
Computers & Operations Research 27 (2000) 287}303

A hybrid heuristic to solve a task allocation problem

Wun-Hwa Chen!, Chin-Shien Lin",*

!Department of Business Administration, National Taiwan University, Taiwan, People's Republic of China
"Department of Business Administration, Providence University, Taiwan, People's Republic of China

Received 1 September 1997; received in revised form 1 October 1998

Abstract

In this paper, we propose a hybrid method to solve a special version of task allocation problems. This
hybrid method combines Tabu search for "nding local optimal solutions and noising method for diversifying
the search scheme to solve this problem. An experiment is conducted to test the hybrid method against other
methods. Experimental results indicate that the hybrid method is e$cient so far as the run time is concerned.
Besides, it produced much better solutions. Out of 30 problem instances, the hybrid method obtained 23 best
solutions for total cost and 27 for "xed cost among the tested algorithms.

Scope and purpose

This paper considers the problem of assigning tasks to processors such that the communication cost
among the processors and the "xed costs of the processors are minimized. A hybrid method is proposed to
solve this problem by combining Tabu search and noising method. The proposed hybrid method is proved to
outperform the random method, Tabu search, noising method, and HBM algorithm in terms of run time and
the quality of solutions. (2000 Elsevier Science Ltd. All rights reserved.

Keywords: Task allocation; Tabu search; Noising method

1. Introduction

The purpose of task allocation problem is to assign tasks to processors such that some
objective function can be maximized or minimized subject to some constraints. These are typical

*Corresponding author. Fax: 011-886-4-633-4191.
E-mail address: cslin@simon.pu.edu.tw (C.-S. Lin)

0305-0548/00/$ - see front matter (2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 3 0 5 - 0 5 4 8 (9 9) 0 0 0 4 5 - 3

problems arising in the design of distributed computing systems, and have many applications in the
industry.

Billionnet et al. [1] and Sinclair [2] use branch-and-bound algorithms to solve the task
allocation problem in a heterogeneous multi-processor system with no capacity constraints.
Dutta et al. [3], Lo [4], and Ma et al. [5] use branch-and-bound techniques to address
problems with various types of constraints such as preference constraints, exclusion constraints,
bounds on the number of tasks assigned to each processor and capacity constraints.
Sarje and Sagar [6] use an allocation technique to solve the uncapacitated homogeneous
systems. Shen and Tsai [7] use a graph matching approach to solve the heterogeneous
system problem under various constraints. Price and Krishnaprasad [8] use the clustering
algorithm and the Banded Q Heuristic to solve the uncapacitated heterogeneous system design
problem.

Recently Hadj-Alouane et al. [9] proposed a hybrid of Lagrangian relaxation and genetic
algorithm (HBM) to solve a task allocation problem that arose in General Motor's assembly line
[10] with capacity constraint and "xed cost associated with each processor. According to [11],
HBM can "nd an optimal solution as long as it is run long enough. However, it usually takes a lot
of time to get an optimal solution when the problem size is large. Since this problem is important
for practical purposes, and the existing algorithm is time consuming, we propose another hybrid
with local search to solve this problem.

Note that every searching scheme typically consists of two mechanisms. The "rst one is to "nd
a local optimal solution. The second one is called the diversi"cation mechanism, which is to "nd
another local optimal solution after one has already been found. Our experience shows that the
Tabu search [12,13] is good for the "rst mechanism and the noising method [14] is good for the
second mechanism. In this paper, we present a method that combines these two searching
algorithms into a hybrid one.

This paper is organized as follows. The task allocation problem along with its con-
straints is presented in Section 2. Basic issues related to the local search are discussed in
Section 3. Section 4 describes implementation of random method, Tabu search, and noising
method. The proposed hybrid method and its implementation is presented in Section 5.
Section 6 contains experimental results. Finally, some concluding remarks are made in
Section 7.

2. The task allocation problem

The task allocation problem investigated in this paper is de"ned as follows: We are given m tasks
and k processors. The throughput requirement in KOP (thousand operations per second) of task
i is denoted by v

i
. The "xed cost and the capacity (in KOP) associated with processor j are denoted

by f
j
and c

j
, respectively. e

ij
is the cost of communication between task i and task j. This cost only

occurs when tasks are assigned to two di!erent processors and is only dependent on the amount of
tra$c between tasks i and j. Assume that e

ij
"e

ji
. We de"ne x

ij
"1 if task i is assigned to processor

j, and x
ij
"0 otherwise; y

j
"1 if processor j is used, and y

j
"0 otherwise. The task allocation

288 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

problem (P1) can be formulated as follows.

(P
1
) Z"min

m~1
+
i/1

m
+

i{/i`1

e
ii{A1!

k
+
j/1

x
ij
x
i{jB#

k
+
j/1

f
j
y
j

(1)

s.t.
m
+
i/1

v
i
x
ij
)c

j
y
j
, j"1,2, k, (2)

m
+
i/1

x
ij
)my

j
, j"1,2, k, (3)

k
+
j/1

x
ij
"1, i"1,2, m, (4)

x
ij
, y

j
3M0, 1N for all i"1,2, m, j"1,2, k. (5)

Constraint (2) guarantees that the total KOP requirements of all the tasks assigned to processor
j does not exceed its capacity c

j
. Constraint (3) ensures that a processor is purchased if it is allocated

at least one task. Constraint (4) guarantees that each task is assigned to one and only one processor.
Our job is to "nd the assignment of di!erent tasks to di!erent processors such that the above total
cost is minimized. When the number of processors is only two, this problem can be transformed
into a minimum cost cut problem [15] and solved e$ciently by network #ow techniques. However,
for three or more processors, the problem has been shown to be NP-hard [16].

The task allocation problem in this paper was "rst formulated by Rao [10]. Hadj-Alouane et al.
[9] have solved this problem by combining the Lagrangian relaxation method and genetic
algorithm. In this paper, we present another hybrid of search methods to solve this problem.
Essentially, there are three major steps in our approach. First, a relaxed initial solution is created.
Then a local search is conducted. This search is a combination of Tabu search [12,13] and noising
method [14]. Finally, a substitution technique is applied to improve the solutions.

3. Basic issues related to the local search

No matter what searching method is used, we must consider the following four issues:

1. How do we de"ne a neighborhood?
2. How do we update the objective function values? Actually, we have to update the following

three parameters:
(a) communication cost
(b) "xed cost
(c) violation of capacity constraint

3. Outline of the local search.
4. How do we produce an initial solution?

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 289

3.1. Neighborhood

As the neighborhood signi"cantly a!ects the solution quality, it is necessary to clarify how the
neighborhood is de"ned. Let n be the current partition, and S the set of all de"ned moves. We use
N(n) to denote the neighborhood of n, i.e., the subset of moves in S applicable to n. For any move
s3N(n), the new solution obtained by applying move s to n is called a neighbor of n. Only two
di!erent moving schemes concerned with the neighborhood, i.e., one-way move S

1
and two-way

exchange S
2
, are used in this research, where S

1
is the set of all moves which reassign one task from

its current processor to another processor, and S
2

is the set of all moves which exchange two tasks
assigned to two di!erent processors.

There are more complicated moving schemes. As the number of tasks associated with a move
increases, the e$ciency of this moving scheme decreases. However, the quality of the solution
obtained by using complicated moving scheme may be better. There is usually a trade-o! between
e$ciency and the quality of the solution.

3.2. Updating the values of objective functions

The original problem (P
1
) involves three constraints as pointed out in Section 2. To solve this

problem, we adopt the same relaxing method as that in [9]. This is as follows:

(P
2
) Z"min

m~1
+
i/1

m
+

i{/i`1

e
ii{A1!

k
+
j/1

x
ij
x
i{jB#

k
+
j/1

f
j
y
j
#h(x, y), (6)

s.t.
m
+
i/1

x
ij
)my

i
, j"1,2, k, (7)

k
+
j/1

x
ij
"1, i"1,2, m, (8)

x
ij
, y

j
3M0, 1N for all i"1,2, m, j"1,2, k, (9)

where h(x, y)"+k
j/1

j
j
[min(0, c

j
y
j
!+m

i/1
v
i
x
ij
]2 and j

j
is the multiplier for processor j. In other

words, we use Eq. (6) as the objective function to guide our search, and the other constraints are
satis"ed in the algorithm.

Let (j, p, q) denote the one-way move which reassigns task j from its current processor p to
processor q, where pOq, and *(j, p, q) denote the di!erence of Z between the partitions after and
before the move (j, p, q). Then

*(j, p, q)"g(j, p, q)#F(j, p, q)#<(j, p, q), (10)

where g(j, p, q), F(j, p, q) and <(j, p, q) are the di!erences of Z associated with (j, p, q) with
respect to communication cost, "xed cost and violation of capacity constraint, respectively. Instead
of recalculating Z after move (j, p, q), we can update Z by using *(j, p, q).

290 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

3.2.1. Communication cost
Let n(j) denote the processor to which task j is assigned g(j, p, q) can be calculated as follows

[17]:

g(j, p, q)" +
Mi@n(i)/pN

e
ij
! +

Mk@n(k)/qN
e
kj
. (11)

For each partition, we need to calculate the g for each task when it is reassigned to another
processor before the next move is made, i.e., we need to calculate *(j, p, q), where
j"1, 2,2, m, p"n(j), q3M1, 2,2, kN before we decide which move to take for the next step.

With task j being reassigned from processor p to processor q, the g's, which have been veri"ed,
can be incrementally updated as follows [17]:

g(j, q, p)"!g(j, p, q), (12)

g(j, q, r)"g(j, p, r)!g(j, p, q), rOp, q, (13)

g(i, p, q)"g(i, p, q)!2e
ij
, ∀n(i)"p, (14)

g(i, p, r)"g(i, p, r)!e
ij
, ∀n(i)"p, rOp, q, (15)

g(i, q, p)"g(i, q, p)#2e
ij
, ∀n(i)"q, (16)

g(i, q, r)"g(i, q, r)#e
ij
, ∀n(i)"q, rOp, q, (17)

g(i, r, p)"g(i, r, p)#e
ij
, ∀n(i)Op, q, (18)

g(i, r, q)"g(i, r, q)!e
ij
, ∀n(i)Op, q. (19)

For a clear derivation of these equations, please refer to the appendix. The above g's on the
left-hand side of the equal signs are the g's for all the tasks after move (j, p, q) and they can be
updated from the g's before move (j, p, q) at the right-hand side of the equal signs. This updating
scheme can save a lot of run time in calculating the communication cost.

3.2.2. Fixed cost
Any one-way move leading to the opening of a new processor q will increase the "xed cost by f

q
,

and any one-way move leading to the closing of a processor p will decrease the "xed cost by f
p
. Let

a
p
and a

q
denote the numbers of tasks already assigned to processor p and processor q, respectively.

F(j, p, q) is de"ned as follows:

F(j, p, q)"G
f
q

if a
p
'1, and a

q
"0,

!f
p

if a
p
"1, and a

q
'0,

f
q
!f

p
if a

p
"1, and a

q
"0,

0 if a
p
'1, and a

q
'0.

(20)

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 291

3.2.3. Violation of capacity constraint
The violation of capacity constraint <(j, p, q) can be divided into two parts, <(j, p, q)"
<(p)#<(q), where <(p) and <(q) are violations of capacity constraints associated with processor
p and processor q, respectively. Let b

p
and b

q
denote the summation of KOP of all tasks already

assigned to processor p and processor q, respectively. All violations can then be calculated as
follows:

<(p)"G
!(b

p
!c

p
)2 if b

p
'c

p
and b

p
!v

i
)c

p
,

!((b
p
!c

p
)2!(b

p
!v

i
!c

p
)2) if b

p
'c

p
and b

p
!v

i
'c

p
,

0 otherwise,

(21)

<(q)"G
!(b

q
#v

i
!c

q
)2 if b

q
)c

q
and b

q
#v

i
'c

q
,

(b
q
!v

i
!c

q
)2!(b

q
!c

q
)2 if b

q
'c

q
and b

q
#v

i
'c

q
,

0 otherwise.

(22)

Let (i, j, p, q) denote the two-way exchange which exchanges task i in processor p and task j in
processor q, and *(i, j, p, q) denote the di!erence of Z associated with (i, j, p, q). Since any two-way
exchange can be viewed as two consecutive one-way moves, it can then be calculated as follows:

(i, j, p, q)"(i, p, q)#*(j, q, p). (23)

3.3. Outline of the local search scheme

Our local search consists of two phases: In Phase I, we try to keep the solutions feasible as much
as possible. In Phase II, we try to re"ne the solutions with larger neighborhood. We use one-way
move in Phase I and two-way exchange in Phase II.

3.4. Basic initial solutions

In the following, we shall introduce basic initial solutions that can be used in any searching
method. It will be pointed out later that in our algorithm, we also use a relaxed version of these
initial solutions.

A basic initial solution is generated as follows: First, processors are sorted in ascending order
according to the unit cost, f

p
/c

p
. Then tasks are permuted into a sequence randomly. Next, tasks are

assigned in this sequence to the processors until capacity constraints are violated. After this, the
next processor in the sequence is chosen and the procedure is repeated until all the tasks are
assigned. This method can always generate feasible solutions if the number of available processors
is much larger than the number of processors required.

4. The basic implementation schemes of the random method, Tabu search and noising method

In addition to the HBM [9], we use three other searching methods as benchmarks to test our
hybrid method. These three methods are the random method, Tabu search and noising method.

292 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

Random method is the simplest, Tabu search has been successfully applied to many problems
[18}23], and noising method has a surprisingly good performance on solving clique partitioning of
a graph [14].

4.1. Random method

The random method to solve our problem is presented as follows:
Step 1: Generate initial solutions.
Step 2: Use the deepest descent search with neighborhood S

1
in Phase I, and the deepest descent

search with neighborhood S
2

in Phase II on solutions obtained in Phase I.
Step 3: Return the best-solution found.
The deepest descent search chooses the best move among the neighborhood until the solution

found cannot be further improved. This method has the advantage of diversi"cation if the number
of initial solutions is large enough.

4.2. The Tabu search

Tabu search, developed by Glover [12,13], is a general purpose optimization technique designed
to overcome local optimality. It has been successfully applied to a variety of combinatorial
problems, which include maximum clique problem [18], traveling salesperson problem [21],
quadratic assignment problem [22,23], the bandwidth packing problem [19], and the bin packing
problems [20,24].

An important feature of Tabu search is the Tabu list (also called the short-term memory) which
records those solution states that are not permitted at the current iteration. Restricting the next
move to only non-Tabu state solutions has the role of preventing cycling and helping to overcome
local optimality. However, this may result in rejecting some worthwhile moves. Therefore, a solu-
tion state remains Tabu only for a number of iterations. Besides, an aspiration level function is also
introduced to override the Tabu status of a move if the move is considered `good enougha by the
criterion implicit in the function. The search is continued until certain consecutive non-improving
moves have passed, which is called the local intensi"cation. After this, global diversi"cation is
implemented by use of a long-term search to visit regions not explored yet. The long-term search is
implemented by starting another local search from a new partition obtained from disturbing the
best-solution found by reassigning one task from its current processor to another processor.

Let iter denote the current iteration number. We use list(j, p) to represent the Tabu list which
records the latest iteration number when task j is assigned to processor p. It is initialized by setting
list(j, p)"1 for j"1,2, m, p"n(j), and list(j, p)"0 otherwise. Let size denote the Tabu size.
The one-way move (j, p, q) is considered Tabu if and only if

iter!list(j, p)(size. (24)

The two-way exchange (i, j, p, q) is considered Tabu if and only if

iter!list(j, p)(size and iter!list(i, q)(size. (25)

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 293

The Tabu list is updated whenever a one-way move (j, p, q) is made by setting list(j, q)"iter, for
j"1,2, m, and q"n(j). A Tabu move becomes admissible if the aspiration level is attained.
A simple aspiration level function is to override the Tabu status of a move if it gives an objective
value strictly better than the best found so far. Our preliminary tests have shown that a better
aspiration level function (adopted in this research) is to override the Tabu status of a move if it
results in a smaller Z value than the best Z value obtained during that particular local search.

Let ¹n denote the set of de"ned moves at n with Tabu status without satisfying the aspiration
level criterion. Then the admissible moves at n form the set N(n)-¹n. Let Z

"%45
denote the local

optimum found during some particular local search, and ZH
"%45

denote the best local optimum found
so far. The Tabu search used in our algorithm is presented as follows:

Step 1: Generate an initial solution.
Step 2: Initialize Tabu list.
Step 3: Set Z

"%45
and ZH

"%45
to the initial objective function value.

Step 4: Repeat the best move in S
1

until Z
"%45

(ZH
"%45

for m times in Phase I.
4.1. Calculate * for all the admissible one-way moves.
4.2. Perform the best admissible one-way move.
4.3. Update Tabu list and update the best solution if necessary.

Step 5: Repeat the best move in S
2

until Z
"%45

(ZH
"%45

for m times in Phase II.
5.1. Calculate * for all the admissible two-way exchange.
5.2. Perform the best admissible two-way exchange.
5.3 Update Tabu list and update the best solution if necessary.

Step 6: Diversi"cation:
6.1. If long-term search has been implemented once go to step 7.
6.2. Randomly reassign a task from its current processor to another processor on ZH

"%45
, go

to step 4 (start another local search).
Step 7: Return the best solution found ZH

"%45
.

4.3. The noising method

The noising method was "rst proposed by Charon and Hudy [14] to solve clique partitioning of
a graph. This method starts with an initial solution and repeats the following steps:

1. Add noise to the original data and run the local search.
2. Use the local optimum obtained from the noised data as the initial solution, and run the local

search for the original data.

At each iteration, the amount of the added noise decreases until it reaches 0 at the last iteration.
Local search of this method consists of the deepest descent search with neighborhood S

1
in Phase

I and the deepest descent search with neighborhood S
2

in Phase II. The "nal solution is the
best-solution found during the process. Instead of exploring areas randomly like the random
method, noising method focuses on the neighborhood of the best-solution found.

Let Nb}Cycles denote the number of cycles, Nb}Iter}Per}Cycle the number of iterations for
each cycle, and Max}<al the highest communication cost. A perturbation rate Rate is chosen at

294 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

each step. It decreases between two extreme values, Rate}Max and Rate}Min, with step size
calculated as stepsize"(Rate}Max!Rate}Min)/Nb}Iter}Per}Cycle]Nb}Cycles. The disturbed
communication cost e@

ij
is derived as follows:

e@
ij
"G

e
ij
#r]Rate]Max}<al if e @

ij
*0,

0 otherwise,
(26)

where r is a random number generated between !1 and 1.
Let G@(Rate) denote the noised problem after the original problem G is disturbed with perturba-

tion rate Rate. The partition obtained from the local search on G@ from current solution n is
denoted by Descent (n, G@). The partition obtained from the local search on G from current solution
n is denoted by Descent(n, G). Let F(n, G) represent the Z value of partition n on G, nH the best
partition obtained so far, and ZH the corresponding Z value of nH, i.e., ZH"F(nH, G). The
algorithm for the noising method is presented as follows:

Step 1: Generate initial solution n.
Step 2: Rate"Rate}Max.
Step 3: Stepsize"(Rate}Max!Rate}Min)/Nb}Iter}Per}Cycle]Nb}Cycles.
Step 4: nH"n, ZH"F(nH,G).
Step 5: Repeat the deepest descent search for Nb}Cycles times from n.

5.1. Repeat the deepest descent search for Nb}Iter}Per}Cycle times from n.
5.1.1. G@"G@(Rate).
5.1.2. n"Descent(n,G@).
5.1.3. n"Descent(n,G).
5.1.4. Z"F(n,G).
5.1.5. Update ZH and nH if necessary.
5.1.6. Rate"Rate!Stepsize.

5.2. Set n"nH.
Step 6: Return the best-solution found nH.

The parameter values used in this algorithm were set as follows: Rate}Max"0.8, Rate}Min"0.2,
Nb}Iter}Per}Cycle"5, and Nb}Cycles"[n/10], where [n/10] is the rounded integer number of
n/10. The total number of local search equals to N/2.

5. The hybrid method

Every searching scheme consists of two mechanisms: the local search to "nd a local optimum
and the diversi"cation to explore a new area. We like the local search to produce a good solution.
That is, in our case, we like the local search to give a solution with the value Z as small as possible.
Yet, we like our diversi"cation scheme to be able to improve the solution found by the local search.

It is our experience that the Tabu search is e$cient so far as the local search is concerned. In
other words, it usually produces solutions with small Z values. The disadvantage is that it is not
e$cient in the diversi"cation mechanism because the improvement by using the Tabu search is
usually not signi"cant. We also note that the noising method is good for diversi"cation.

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 295

Our method therefore is a hybrid method. The Tabu search is used as the local searching
mechanism and the noising method is used as the diversi"cation mechanism.

5.1. The relaxed initial solutions

As indicated in Section 3.2, we have relaxed our original problem by incorporating capacity
constraint into the objective function Z. We generate an initial solution that is not necessarily
feasible. Our relaxed initial solution is found by modifying the method discussed in Section 3.4.
Instead of satisfying the capacity constraints, we put all the tasks in the cheapest processor "rst. In
the searching process, the solutions generated are not necessarily feasible either. Our experimental
results however, indicated that all of the "nal solutions obtained were feasible. The relaxation
method allows the search to visit more solution space. Consequently, it has a bigger chance to
reach solutions of quality.

5.2. The improvement of a solution by processor substitution

Even though the processors chosen from the hybrid local search usually have smaller unit cost
f
p
/c

p
than the others, the idle capacity of each chosen processor can make the utilization cost f

p
/b

p
large. This points to an ine$cient utilization of cheap processors. Therefore, for each processor
opened, its used capacity and "xed cost need to be checked against every available empty processor
to look for cheaper alternative. If any empty processor can accommodate all the tasks in the
particular used processor with smaller "xed cost without any violation of the capacity constraint,
the used one will be replaced with the alternative one in our algorithm. This step, i.e., processor
substitution, is used after the local search.

5.3. The implementation of hybrid method

The hybrid method algorithm is as follows.
Step 1: Put all the tasks in the cheapest processor "rst.
Step 2: Conduct one-way move (S

1
) (Phase I) and two way exchange (S

2
) (Phase II) by using the

Tabu search on the initial solution.
Step 3: Conduct one-way move (S

1
) (Phase I) and two way exchange (S

2
) (Phase II) by using the

noising method on the solution obtained in Step 2 to produce the local optimal solution.
Step 4: If no feasible solution is found, the next processor in sequence which has not been used is

chosen. Put all the tasks into the new processor and go to Step 2.
Step 5: Improve the solution obtained in Step 3 by use of the processor substitution scheme.
Step 6: Return the solution.

6. Experimental results

For each test problem, 500 initial solutions were constructed for random method, 20 identical
ones for both Tabu search and noising method. To test the feasibility of our methods, we ran one of
the data sets in [9] with m"20 and k"6. The computational results are listed in Table 1, where

296 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

Table 1
Test result of the algorithms on a problem from the
automobile microcomputer system

Algorithms Solution

HBM 11,946
OSL 13,097
Random method 11,946
Tabu search 11,946
Noising method 11,946
Hybrid method 11,946

HBM represents Hadj-Alouane, Bean, and Murty's algorithm and OSL indicates the use of
branch-and-bound routine of IBM's OSL package to "nd the solution. It can be seen that all
algorithms, except OSL, found the same solution.

6.1. Randomized problem set

Our test data were generated randomly as follows. Let r denote a random number such that
0(r(1. Since small density is good for algorithm testing, the density was set equal to 0.25,
indicating a communication requirement was needed between task i and task j only if r(0.25.

Let c
.*/

"40 denote the minimum communication cost, and c
*/5
"50 the di!erence between the

minimum and the maximum communication cost. Communication cost between tasks i and j was
set as c(i, j)"c

.*/
#[r]c

*/5
], where [r]c

*/5
] denotes the rounded integer of r]c

*/5
.

Let v
.*/

"80 denote the minimum value of KOP requirement among the tasks, and v
*/5
"100

the di!erence between the minimum and the maximum KOP requirement among the tasks. The
KOP requirement of each task was v(i)"v

.*/
#[r]v

*/5
].

Let n
p

denote a random number which was determined as n
p
"1#[r]m], and c

p
denote the

(KOP) capacity for processor p, based on the summation of KOP capacity for n
p

times as the
following:

c
p
"

np
+
i/1

Ml
.*/

#[r
i
]l

*/5
]N, (27)

where r
i
is the random number for iteration i. The "xed cost was based on the KOP capacity and

another variable, ratio,

f
p
"c

p
](1#[ratio]r]), (28)

where ratio is the unit cost of the capacity (KOP). In our experiment, we set m"50, k"20 and 30.
For each k, 15 problems were generated. For each set of 15 problems, 5 problems have ratio equal
to 100, 5 equal to 50 and 5 equal to 10.

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 297

6.2. Experimental results

Instead of using the oscillating parameters like those used in HBM [9], we set the parameters the
same during the search process. All the j

j
, j"1,2, k were set to 100 based on preliminary tests

that need all feasible solutions. Tables 2 and 3 show the experimental results of testing our hybrid
method (HYBRID) against the random method (RM), Tabu search (TS), noising method (NM),
and HBM.

In these two tables, BEST denotes the number of times a heuristic is the best or tied for the best,
WORST denotes the number of times a heuristic is the worst or tied for the worst, DEVI denotes
the average deviation from the best-solution found, which is calculated as (solution!best)/best,
and TIME denotes the average time consumed. It can be seen that the hybrid method has the least
percentage of deviation and the least run time for each problem type.

To gain more insights, we tried to show the ability of each algorithm to "nd the allocation with
the least "xed cost. Table 4 shows the number of times, out of 30 problems, each algorithm got the
smallest total cost and the least "xed cost among the solutions found. It can be seen that our hybrid
method produced much better solutions. Furthermore, we can also see that if "xed costs were
emphasized, our hybrid method was even more desirable.

Table 2
Comparison among the algorithms

K Ratio RM TS NM HBM HYBRID

20 100 BEST 1 0 0 0 4
WORST 0 0 0 5 0
DEVI 0.0222 0.0286 0.0152 0.2070 0.0001
TIME 96.1400 96.7340 60.2760 1275.2560 28.5700

50 BEST 0 0 1 0 4
WORST 0 0 0 5 0
DEVI 0.0609 0.0640 0.0606 0.1324 0.0005
TIME 89.0800 90.5060 79.7420 1035.7440 28.7920

10 BEST 0 0 1 0 4
WORST 0 0 0 5 0
DEVI 0.0146 0.0129 0.0117 0.0570 0.0009
TIME 107.6620 107.3040 117.8160 687.6180 42.2260

30 100 BEST 1 0 1 0 3
WORST 0 0 0 5 0
DEVI 0.0120 0.0117 0.0103 0.2369 0.0006
TIME 102.0080 108.8940 108.3180 693.7220 36.6900

50 BEST 0 1 0 0 4
WORST 0 0 0 5 0
DEVI 0.0274 0.0243 0.0238 0.1672 0.0009
TIME 124.0100 129.7660 135.9540 696.2620 40.4540

10 BEST 0 0 1 0 4
WORST 0 0 0 5 0
DEVI 0.0117 0.0084 0.0106 0.0709 0.0009
TIME 91.2980 100.0400 110.9620 694.9320 34.8520

298 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

Table 3
Summary of the computational results

RM TS NM HBM HYBRID

BEST 2 1 4 0 23
WORST 0 0 0 30 0
DEVI 0.0248 0.0250 0.0220 0.1452 0.0006
TIME 101.6997 105.5406 102.1780 847.2557 35.2640

Table 4
Further insight summary

RM TS NM HBM HYBRID

Total cost 2 1 4 0 23
Fixed cost 5 6 6 0 27

7. Conclusion

In this paper, we have shown how a hybrid method that combines Tabu search and
noising method can solve a special version of the task allocation problem e$ciently both in
terms of run time and quality of solutions. We believe that our algorithm is good not only
for this problem but also for many searching problems in general. We have already started
applying our method to solve more complicated problems, pertaining to task allocation that
included both capacity constraint and number of task constraints in addition to the inclusion of
"xed costs.

Appendix A

To demonstrate the derivation of Eqs. (12)}(19) we take an allocation of 7 tasks and 3 processors
as an example. Let G

1
be the allocation with tasks 1 and 3 assigned to processor 1, tasks 2, 6, and

7 to processor 2, and tasks 4 and 5 to processor 3. Communication cost among the processors
occurs only when tasks having interactions with each other are assigned to di!erent processors. We
use C

i
to denote the communication cost for allocation G

*
. Since the communication cost is

assumed to be symmetric, it is counted only once between two tasks. Therefore, C
1
"e

12
#e

16
#e

17
#e

14
#e

15
#e

32
#e

36
#e

37
#e

34
#e

35
#e

24
#e

25
#e

64
#e

65
#e

74
#e

75
, with each

element demonstrated as a star in Table (a1) of Fig. 1.
Assume that the move under consideration is (3, 1, 3) which reassigns task 3 from processors 1 to

3. We use G
2

to indicate that the allocation after move (3, 1, 3) is made on G
1
. The corresponding

communication cost is given by C
2
"e

12
#e

16
#e

17
#e

13
#e

14
#e

15
#e

23
#e

24
#e

25
#

e
63
#e

64
#e

65
#e

73
#e

74
#e

75
, which is shown in Table (a2) of Fig. 1. Therefore,

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 299

Fig. 1. The comparison of update function between before and after move (3, 1, 3).

g(3, 1, 3)"C
2
!C

1
"e

13
!e

34
!e

35
, which can be generalized as Eq. (11), g(j, p, q)"

+Mt@n(t)/pN eij
!+Mk@n(k)/qN

e
kj
. Note that e

kj
"e

jk
.

To show the validity of the update scheme of Eqs. (12)}(19), we will show the calculations of these
equations "rst and then the completeness of the scheme.

A.1. Calculations

To avoid confusion, we use g@(j, p, q) to indicate the di!erence of communication cost between
before and after move (j, p, q) for G

2
. The purpose is to update g@(j, p, q) by using g(j, p, q).

300 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

Table 5
The detailed calculation of each cell of the update table

Before move (3.1.3) After move (3.1.3) Equations Eqd

g(j, p, q) Value g(i,p, q) Value

g(1, 1, 2) e
13
!e

12
!e

16
!e

17
g(1, 1, 2) !e

12
!e

16
!e

17
g(1, 1, 2)"g(1, 1, 2)!e

13
(15)

g(1, 1, 3) e
13
!e

14
!e

15
g(1, 1, 3) !e

13
!e

14
!e

15
g(1, 1, 3)"g(1, 1, 3)!2e

13
(14)

g(3, 1, 2) e
13
!e

32
!e

36
!e

37
g(3, 3, 1) !e

13
#e

34
#e

35
g(3, 3, 1)"g(3, 1, 3) (12)

g(3, 1, 3) e
13
!e

34
!e

35
g(3, 3, 2) e

23
#e

34
#e

35
!e

36
!e

37
g(3, 3, 2)"g(3, 1, 2)!g(3, 1, 3) (13)

g(2, 2, 1) !e
12
!e

23
#e

26
#e

27
g(2, 2, 1) !e

12
#e

26
#e

27
g(2, 2, 1)"g(2, 2, 1)#e

23
(18)

g(2, 2, 3) !e
24
!e

25
#e

26
#e

27
g(2, 2, 3) !e

23
!e

24
!e

25
#e

26
#e

27
g(2, 2, 3)"g(2, 2, 3)!e

23
(19)

g(6, 2, 1) e
26
#e

67
!e

16
!e

36
g(6, 2, 1) e

26
#e

67
!e

16
g(6, 2, 1)"g(6, 2, 1)#e

36
(18)

g(6, 2, 3) e
26
#e

67
!e

46
!e

56
g(6, 2, 3) e

26
#e

67
!e

46
!e

56
!e

36
g(6, 2, 3)"g(6, 2, 3)!e

36
(19)

g(7, 2, 1) e
27
!e

17
!e

37
#e

67
g(7, 2, 1) e

27
!e

17
#e

67
g(7, 2, 1)"g(7, 2, 1)#e

37
(18)

g(7, 2, 3) e
67
#e

27
!e

47
!e

57
g(7, 2, 3) e

67
#e

27
!e

47
!e

57
!e

37
g(7, 2, 3)"g(7, 2, 3)!e

37
(19)

g(4, 3, 1) !e
14
!e

34
!e

45
g(4, 3, 1) !e

14
#e

34
#e

45
g(4, 3, 1)"g(4, 3, 1)#2e

34
(16)

g(4, 3, 2) !e
24
#e

45
!e

46
!e

47
g(4, 3, 2) !e

24
#e

34
#e

45
!e

46
!e

47
g(4, 3, 2)"g(4, 3, 2)#e

34
(17)

g(5, 3, 1) e
45
!e

15
!e

35
g(5, 3, 1) e

35
#e

45
!e

15
g(5, 3, 1)"g(5, 3, 1)#2e

35
(16)

g(5, 3, 2) e
45
!e

25
!e

65
!e

75
g(5, 3, 2) e

45
#e

35
!e

25
!e

65
!e

75
g(5, 3, 2)"g(5, 3, 2)#e

35
(17)

Consider move (3, 3, 1) for G
2
, which is the reverse of move (3, 1, 3) for G

1
. Therefore,

g@(3, 3, 1)"!g(3, 1, 3), which can be generalized as Eq. (12), g@(j, q, p)"!g(j, p, q).
Consider move (3, 1, 2) for G

1
and move (3, 3, 2) for G

2
. g(3, 1, 2)"e

13
!e

32
!e

36
!e

37
,

which can be obtained by computing the di!erence of Tables (b1) and (a1) of Fig. 1.
g@(3, 3, 2)"e

34
#e

35
!e

23
!e

63
!e

73
, which can be obtained by computing the di!erence

of Tables (b2) and (a2) of Fig. 1. g@(3, 3, 2)"g(3, 1, 2)!g(3, 1, 3), which can be generalized as
Eq. (13), g@(j, q, r)"g(j, p, r)!g(j, p, q), where rOp, q.
Consider move (1, 1, 3) for both G

1
and G

2
. g(1, 1, 3)"e

13
!e

14
!e

15
, which can be obtained by

computing the di!erence of Tables (c1) and (a1) of Fig. 1. g@(1, 1, 3)"!e
13

!e
14
!e

15
, which

can be obtained by computing the di!erence of Tables (c2) and (a2). g@(1, 1, 3)"g(1, 1, 3)!2e
13

,
which can be generalized as Eq. (14), g(i, p, q)"g(i, p, q)!2e

ij
, ∀n(i)"p. The calculations of all

the other equations follow the same logic as Eq. (14). All the possible moves, their communication
cost values, and their corresponding update equations are listed in Table 5.

A.2. Completeness

All the communication cost update functions before move (3, 1, 3) are shown in Table (a) of
Fig. 2. In addition to the communication cost update functions, their corresponding equation
numbers are also listed in Table (b) of Fig. 2. It can be seen that the communication cost update
functions of all the possible moves are contained in Eqs. (12)}(19).

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 301

Fig. 2. Communication cost update table before and after move (3, 1, 3).

References

[1] Billionnet A. Costa MC, Sutter A. An e$cient algorithm for a task allocation problem. Journal of the Association
for Computing Machinery Quarterly 1984;29:147}50.

[2] Sinclair JB. E$cient computation of optimal assignments for distributed tasks. Journal of Parallel and Distributed
Computing 1987;4:342}62.

[3] Dutta A., Koehler G, Whinston A. On optimal allocation in a distributed processing environment. Management
Science 1982;28(8):839}53.

[4] Lo VM. Heuristic algorithm for task assignment in distributed systems. Proceedings of the International Confer-
ence on Distributed Computing Systems. San Francisco, CA, 1984:30}9.

[5] Ma PR, Lee EYS, Tsuchiya M. A task allocation model for distributed computing systems. IEEE Transactions on
Computers 1982;31(1):41}7.

[6] Sarje AK, Sagar G. Heuristic model for task allocation in distributed computer systems. IEE Proceedings. Part E,
Computers and Digital Techniques 1991;138:313}8.

302 W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303

[7] Shen CC, Tsai WH. A graph matching approach to optimal task assignment in distributed computing systems
using a minimax criterion. IEEE Transactions on Computers 1985;34:197}203.

[8] Price C, Krishnaprasad S. Software allocation models for distributed computing systems. Proceedings of the
International Conference on Distributed Computing Systems, San Francisco, CA, 1984;40}8.

[9] Hadj-Alouane AB, Bean JC, Murty KG. A hybrid genetic/optimization algorithm for a task allocation problem.
Technical Report 93-30, Department of Industrial and Operations Engineering, University of Michigan, 1993.

[10] Rao KN. Optimal synthesis of microcomputers for GM vehicles. Technical Report, 1992.
[11] Hadj-Alouane AB, Bean JC,. A genetic algorithm for the multiple-choice integer program. Technical Report 92-50,

Department of Industrial and Operations Engineering, University of Michigan, 1992.
[12] Glover F. Tabu search } Part I. ORSA Journal of Computing 1989;1:190}206.
[13] Glover F. Tabu search } Part II. ORSA Journal of Computing 1990;2:4}32.
[14] Charon I, Hudry O. The noising method: a new method for combinatorial optimization. Operations Research

Letters 1993;14(3):133}7.
[15] Stone HS. Multiprocessor scheduling with the aid of network #ow algorithms. IEEE Transactions on Software

Engineering 1977;3:85}93.
[16] Murty KG. Operations research: deterministic optimization models. Englewood Cli!s, NJ, Prentice-Hall, 1994.
[17] Tao L, Zhao Y. Multi-way graph partition by stochastic probe. Computers and Operations Research

1993;20(3):321}47.
[18] Gendreau M, Salvail L, Soriano P. Solving the maximum clique problem using a tabu search approach. Discrete

Applied Maths 1990.
[19] Glover F, Laguna M. Bandwidth packing: a tabu search approach. Presented at the First Workshop on

Combinatorial Optimization in Science and Technology, DIMACS Technical Report 91-18, RUTCOR Report
3}91, 1991.

[20] Glover F, Hubscher R. Bin packing with tabu search. Technical Report, Graduate School of Business Administra-
tion, University of Colorado at Bolder, 1991.

[21] Knox J. An application of Tabu search to the symmetric travelling salesman problem. Ph.D. Thesis, 1988.
[22] Skorin-Kapov J. Tabu search applied to the quadratic assignment problem. ORSA Journal of Computing 1990; 2:

33}45.
[23] Taillard E. Robust taboo search for the quadratic assignment problem. Parallel Computing 1991;17:443}5.
[24] Johnson DS. Fast Algorithms for Bin-Packing. Journal of Computer and System Science 1974;8:272}314.

Wun-Hwa Chen is an Associate Professor in Business Administration Department of National Taiwan University. He
holds the degree of B.S. in Management Science from National Chiao-Taung University, and an MBA and Ph.D. in
Management Science from New York State University at Bu!alo. His research interests are in the areas of algorithm
design, "nancial engineering, and production and operation management.

Chin-Shien Lin is an Associate Professor in Business Administration Department at Providence University presently.
He holds the degree of B.S. in Management Science from National Chiao-Taung University, an MBA from Tatung
Institute of Technology and a Ph.D. in Decision Science from Washington State University. He has research and
teaching interests in algorithm design, "nancial engineering, and project management.

W.-H. Chen, C.-S. Lin / Computers & Operations Research 27 (2000) 287}303 303

