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ABSTRACT

We propose a heuristic for a class of vehicle routing problems (VRPs) with minmax objective.

These include the Capacitated VRP, the Capacitated VRP with multiple use of vehicles, and the

��Traveling Salesman Problem with multiple use of vehicles. A tabu search based adaptive

memory procedure of instances indicate that the method produces very good solutions within

reasonable computing times.

Key words : Vehicle routing problem, multiple use of vehicles, minmax objective, tabu search
heuristic, adaptive memory procedure.

RÉSUMÉ

On propose une heuristique pour une classe de problèmes de tourńees de v́ehicules (PTV)

avec objectif minmax. Parmi ces problèmes se retrouvent les PTV avec capacité, les PTV

avec capacit´e et utilisation multiple de v´ehicules, ainsi que le probl`eme des� voyageurs de

commerce avec utilisation multiple de v´ehicules. On d´eveloppe une m´ethode de recherche avec

tabous imbriqu´ee dans une proc´edure de recherche adaptative. Des tests num´eriques réalisés

sur plusieurs probl`emes indiquent que la m´ethode propos´ee produit de tr`es bonnes solutions

moyennant des temps de calcul raisonnables.

Mots-clefs : Problème de tourn´ees de v´ehicules, utilisation multiple de v´ehicules, objectif
minmax, heuristique de recherche avec tabous, procédure de ḿemoire adaptative.
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1. Introduction

We propose a heuristic for a class of routing problems with minmax objective. Formally

the problems are defined on a directed graph� � �����, where� � ���� ��� ���� ��� is the

vertex set and� � ����� ��� � � �� �� is the arc set. Vertex�� represents adepot at which are

based a pre-specified number� of identical vehicles of capacity	, while the remaining vertices

correspond tocustomers. A distance or travel time matrix 
 � ����� is defined on�.

In the classicalCapacitated Vehicle Routing Problem (CVRP), each customer�� has a

nonnegative demand��. The problem consists of determining a set of� vehicle routes of

minimum total length, each starting and ending at the depot, such that each customer is visited

exactly once and the total demand of any route does not exceed	. For a recent overview of

algorithms for the CVRP, see Laporte [1]. A special case of the CVRP is the��Traveling

Salesman Problem ��� ���� in which 	 is arbitrarily large. In both these problems, it is

implicitly assumed that each vehicle is used for only one route. In some cases, however, multiple

use of vehicles is allowed. This gives rise to theCVRP with Multiple Use of Vehicles (CVRPM)

and to the��TSP with Multiple Use of Vehicles ��� ����� (see, e.g., Fleischmann [2] and

Taillard, Laporte and Gendreau [3]). In both the CVRPM and the� � ����, several vehicle

routes can be assigned to the same vehicle to form a working day, but the total distance driven by

any vehicle may not exceed a preset limit
. Note that if��� � ���� ��� for all � and�, then the

������ and the����� coincide since it is never disadvantageous to combine two routes.

There exist a number of contexts where, for equity reasons, it is important to minimize the

length of thelargest distance traveled by any vehicle. Any of the four routing problems described

above can be defined with a minmax objective. The minmax versions of the������ and of

the��	
��� consist in fact of determining the smallest feasible value of
. Relatively little

attention has been paid to minmax routing problems. Some simple heuristics with worst-case
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behavior ratios of������� 
��� and���� ��� are provided by Frederickson, Hecht and Kim

[4] in the case of the minmax�����. The same problem is solved by means of a tabu search

heuristic and of exact dichotomous search scheme by Fran¸ca et al. [5]. To our knowledge, the

minmax CVRP,� � ���� and CVRPM have not yet been solved.

Our purpose is to propose a tabu search based heuristic for these minmax routing problems.

We will first describe the algorithm for the minmax CVRP, its application to the minmax�����

being straightforward. Then, we will show how this algorithm can be extended to solve the

minmax version of the CVRPM. This will be done in Sections 2 and 3, respectively, followed

by computational results in Section 4 and by the conclusion in Section 5.

2. Heuristic for the Minmax ��TSP and CVRP

Tabu search has been applied successfully by a number of researchers to the solution of the

classical CVRP and some of its variants. Some of the best implementations are those of Taillard

[6], of Gendreau, Hertz and Laporte [7] and of Rego and Roucairol [8]. Recently Taillard has

proposed anAdaptive Memory Procedure (AMP) that can be used to enhance the search in

several local search algorithms. Basically, AMP operates by first producing several solutions by

means of a heuristic, and then combines these solutions to produce new ones, using probabilistic

rules. This is similar in some ways to what is done in genetic algorithms, except that offspring

can be generated from more than two parents. When used in conjunction with tabu search, AMP

produces a strong diversification and intensification effect that enriches the search and directs it

towards high quality solutions. An application of this method to the CVRP and to theVehicle

Routing Problem with Time Windows is presented in Rochat and Taillard [9].

In order to describe how AMP was applied to the minmax CVRP we need to first summarize

Taillard’s [6] tabu search heuristic for the vehicle routing problem with capacity and distance

restrictions, and some modifications that were made to this algorithm for the minmax CVRP.
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The algorithm starts from partial initial solution containing up to� feasible routes and possibly

some unserviced customers. In order to favor solutions containing as many routed customers as

possible, the solution cost is increased by a penalty term equal to the sum of all lengths of return

trips between unrouted customers and the depot. The problem is then decomposed into one or

several subproblems for which between three and five vehicle routes should be constructed. A

locally optimal solution is then determined for each subproblem using a tabu search mechanism

with one of the following four operations: swapping two customers between two different routes;

moving a routed customer to a different route; inserting an unrouted customer into a route;

removing a customer from an existing route. At all times, feasibility with respect to capacity

and distance is maintained. Periodically, a new decomposition into subproblems is attempted

and the process ends after a set number of iterations.

The original Taillard algorithm can be adapted to solve the minmax� � ��� and CVRP.

Even if a minmax objective is used, the algorithm attempts to reduce at all times the total route

length and records the length� of the longest route. The value of� is used as a constraint on the

length of vehicle routes produced during the course of the algorithm. Initially� is set equal to

infinity but, as the algorithm may be called several times within the AMP, a finite value of� may

be known, even at the initialization phase. The modified Taillard algorithm is an improvement

mechanism applied to an initial solution. It is similar to the standard Taillard procedure, except

for the following. After each decomposition, the value of� is updated and acts as a constraint

for the creation or modification of routes. Moreover, if at some point the number of routes in a

subproblem goes down by 1, then the longest route� in that subproblem is split into two routes

of more or less equal lengths. This is achieved by selecting the best of all solutions obtained

by removing an arc pair������ ����� ����� ����� in the route� � ���� ���� ���� ���� ���� ���� ���� ���� ���

and introducing arc����� ���� to create the first route, and arcs���� ����, ����� ��� to create the

second route.
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To generate an initial solution, we propose the following “modified Clarke and Wright

procedure” (see [10] for the original description). The idea is to try and construct� vehicle

routes whose maximal length is as close as possible to a known lower bound on the minmax cost.

To achieve this, several trials may be necessary. Also, in constrast with the original Clarke and

Wright algorithm, more effort is expended on cost minimization while constructing the routes.

Ideally, the procedure should end with at most�� � routes. If it contains more than� routes,

the first � routes are preserved and the remaining ones are eliminated. Their customers are

then inserted into the first� routes during the improvement phase. Here is a description of the

proposed modified Clarke and Wright procedure.

Step 1 (Initialization). Set�� �� � � ���
�
���� � �����

Step 2 (Radial routes). Create� return routes between the depot and customers��.

Step 3 (Route merge). Consider all pairs of routes�� � ���� ���� ���� ��� � ��� and �� �

�
��� ���� ���� ������ ���� ��

�
and the merged route��� �

�
��� ���� ���� ���� ���� ��� � ������ �����

�
ob-

tained by inserting�� between two consecutive customers��� and ����� of ��. Denoting

by ���� the cost of route�, compute���
� ���

�������� � ������ ��������� where� is a “noise

factor” drawn randomly from�	�
� ���� according to a continuous uniform distribution for each

pair of indices� and�. If no feasible improvement is possible, go to Step 4. (A feasible route

must have a demand not exceeding� and a cost not exceeding�	). Otherwise implement the

best feasible merge, post-optimize the merged route using 2–opt, and repeat this step.

Step 4 (Termination check). If the number of routes in the solution does not exceed
 � � or

if �	 � ��
 	, stop. Otherwise, set�	 �� ��	� �	 and go to Step 2.

Here, two comments are in order. First, in Step 3, the noise variable� acts as a diversification

factor as it helps generate different merged routes at each application of this step. Second, the

termination check�	 � ��
 �	� in Step 4 is only imposed as a precautionary measure. It has never
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been activated in any of our tests.

The AMP for the minmax
 � ��� or CVRP can now be described. It uses three user

controlled parameters�, 
 and �.

Step 1 (Initial solutions). Set	 �� � and repeat the following operations� times:

i) Generate an initial solution as in the modified Clarke and Wright procedure.

ii) If the solution contains at most
 routes, let	 be the minmax cost. If in addition

	 � ���
�
���� � ����, stop with an optimal solution.

iii) Apply the improvement phase of the modified Taillard algorithm with
 applications of

the decomposition process.

iv) If all customers belong to a route, let	 be the minmax cost. If in addition	 �

���
�
���� � ����, stop with an optimal solution.

v) Insert the routes in the adaptive memory.

vi) Remove from the list any route whose length is at least equal to	.

Step 2 (Generation of new solutions). Repeat the following operations� times. Initially, no

route has been selected.

i) If less than
 routes have already been selected, randomly select a route from the list by

favoring routes having a small label.

ii) Disregard all routes having vertices in common with those already selected; if some

routes remain, go to i).

iii) Apply operations ii) to vi) of Step 1.

In our implementation, we used� � �	 and 
 � 
. The value of� is problem dependent

and is reported in Table 2.
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3. Heuristic for the minmax CVRPM

The algorithm we have developed for the minmax CVRPM consists of four steps. The first

two steps are almost identical to Step 1 and 2 of the minmax CVRP algorithm except that we

use the original, as opposed to the modified, Taillard algorithm. Moreover,	 does not intervene

at this stage since the minmax objective does not apply to individual routes, but to daily vehicle

itineraries made up of several routes. In Step 3 we attempt to construct new VRP solutions

by recombining the� vehicle routes belonging to the best CVRP solutions at the end of Step

2, where� is an input parameter. Finally, in Step 4, we consider in turn each of these CVRP

solutions and attempt a “packing” of the routes into daily vehicle itineraries using a minmax

objective. We now proceed to a more detailed description of the algorithm.

Step 1 (Initial CVRP solutions). Repeat the following operations� times:

i) Initially, no customer is serviced.

ii) Apply the improvement phase of the original Taillard algorithm [6] with
 applications

of the decomposition process. Here we allow as many routes as necessary so that the

solution is always feasible.

iii) Insert in a list each route of the solution labeled with its total cost.

Step 2 (Generation of new CVRP solutions). Repeat the following operations� times.

i) Randomly select a route from the list by favoring routes with a small label.

ii) Disregard all routes having vertices in common with those already selected; if some

routes remain, go to i).

iii) Apply operations ii) and iii) of Step 1.

Step 3 (Recombination of CVRP solutions). At most� routes are selected for the second part of

the algorithm, where� is an input parameter and� �� 
. Typically, the number of selected

routes is�, but there can be fewer if the size of the list is less than�. Routes are selected in
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non-decreasing order of their labels and inserted in a set� . This selection rule is such that a

feasible CVRP solution can always be obtained. Then, within a search tree, all feasible CVRP

solutions that can possibly be constructed by combining routes of� are generated. In order to

control the growth of the search tree, branching priority is always given to routes containing

the largest number of customers. This process ends with a set� of feasible CVRP solutions.

Step 4 (Generation of minmax CVRP solutions). For each CVRP solution� of �, let ��� be

the length of the��� route, where� � �� ����
�, and
� is the number of routes in solution

�. Then, for each�, a CVRPM solution is identified by repeatedly assigning each of the
�

routes to the least loaded (in terms of total distance) of
 available vehicles. After all routes

have been assigned to a vehicle in this fashion, an interchange procedure is applied to improve

the minmax objective. The best of all��� solutions identified is then selected.

Here, we use� � �	� 
 � 
� � � �		� Parameter� is again problem dependent and is

reported in Table 4.

4. Computational results

The algorithms just described were tested on instances generated as follows. For the minmax-

CVRP, we used instances 1–5 and 11–12 of Christofides, Mingozzi and Toth [11], and instances

11–12 of Fisher. Three values were successively considered for the number of vehicles :


 �� 
 �

�
��

���

���

�
� 
 �� 
 � �, and
 �� 
 � �. However, we did not necessarily

use each of these three values for all instances since we stopped increasing
 as soon as

	�	 � ��	�, where	 is the minmax value provided by the heuristic, and	 is the lower bound

���
�
���� � ����. We used the same generation process and the same initial value of
 for the

minmax
 � ���, except that we set� �� � in subsequent computations. For the minmax

CVRPM, we took the same instances as above, and the same values of
 as in Taillard, Laporte

and Gendreau [3]. The various problem parameters, the values of
 that were effectively tested,
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and the optimal (mincost) CVRP solution values	� are provided in Table 1. A total of 91

instances are described in Table 1: 22 CVRPs, 17
�TSPs, and 52 CVRPMs.

Table 1 Characteristics of the test problems

Problem number Source � 	 (CVRP) 	 �	� TSP) 	 (CVRPM) 
�

1 CMT-11 50 5,...,7 5,...,7 1,...,4 524.61

2 CMT-21 75 10,...,12 10,...,12 1,...,7 835.26

3 CMT-31 100 8,...,10 8,...,10 1,...,6 826.14

4 CMT-41 150 12,13 12 1,...,8 1028.42

5 CMT-51 199 16,17 16 1,...,10 1291.44

6 CMT-111 120 7,8 7 1,...,5 1042.11

7 CMT-121 100 10,11 10 1,...,6 819.56

8 F-112 71 4,...,6 4,...,6 1,...,3 241.97

9 F-122 134 7,8 7 1,...,3 1162.96

1 CMT: Christofides, Mingozzi and Toth [11]; 2 Fisher [12].

The computer code was written in Pascal. All CVRP and����� instances were run on a

Sun Sparc 10 workstation, and all CVRPM instances were run on a 100 Mhz Silicon Graphics

Indigo machine. Five independent runs of each instance were executed. Computational results

for the three problems considered are presented in Tables 2, 3 and 4. The meanings of the

column headings are as follows:

� : number of customers;

� : number of vehicles;

� : number solutions generated using the routes in the list adaptive memory;

average (best) : In the minmax-CVRP and the minmax-�-TSP, average (best) value over the five

executions of the statistic; 100���� � �� where again� is the heuristic minmax value and�

is the lower bound���
�
���� 	 ����; a “–” means that no feasible solution could be identified.

In the minmax-CVRPM the statistic�

���� � �� is meaningless as the same vehicle may be

used several times; instead we compute the statistic�

������ � �� which provides a better

indication of solution quality. Indeed,���� is the average length of vehicle routes in a good

mincost CVRP solution and� is the length of the longest route in the minmax CVRPM.
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% Increase : This measures the percentage by which the mincost CVRP length�� increases due

to the use of a minmax objective.

Seconds : CPU time in seconds.

Table 2 Computational results for the minmax CVRP

Problem number � � � Average Best %Increase Seconds
5 0 27.66 26.75 2.59 37
5 10 26.75 26.75 2.53 73
5 30 26.75 26.75 2.53 140
6 0 15.16 13.98 9.66 45
6 10 13.38 12.97 10.10 90
6 30 12.98 12.97 10.46 170
7 0 5.96 5.00 16.43 44
7 10 5.30 4.94 18.11 84

1 50

7 30 4.87 4.28 18.92 160
10 0 8.87 8.00 4.55 38
10 10 8.31 7.50 5.16 75
10 30 7.65 7.50 6.41 150
11 0 5.04 3.60 9.15 45
11 10 3.20 2.60 11.31 87
11 30 2.60 2.60 11.77 160
12 0 1.95 1.79 18.97 40
12 10 1.79 1.79 19.69 80

2 75

12 30 1.79 1.79 19.69 160
8 0 16.97 15.61 5.19 130
8 10 14.91 12.04 5.07 240
8 30 13.59 12.04 5.61 470
9 0 10.08 6.42 8.58 150
9 10 6.70 6.17 10.17 280
9 30 5.74 5.44 9.47 520

10 0 3.55 3.42 16.32 130
10 10 1.94 0.91 16.90 250

3 100

10 30 1.47 0.57 17.59 480
12 0 3.62 3.15 7.37 190
12 10 3.09 2.91 8.27 370
12 30 1.36 0.95 7.60 700
13 0 1.84 0.94 10.47 210
13 10 0.76 0.03 12.59 390

4 150

13 30 0.08 0.00 14.68 750
16 0 — 12.28 — 220
16 10 — 12.28 — 430
16 30 23.16 11.29 8.04 830
17 0 0.84 0.12 8.93 250
17 10 0.20 0.03 8.96 470

5 199

17 30 0.03 0.00 11.20 900
7 0 2.52 1.45 19.73 220
7 10 1.58 1.03 25.07 410
7 30 1.06 1.01 22.52 790
8 0 0.73 0.45 28.66 250
8 10 0.40 0.38 36.83 490

6 120

8 30 0.18 0.07 40.44 950
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Table 2 (Continued) Computational results for the minmax CVRP

Problem number � � � Average Best %Increase Seconds
10 0 3.50 3.31 14.32 150
10 10 3.17 3.07 18.78 280
10 30 3.09 2.98 21.09 530
11 0 0.99 0.55 22.55 150
11 10 0.36 0.16 27.85 300

7 100

11 30 0.12 0.08 32.06 580
4 0 27.85 27.85 6.61 160
4 10 27.85 27.85 6.61 300
4 30 27.85 27.85 6.61 560
5 0 24.87 22.74 17.27 190
5 10 18.92 18.48 24.66 360
5 30 18.19 17.55 25.79 690
6 0 10.80 8.09 30.07 170
6 10 7.50 5.13 32.05 330

8 71

6 30 4.66 4.42 34.87 610
7 0 3.54 2.27 15.13 590
7 10 2.17 2.01 20.20 1100
7 30 2.01 2.01 24.69 2100
8 0 0.31 0.31 36.54 600
8 10 0.31 0.31 36.74 1100

9 134

8 30 0.31 0.31 36.74 2200

Table 3 Computational results for the minmax �-TSP

Problem number � � � Average Best Seconds
5 0 27.95 27.08 58
5 10 26.25 25.43 110
5 30 25.85 25.43 210
6 0 16.14 15.44 49
6 10 15.55 13.98 95
6 30 14.88 12.97 190
7 0 6.17 6.12 43
7 10 5.11 4.38 83

1 50

7 30 4.74 4.28 160
10 0 6.87 6.01 55
10 10 6.50 5.85 110
10 30 5.56 5.41 210
11 0 4.44 3.15 53
11 10 3.63 2.61 110
11 30 2.80 2.53 210
12 0 1.90 1.79 52
12 10 1.79 1.79 100

2 75

12 30 1.79 1.79 210
8 0 15.02 13.20 170
8 10 13.72 11.86 320
8 30 12.51 11.28 610
9 0 9.11 5.68 160
9 10 8.05 5.54 310
9 30 6.80 5.54 610
10 0 3.61 3.47 150
10 10 3.11 2.62 280

3 100

10 30 1.47 0.51 550
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Table 3 (Continued) Computational results for the minmax �-TSP

Problem number � � � Average Best Seconds
12 0 1.65 0.73 280
12 10 1.17 0.40 5404 150
12 30 0.41 0.26 1100

5 199 15 0 0 0 51
7 0 0.84 0.59 380
7 10 0.58 0.45 7306 120
7 30 0.47 0.42 1400

7 100 10 0 0 0 7
4 0 26.85 25.61 250
4 10 23.70 23.20 510
4 30 22.95 22.95 960
5 0 12.52 12.03 210
5 10 12.29 12.03 400
5 30 12.15 12.03 790
6 0 9.32 5.68 190
6 10 6.61 4.42 370

8 71

6 30 4.43 4.22 700
9 134 7 0 0 0 41

Table 4 Computational results for the minmax CVRPM

Problem number � � � Average Best %Increase Seconds
1 0.00 0.00 0.00
2 1.65 1.65 1.60
3 13.92 13.10 3.25

1 50

4

30

16.21 8.11 2.47

300

1 0.10 0.00 0.10
2 0.25 0.04 0.14
3 0.59 0.22 0.35
4 1.28 0.76 0.35
5 2.03 2.39 1.08
6 9.55 2.23 1.16

2 75

7

50

11.84 11.21 2.01

420

1 0.28 0.15 0.28
2 0.50 0.45 0.39
3 1.48 1.04 0.91
4 2.72 1.93 0.95
5 8.83 7.06 3.13

3 100

6

50

10.36 7.52 2.25

1440

1 0.40 0.26 0.40
2 0.47 0.33 0.43
3 0.67 0.36 0.52
4 1.08 0.89 0.62
5 1.31 0.98 0.78
6 4.32 3.22 2.28
7 8.10 6.72 3.27

4 150

8

90

11.74 8.72 2.70

3060
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Table 4 (Continued) Computational results for the minmax CVRPM

Problem number � � � Average Best %Increase Seconds
1 1.82 1.54 1.82
2 1.85 1.57 1.83
3 1.96 1.69 1.85
4 2.10 1.74 1.89
5 2.31 1.91 1.96
6 2.50 2.10 2.12
7 3.12 2.70 2.30
8 3.64 2.91 2.41
9 5.18 4.71 2.75

5 199

10

90

8.25 6.81 2.66

3960

1 1.02 0.00 1.02
2 2.20 1.32 1.69
3 2.51 0.60 1.14
4 9.57 7.24 1.22

6 120

5

70

4.88 2.500 1.28

2700

1 0.00 0.00 0.00
2 0.07 0.07 0.00
3 2.05 1.70 1.22
4 3.23 3.22 0.91
5 8.17 7.51 4.56

7 100

6

50

10.45 7.43 2.97

1380

1 0.85 0.00 0.35
2 5.46 5.18 4.598 71
3

30
13.43 11.97 7.34

1560

1 0.42 0.03 0.42
2 0.76 0.10 0.459 134
3

35
1.65 0.86 0.72

4500

The computational results presented in Tables 2 to 4 give rise to a number of comments. In

the case of the CVRP, the algorithm typically converges quickly towards a good solution (within

a few percent of a lower bound) in most cases, especially when� � �

. This is shown by the

column “Average”. A notable exception occurs when� � ��� and� � �
 (Problem #5). Here

the difficulty occurs in the bin packing part of Taillard’s algorithm since the average vehicle load

is 99.7% when� � �
. As soon as� is increased to 17, the algorithm finds an excellent solution

very rapidly. The seemingly worse performance of the algorithm when� � �

 is probably due

to the poor quality of the lower bound. Another indication of the quality of our algorithm is

the small difference between the average and the best solution. Finally, it is worth noting that

total route length in the minmax solution can be significantly higher than the cost of the minsum

solution. The increase can be as large as 40% (see Problem #6). The same comments apply by

and large to the�����, except that the convergence rate seems to be slower in this case. This
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is likely due to the fact that the����� solution space is much larger than that of the CVRP.

It is interesting to note that in the case of Problems #5, 7 and 9, a proven optimal solution

was identified by means of the modified Clarke and Wright initialization algorithm. Finally, the

performance of the algorithm for the CVRPM is quite variable and also difficult to assess with

precision as we did not compare our solution values with a lower bound, but merely with the

estimate����. Using this estimate, it seems that the algorithm produces very good solutions for

small values of�, i.e., when several tours can be assigned to the same vehicle. The larger ratios

in the column “Best” do not necessarily correspond to poor solutions, but may simply reflect

the fact that we were unable to ascertain the quality of our solutions. Here, computing times are

significantly larger than for the other two problems. However, a sensitivity analysis performed

on � indicates that halving this parameter reduces computing times by more than 50%, but rarely

worsens solution quality by more than 2%. We note in closing that contrary to what happens in

the case of the minmax CVRP and�����, the cost of the minmax CVRPM solution is very

close to that of the minsum CVRPM solution. This is indicated by the column “% Increase” in

which the entries are typically less than 3%.

5. Conclusion

We have implemented and tested two Adaptive Memory heuristics for three classes of

minmax routing problems. In the case of the minmax�� ��� the only known computational

study appears to be that of Fran¸ca et al. [5] and it only reports results for asymmetric instances.

No previous algorithm is known for the minmax CVRP and CVRPM. Our results indicate that

the proposed procedures yield high quality solutions within reasonable computing times. This is

mostly due to the inherent strength of the AMP which quickly navigates the search space towards

its most promising regions by periodically aggregating components of the best known solutions.
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6. É.D. Taillard, Parallel iterative search methods for vehicle routing problems,Networks 23,

661–676 (1993).

7. M. Gendreau, A. Hertz and G. Laporte, A tabu search heuristic for the vehicle routing

problem,Management Science 40, 1276–1290 (1994).

8. C. Rego and C. Roucairol, An efficient implementation of ejection chain procedures for the

vehicle routing problem, Research Report 44, Laboratoire PRISM, Universit´e de Versailles,

France (1995).

14



9. Y. Rochat and́E.D. Taillard, Probabilistic diversification and intensification in local search

for vehicle routing,Journal of Heuristics 1, 147–167 (1995).

10. G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to a number of

delivery points,Operations Research 12, 568–581 (1964).

11. N. Christofides, A. Mingozzi and P. Toth, The vehicle routing problem, inCombinatorial

Optimization (N. Christofides, A. Mingozzi, P. Toth and C. Sandi, Eds.) pp. 313–338.

Wiley, Chichester (1979).

12. M.L. Fisher, Optimal solution of vehicle routing problems using minimum K-trees,Oper-

ations Research 42, 626–642 (1994).

15


