and 1
for RING. The average message length was set at 400 bits and the unit cost of delay was
assumed to be $2000 per month per message for the base case. The different capacities
used in the base case and their corresponding cost components are presented in table 6.1.
The fixed cost (FZ- ) for link (i,j) with capacity level r is computed as the sum of the initial

setup cost and the distance cost which is proportional to the length of the link.
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Table 6.1. Link Capacity Set and Its Cost Components

Capacity Setup Cost  Distance Cost Variable Cost
[bps] [$/month]  [$/month/mile] [$/month/bps]

4800 650 0.4 0.360
9600 750 0.5 0.252
19200 850 2.1 0.126
50000 850 4.2 0.030
108000 2400 42 0.024
230000 1300 210 0.020
460000 1300 - 60.0 0.017

The results of the experiments are reported by providing the values of the best
Lagrangean bound (Lower bound), the best feasible solution (upper bound), the different
cost components of the feasible solution and the gap between the upper and lower bounds
expressed as a percentage of the lower bound. In order to compare the effectiveness of our
procedure to that described in [26], we also report the lower bound, upper bound, and the
gap obtained in [26], the percentage improvements produced by our procedure in the values
of lower bounds (ILB) and the values of the upper bounds (IUB) as well as the percentage
gaps closed (GC) by our solution procedure.

Table 6.2 shows the results for various message lengths. Results for different
delay costs are presented in table 6.3. Tables 6.4 and 6.5 demonstrates the impact of the
changes in the fixed setup cost and variable cost, respectively on the solution quality. The
fixed costs tested have been set to 0%, 10%, 50%, 150% and 200% of the fixed costs used

in the base case and the variable costs have been set to 0%, 50% and 150% of the variable
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costs used in the base case. Results reported in tables 5, 6, 7 and 8 in [26] are for the same
experiments that are summarized in tables 6.2, 6.3, 6.4 and 6.5 in this chapter,
respectively.

As shown in table 6.2, when the network load increases as a result of higher
message length, the delay cost increases indicating a deterioration in the response time to
users. This can be explained by the dominance of the fixed cost in the overall network cost
which prevents the use of higher link capacities. On average, delay cost, fixed cost and
variable cost represent 22%, 61% and 17% of the total cost, respectively.

The effects of changes in the delay cost are shown in table 6.3. As the delay cost
increases a tradeoff between the fixed cost and the response time is made. The fixed cost
increases when the unit delay cost increases as the networks switch to higher link capacities
to provide better response time to users. The improvement in the response time is reflected
in the decrease in the ratio of total delay cost by the unit delay cost. On average, this ratio
decreases from 543 when the unit delay cost is 100 to 173 when the unit delay is 3000.
The variable cost does not vary significantly with the change in the delay cost.

The impacts of variations in the fixed cost are examined in tables 6.4. As the fixed
cost increases, its share of the total cost increases. When the multiplier of the fixed cost is
0.1, the delay, fixed and variable costs represent 23%, 35% and 42% of the total cost,
respectively. When the multiplier of the fixed cost is 2, these figures are 19%, 70% and
11%. In addition, as the fixed cost increases the delay cost increases indicating a
deterioration in the response time to users. This is the result of the higher fixed costs
which lead to the use of lower link capacities.

The effects of the changes in variable costs are reported in table 6.5. As the

variable cost increases its share in the total cost increases slowly and the fixed cost
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continues to be the dominant component. The change in the variable cost did not produce
significant changes in the delay and fixed cost. This may be the result of using the
particular cost structure in this chapter.

Computational results indicate that the solution procedure introduced here is
effective in solving the routing and capacity assignment problem. Compared to the
procedure described in [26], our solution procedure improved lower bounds and feasible
solution values in 88% and 89% of the test problems solved, respectively. The gap
between the lower bound and the feasible solution was reduced in 98% of the problems.
The average improvement in the lower bound was 3.76%. The average improvement in the
feasible solution value was 1.09%. On the average 45.31% of the gap between the feasible
solution value and the lower bound from [26] is closed using the procedure outlined here.
The effectiveness of our solution method may be improved if constraints similar to the cut
constraints used in [26] are included in the formulation of the problem. The effect of
imposing such constraints is analyzed in the next section. For the test problems used in
this study one iteration of the subgradient optimization procedure takes anywhere from two

to ten seconds to run.

6. Effects of Imposing Cut Constraints

If a network cut, say i, is generated which seperates the network into two
disconnected sets of nodes A; and B, then the sum of the capacities of the links which
belong to that cut has be able to support the flow over that cut. The minimal required flow
over a cut can be easily determined from the traffic requirement matrix. If cuts which do

not satisfy the flow requirements are identified and the Lagrangean solution is required to
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have sufficient capacities to support the flow on these cuts, then the Lagrangean solution

value (lower bound) can be improved.

In this section we study the effect of cut constraints on the quality of the solutions

to the routing and capacity assignment problem. The following additional notation will be

used to formulate the routing and capacity assignment problem with cut constraints.

Wi

set of minimum number of links which disconnects the network into two sets of
connected nodes A; and B; .

set of communicating pairs with an origin node in A; and a destination node in B;
or an origin node in B; and a destination node in A4; .

index set of cuts which do not have any link common.

set of links which are not included in any link.

The routing and capacity assignment problem with cut constraints can now be

formulated as follows.

Problem P’:

s 3 Xy
reR meM

Zp'=Min D 3 e

ek s @ywi- x5 x5

reR reR meM
+ 3 SFLW;+ 3% 3Cy 3 23)
(ij)eEreR (ijJeEreR ~ meM

subject to
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1 ifi=0(m)

zY'g- ZY;-?: -1 ifi=D(m) V ie N 24)
JeN JEN 0 otherwise
Lam (Y”‘ Y”’)< zx V (ij)eE and meM (25)
H reR

1 .

=3 oaAm (Y + Y'-:-l) Y zx V (ij)eE (26)
HmeM meM reR

X'g’ < Lam V(ij)€E,reR and meM  (27)

u

¥ X’;‘.’SQBWE VY (ij)€E and reR (28)
meM

) Wjj =1 Y (ij)eE 29)
reR

5 zQW'jzl s AM V ieG (30)
(ij)EEreR “meCi
XZ.” >0 V(ij)€E,reR and meM  (31)
YZ.’ , Y;;‘ e (0,1) V (ij)eE and meM (32)
w;j e (0,1) V (ij)€E and reR (33)

The objective function of problem P’ is the same as that of problem P. Constraint
set (30) defines the new cut constraints and ensures that the sum of the capacities for the

links included in each cut i is sufficient to accommodate the total flow between the nodes in

Aj and B;.
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The Lagrangean relaxation of problem P’ is obtained by dualizing constraint set

(25) and (26) using nonnegative multipliers a‘rJn and Bij forall (i,j) e FEand me M,

respectively.

Problem L':

2 oz xG
reR meM

Z;'=Min D %
i Ve E ro.r mr

(ks 9wyi- 2 2 X5

reR reR meM

D S A TR e D D 3 M

(ijJeEreR meM (i,j)eEreR
+LE S AmCag B O + Y (34)

K meM (ij)eE
subject to constraint sets (24), (27)-(33).
Problem L' can be decomposed into two subproblems. One subproblem L is identical to
subproblem L7 of the routing and capacity assignment problem without cut constraints. The

other subproblem L’; is as follows:



101

Problem L';:
mr
s 3 X
reR meM
min D Y
i i ror mr
(lj)eE 5 Qij Wij- y X i
reR reR meM
m r
+ T 3T Coy-BCpXy + T TFuW (39)
(ij)jeEreR meM (ij)eEreR

subject to constraint sets (27)-(32).

Problem L’; can be separated into two sets of subproblems: one set includes a

subproblem for each link not included in any cut and the other set includes a subproblem for

each cut i.. The subproblems in the first set are identical to subproblems of Problem L in

section 3 and can be solved in the same way. The second set includes |Gl subproblems, one

for each each cut. The subproblem associated with the ith cut is

> oz X7y
reR meM
min D ¥
- . r r mr
(Lph)eW; s Qij Wij' 2 2 X ij
reR reR meM
m
+ % 3 3 Co-BrCpXG v 5 SFuW (36)
(i,j)e WireR meM (i.j)e WireR
subject to
X’Z}’ < Lym V(ij)eE,reR and meM (37)
U
3 X’{j‘.’sgfngj V (ij)eE and reR (38)

meM
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T W=l V (ij)eE (39)
reR
1
S T oWz 3 am (40)
(ij)€EreR H meC;
x:.;?r >0 V(ij)eE,reR and meM (41)
WZ.’ e (0,1) V (ij)eE and meM (42)

It should be noted that if we ignore constraint set (40), then the above subproblem
is separated into |W;l subproblems, one for each link in the cut. Based on this observation,
the subproblem for the ith cut can be solved using the following procedure.

Step 1: Solve the subproblem for each link in the cut without the cut constraint in

the same way a subproblem in the first set is solved.

Step 2: If the capacities assigned to the links in the cut can support the total flow to
be transmitted between the nodes in A; and B; , then those capacities are
chosen as the solutions for the subproblem corresponding to the ith cut, If
not, go to step 3.

Step 3: Examine all possible combinations of capacities that satisfy the cut
constraint. The combination which has the minimum objective function
value of the subproblem of that cut is chosen.

This approach to solve the subproblems corresponding to the cuts is efficient if only

few links are included in each cut and a link is not included in more than one cut. The
exhaustive search for all capacity combinations for each cut is not time consuming because

the cardinality of the set R is small.
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The following lemma establishes the relationship between Z7, < Zj /, the

Lagrangean value for the link subproblem with and without cut constraints respectively,

using the same Lagrangean multipliers.

Lemma 1. Z; <Z;".
Proof. Link subproblem with cut constraints is a restriction of the link subproblem without
cut constraints.

It is important to note that the above lemma holds only when the same Lagrangean
multipliers are used for both subproblems. As will see next, the solution procedure based
on the formulation without the cut constraints on average slightly outperforms the one
based on the formulation with the cut constraints because the former generates better
multipliers which produce tighter lower bounds than does the latter procedure.

The procedure with cut constraints was tested on the same problems as was the
procedure without them. The cut constraints presented in [26] were used. The
computational results are reported in tables 6.6-6.9. They indicate that the addition of the
cut constraints has little impact on solution quality. The average gap between lower bounds
and feasible solution values using the formulation without the cut constraints is 4.82%.
The same measure using the formulation with the cut constraints is 4.91%. The best result
obtained by adding the cut constraints correspond to the ARPA network with unit delay
cost equal to zero where the gap between the lower bound and the solution value was
reduced from 16.9% to 13.82%. The worst result is obtained for USA network with fixed
cost multiplier equal zero where the gap increased from 0.445 to 5.20%.

Based on the computational results, it is not worthwhile to include cut constraints in

the formulation of the routing and capacity assignment problem. In addition to the small
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effect of the cut constraints on obtaining better solutions, these constraints should be

defined before the procedure is applied and good cuts are difficult to generate.

7. Conclusion

In this chapter we studied the routing and capacity assignment problem in backbone
networks. In this problem, a route for every pair of communicating nodes is to be identified and a
capacity is to be assigned to each link in the network in order to minimize the total line capacity and
delay costs. A mathematical programming formulation of the problem is presented. An efficient
solution procedure based on Lagrangean relaxation of the problem is developed. Computational
results across a variety of networks are reported. These results indicate the procedure to be
effective. We also studied the effect of including cut constraints in the formulation of the routing
and capacity assignment problem and we concluded that these constraints have no significant effec

on the quality of the feasible solutions.
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Table 6.6. Computational Results with Different
Message Lengths Using Cut Constraints

Network Message Delay Fixed Variable Lower Upper Percent
Type Length Cost Cost Cost Bound Bound Gap
ARPA 200 39074 118830 27817 174867 185721 6.21
ARPA 300 54134 152107 39499 235207 245740 4.48
ARPA 400 74419 182792 51507 296964 308718 3.96
ARPA 500 80434 236159 62224 362131 378817 4.61
ARPA 600 102519 272058 71707 430337 446284 3.1
OCT 300 90572 244334 71332 397519 406239 2.19
OCT 400 133677 320930 90042 520685 544649 4.60
OCT 500 138142 424894 108344 646947 671380 3.78
OCT 600 145187 548571 126888 777946 820646 5.49
USA 300 78183 226719 58711 343881 363613 5.74
USA 400 105240 271716 74579 436865 451535 3.36
USA 500 119569 345939 90204 529512 555712 4.95
USA 600 146369 399120 105010 630180 650499 3.22
RING 300 100126 280580 81374 439279 462080 5.19
RING 400 138101 331328 102298 549672 571727 4.01
RING 500 154289 410155 125084 663251 689528 3.96

RING 600 181761 482589 144792 779150 809142 3.85
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Table 6.7. Computational Results with Different
Delay Costs Using Cut Constraints

Network Unit Delay Fixed Variable Lower Upper Percent
Delay

Type Cost Cost Cost Cost Bound Bound Gap

ARPA 0 0 139806 55206 171338 195012 13.82

ARPA 100 8070 146439 53465 192879 207974 7.83

ARPA 1000 45654 163873 52992 253324 262519 3.63
ARPA 2000 74419 182792 51507 296965 308718 3.96
ARPA 3000 87242 207101 49376 330948 343719 3.86
oCT 0 0 253633 94118 292885 347751 18.73
OoCT 100 13490 256424 94348 337634 364262 7.89
oCT 1000 87702 280475 91795 447146 459972 2.87
oCT 2000 133677 320930 90041 520686 544649 4.60
ocCT 3000 129574 386050 87331 574379 602955 4.98
USA 0 0 213598 80585 248519 294183 18.37
USA 100 18229 211577 81206 286003 311012 8.74
USA 1000 55418 268166 74736 376681 398320 5.74
USA 2000 105240 271716 74579 436865 451535 3.36
USA 3000 138934 289141 74009 484193 502084 3.70
RING 0 0 265221 110476 311847 375697 20.47
RING 100 14859 266351 108960 356538 390170 9.43
RING 1000 86745 305813 104473 471772 497031 5.35
RING 2000 138101 331328 102298 549672 571727 4.01

RING 3000 170782 358940 101472 613202 631104 2.92
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Table 6.8. Computational Results with Different
Fixed Costs Using Cut Constraints

Network léixed Delay Fixed Variable Lower Upper Percent
ost
Type Multiplier  Cost Cost Cost Bound Bound Gap
ARPA 0.0 -13610 0 39369 51911 52979 2.06
ARPA 0.1 28154 35644 44480 106311 108278 1.85
ARPA 0.5 57330 104326 49177 205892 210833 2.40
ARPA 1.0 74419 182792 51507 296965 308718 3.96
ARPA 1.5 91309 245810 52992 378278 390111 3.13
ARPA 2.0 89627 332828 52685 455116 475140 4.40
ARPA 3.0 98728 486969 53408 602472 639105 6.08
oCT 0.0 30410 0 76921 107330 107331 0.00
oCT 0.1 39302 64940 80070 182639 184312 0.92
oCT 0.5 83785 195521 87034 356403 366340 2.79
oCT 1.0 87702 280475 91795 447146 459972 2.87
OCT 1.5 163072 436683 91190 665134 690945 3.88
oCT 2.0 175403 560950 91795 801316 828148 3.35
USA 0.0 24089 0 59782 79727 83871 5.20
USA 0.1 34319 57251 64701 153649 156271 1.71
USA 0.5 77021 159470 72202 299177 308693 3.18
USA 1.0 105240 271716 74579 436865 451535 3.36
USA 1.5 106222 406198 74374 559554 586794 4.87
USA 2.0 115311 530416 75258 677505 720985 6.42
RING 0.0 26619 0 80326 104997 106945 1.86
RING 0.1 46261 71691 88176 200593 206128 2.76
RING 0.5 92408 206215 98569 382777 397192 3.77
RING 1.0 138101 331328 102298 549672 571727 4.01
RING 1.5 149681 477013 104304 697517 730998 4.80

RING 2.0 170784 601954 107261 840544 879999 4.69
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Table 6.9. Computational Results with Different
Variable Costs Using Cut Constraints

Network Var. Cost  Delay Fixed Variable Lower Upper Percent
Type Multiplier  Cost Cost Cost Bound Bound Gap
ARPA 0.0 72234 185137 0 245032 257371 5.04
ARPA 0.5 72320 185137 25792 271617 283249 4.28
ARPA 1.0 74419 182792 51507 296965 308718 3.96
ARPA 1.5 72715 185137 76454 323041 334306 3.49
ARPA 3.0 61200 202539 148608 399416 412347 3.24
ocCT 0.0 133328 320930 0 428378 454258 6.04
OCT 0.5 133548 320930 45120 475196 499598 5.14
oCTr 1.0 133677 320930 90042 520686 544649 4.60
oCT 1.5 134574 320930 134726 565267 590230 4.42
UsA 0.0 97923 281128 0 360149 379051 5.25
USA 0.5 104192 273266 37150 398933 414608 3.93
USA 1.0 105240 271716 74579 436865 451535 3.36
USA 1.5 105304 271716 111792 473974 488812 3.13
RING 0.0 135044 333306 0 447402 468050 4.62
RING 0.5 133708 336283 51581 498062 521572 4.72
RING 1.0 138101 331328 102298 549672 571727 4.01

RING 1.5 133485 333633 153413 601486 620531 3.17




CHAPTER VII
CONCLUSIONS

This dissertation has addressed several problems in the area of routing and capacity
assignment in communication networks. The first problem dealt with primary route
selection in backbone communication networks. Given the topology of the network
(locations of the nodes and links), the traffic requirements between the communicating
node pairs and the capacities of the links, a route has to be identified for each pair in order
to minimize the maximum link queueing delay encountered by messages in the network.
Two mathematical formulations of the problem were developed and an efficient solution
procedure based on Lagrangean relaxation of the second formulation was presented.

The second problem is a variation of the first one where the objective is minimize
the average queueing delay in the network. In this problem as well as the first one, the
route to be selected for a communicating node pair is chosen from among all possible
routes. This represents an improvement over most of the previous studies which dealt with
the routing problem where the "best" route is to be selected from a predetermined subset of
all possible routes. The second problem was formulated as a nonlinear mixed integer
programming model. Employing this model, a tight bound was obtained and an effective
solution procedure was developed. The performance of this procedure was tested and
compared to a previous method presented in a study published recently. We concluded that
while the previous method frequently terminates without a feasible routing scheme when

link utilization exceeds moderate levels, our solution method generates very good feasible

109



110

solutions for even heavily loaded networks. We have also observed that when we
minimize the maximum link delay the maximum link utilization is reduced by approximately
3% and the average link utilization is increased by approximately 2% compared to the
utilizations obtained when the average queueing delay in the network is minimized.

The third problem dealt with the reliability issue in backbone communication
networks. The model presented captured the effect of link failures. Reliability is achieved
by selecting, for each communicating node pair, a primary route and a link-disjoint
secondary route. Traffic is switched to secondary routes when primary routes are not
available due to a link failure. The objective is to minimize the weighted average delay
faced by messages in the network. Because the primary and secondary routes are to be
chosen from among all possible routes, the problem is very large. A fairly effective
solution procedure based on Lagrangean relaxation was developed.

The fourth problem addressed the routing and capacity assignment problem in
backbone communication networks. Two tasks should be accomplished in this problem.
The first one is to identify, for each communicating node pair, a route over which messages
are to transmitted. The routes are to be chosen from among all possible routes. The
second task is to assign a capacity to each link in the network. The capacity of a link is to
be selected from among a set of discrete levels of capacity. The objective is to minimize
total system costs composed of delay costs and link connection costs. A solution
procedure based on Lagrangean relaxation of the problem was developed. This solution
procedure was tested and compared to a previous method described in a study published
recently and it was shown that our solution approach performed better for different traffic

loads and costs structures.
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Some potential areas of research include :

- The incorporation of the effect of node failures in addition to link failures in the
reliability issue in the routing problem in backbone communication network

- Including reliability considerations in the routing and capacity assignment problem

- Study the problem of designing local area networks and backbone networks

simultaneously.



[1]

[2]

[3]

[4]

[5]

(6]

[71

[8]

[9]

[10]

[11]

REFERENCES

V. Ahuja, Routing and Flow Control in System Architecture, IBM System Journal
(18) (1979) 298-314.

A. Balakrishnan and S. C. Graves, A Composite Algorithm for a Concave-Cost
network Flow Problem, Networks 19 (1989) 175-202.

A. Balakrishnan, T. L. Magnanti, and R. T. Wong, A Dual-Ascent Procedure for
Large Scale Uncapacitated Network Design, Operations Research (37) (1989) 716-
740.

M.S. Bazaraa and J.J. Goode, A Survey of Various Tactics for Generating
Lagrangean Multipliers in the Context of Lagrangean Duality, European Journal of
Operational Research (3) (1979) 322-328.

D.P. Bertsekas, A Class of Optimal Routing Algorithms for Communications
Networks, Proc. 1980 Int. Conf. Circuits Comput., Atlanta, GA, Nov, 1980.

R. R. Boorstyn and H. Frank, Large-Scale Network Topological Optimization,
IEEETransactions on Communications 25 (1) (1977) 29-46.

P.M. Cahin, Datapac Network Protocols, Proc. 3rd International Conference on
Computer Communication, Toronto, Canada (1976) 150-155.

D.G. Cantor and M. Gerla, The Optimal Routing of Messages in a Computer
Network Via Mathematical Programming, IEEE Computer Conference Proceedings,
San Francisco, Sep. 1972.

W. Chou and D. L. Sapir, A Generalized Cut-Saturation Algorithm for Distributed
Computer Communications Network Optimization, Proceedings ICC June 1982.

P.J. Courtois and P. Semal, An Algorithm for the Optimization of Nonbifurcated
Igows in Computer Communication Networks, Performance Evaluation (1) (1981)
9-152.

G. B. Dantzig, All Shortest Routes in a Graph, Theory of Graphs, Internatiomal
Syposium, Rome 1966, Gordon and Breach, New York 1967.

112



[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

113

R. Despres and G. Pichon, The TRANSPAC Network Status Report and
tives,Proc. Online Conference on Data Networks - Development and Use,
London (1980) 209-232.

R. E. Erickson, C. L. Monma, and A. F. Veinot, Send-and-Split Method for
Minimum Concave-Cost Network Flows, Math. Oper. Res. (12) (1987) 634-664.

D. Erlenkotter, A Dual based Procedure for Uncapacitated Facility Location,
Operations Research (26) (1978) 992-1009.

H. Everett, Generalized Lagrange Multipliers Method for Solving Problems of
Optimum Allocation of Resources, Operations Research (11) (1963) 399-417.

M. L. Fisher, Optimal Solution of Scheduling Problems Using Lagrangean
Multipliers: Part 1, Operations Research (21) (1973) 1114-1127.

M. L. Fisher, The Lagrangean Relaxation Method for Solving Integer Programming
Problems, Management Science (27) (1981) 1-18.

M. L. Fisher, An Application Oriented Guide to Lagrangean Relaxation, Interfaces
(15) (1985) 10-21.

H. Frank,I. T. Frisch and W. Chou, Topological Considerations in the Design of
the ARPA Computer Network, Proceeding Spring Joint Computer Conference
(1970) 581-587.

H. Frank and W. Chou, Routing in Computer Networks, Networks, (1) (1971) 99-
122.

L. Fratta, M. Gerla and L. Kleinrock, The Flow Deviation Method - An Approach
to Store-and-Forward Communication Network Design, Networks (3) (1973) 97-
133.

B. Gavish, On Obtaining the ‘Best' Multipliers for a Lagrangean Relaxation for
Integer Programming, Computers and Operations Research (5) (1978) 55-71.

[23] B. Gavish and S. Hantler, An Algorithm for Optimal Route Selection in SNA

[24]

Networks JEEE Transactions on Communications (31) (1983) 1154-1161.

B. Gavish and H. Pirkul, Computer and Database Location in Distributed Computer
Systems, IEEE Transactions on Computers (35) (1986) 583-590.

[25] B. Gavish and I. Neuman, A system for Routing and Capacity Assignment in

Computer Networks, IEEE Transactions on Communications (37) (1989) 360-366.

[26] B. Gavish and K. Altinkemer, Backbone Network Design Tools with Economic

Tradeoffs, ORSA J. on Computing (2) (1990) 226-252.



[27]

[28]

[29]

[30]

[31]

114

A. M. Geoffrion, Lagrangean Relaxation for Integér Programming, Math.
Programming Study (2) (1974) 279-285.

M.Gerla, The Design of Store-and-Forward (S/F) Networks for Computer
Communications, Ph.D. Thesis, University of California, Los Angeles 1973.

M. Gerla, Deterministic and Adaptive Routing Policies in Packet Switched
Networks, presented at the ACM-IEEE 3rd Data Communi. Symp., FL, Nov. 13-15,
1973.

M. Gerla and L. Kleinrock, On the Toplogical Design of Distributed Computer
Networks, IEEE Transactions on Computers (25) (1977) 48-60.

M. Gerla, H. Frank, W. Chou and R. J. Eck, A Cut Saturation Algorithm for
Tological Design of Packet-Switched Communication Networks, Proceedings
National Telecommunication Conference (1974) 1074-1085.

[32] H. Gershet and R. Weihmayer, Joint Optimization of Data Network Design and

[33]

Facility Location, IEEE Journal on Selected Areas in Communications (8) (1990)
149-152.

M. Held and R. M. Karp, The Traveling Salesman Problem and Minimum
Spanning Tree, Operations Research (18) (1970) 1138-1162.

[34] M. Held, P. Wolfe and H.P. Crowder, Validation of Subgradient Optimization,

[35]

[36]

Mathematical Programming (5) (1974) 62-68.

L. Kleinrock, Communications Nets: Stochastic Message Flow and Delay, New
York, Dover, 1964.

L.Kleinrock, Queuing Systems, Volumes 1, 2, NewYork, Wiley-Interscience, 1975,
1976.

[37] L. LeBlanc and R.V. Simmons, Continuous Models for Capacity Design of Large

[38]

[39]

Packet-Switched telecommunication Networks, ORSA Journal on Computing (1)
(1989) 271-286.

K. Maruyama, L. Fratta and D.T. Tang, Flow Assignment Algorithm for computer
Communication Network Design with Different Classes of Packets, Proc. of the
Symposium on Computer Networks: Trends and Applications, Gaithersburg,
Maryland, Nov. 17, 1976.

C.H. McGibbon, H. Gibbs and S.C.K. Young, DATAPAC- Initial Experience
with a Commercial Packet Network, Proc. 4th International Conference on
Computer Communication, Kyoto, Japan (1978) 103-108.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

115

C. Monma, and D. Shallcross, Methods for Designing Communication Networks
With Certain Two-Connected Survivability Constraints, Operations Research (37)
(1989) 531541.

S. Narasimhan, Topological Design of Networks for Data Communications
Systems, Ph.D. Thesis, College of Business, Ohio State University , 1987.

S. Narasimhan, H. Pirkul and P. De, Route Selection in Backbone Data

Communication Networks, Computer Networks and ISDN systems (15) (1988)
121-133.

T. Ng and D. Hoang, Joint Optimization of Capacity and Flow Assignment in a
Packet-Switched Communications Network, IEEE Transactions on Communications
(35) (1987) 202-209.

R. M. Nauss, R. E. Markland, Theory and Application of an Optimization
Procedure for Lock Box Location Analysis, Management Science (270) (1981) 855-
865.

H. Pirkul, Configuring Distributed Computer Systems with Online Database
Backups, Decision Support Systems (3) (1987) 37-46.

H. Pirkul, S. Narasimhan and P. De, Firm Expansion through Franchising: A
Model and Solution Procedure, Decision Sciences (4) (1987) 631-645.

H. Pirkul and S. Narasimhan, Primary and Secondary Route Selection in Backbone
Data Communication Networks, ORSA Journal on Computing, forthcoming, 1992.

B.T. Poljack, A General Method of Solving Extremum Problems, Soviet Math.
Doklady (8) (1967) 593-597.

W. B. Powell and Y. Sheffi, The load Planning Problem of LTL motor Carriers:
Problem Description and a Proposed Solution Approach, Trans. Res. (17A) (1983)
471-480.

W. B. Powell, A Local Improvement Heuristic for the Design of Less-Than
Truckload Motor Carrier Networks. Working Paper EES-85-3, Princeton
University, Princeton, NJ (1985).

A. Rajaram, Routing in TYMNET, Proc. European Computation Congress (1978).

[52] E. Rosenberg, A Nonlinear Programming Heuristic for Computing Optimal Link

[53]

Capacities in a Multi-Hour Alternate Routing Communications Network, Operations
Research (35) (1987) 354-364.

D. L. Sapir, A Generalized Cut-Saturation Algorithm for Distributed Computer
Network Optimization, MS Thesis, Computer Studies Program, North Carolina State
University, Raleigh, NC 1978.



116

[54] R. M. Soland, Optimal Facility Location With Concave Cost, Operations Research.
(22) (1974) 373-382.

[5S5] M. M. Syslo, N. Deo, and J.S. Kowalik, Discrete Optimization Algorithms with
Pascal Programs, N.J., Prentice-Hall, 1983.

[56] D. Tcha and K. Maruyama, On the Selection of Primary Paths for a Communication
Network, Computer Networks and ISDN Systems (9) (1985) 257-265.

[57]1 TELENET Communication Corporation - Packet Switching Network (Auerbach,
NewYork,1978).

[58] L.R.W. Tymes, Routing and Flow Control in TYMNET, IEEE Transactions on
Communications (8) (1981) 392-398.

[591 R. T. Wong, Integer Programming Formulations of the Traveling Salesman
Problem, Proceedings of the 1980 IEEE International Conference on Circuits and
Computers 149-152, 1980.

[60] » A Dual Based Procedure for Solving Steiner Tree Problems on a Directed
Graph, Math. Programm (28) (1984) 271-287.

[61] W. 1. Zangwill, Mimimum Concave Cost Flows in Certain Networks, Management
Sci. (14) (1968) 429-450.



