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Abstract

We have built a database system called BODHI, intended to store plant bio-diversity information. It is based on an

object-oriented modeling approach and is developed completely around public-domain software. The unique feature of

BODHI is that it seamlessly integrates diverse types of data, including taxonomic characteristics, spatial distributions,

and genetic sequences, thereby spanning the entire range from molecular to organism-level information. A variety of

sophisticated indexing strategies are incorporated to efficiently access the various types of data, and a rule-based query

processor is employed for optimizing query execution. In this paper, we report on our experiences in building BODHI

and on its performance characteristics for a representative set of queries.

1. Introduction

Over the last decade, there has been a revolu-
tionary change in the way biology has come to be
studied. Computer assisted experimentation and
data management have become commonplace in
the biological sciences and the branch of Bio-

Informatics is drawing the attention of more and
more researchers from a variety of disciplines. A
key area of interest here is the study of the bio-

diversity of our planet. The database research
community has also realized the exciting opportu-
nities for novel data management techniques in
this domain—in fact, bio-diversity was featured as
the theme topic at the Very Large DataBase
(VLDB) 2000 Conference [1].
Over the last 3 years, we have built a database

system, called BODHI (Bio-diversity Object Da-
tabase arcHItecture)1, that is specifically designed
to cater to the special needs of biodiversity

applications. While BODHI currently hosts purely
plant-related data, it can be easily extended to
supporting animal-related information as well. In
this paper, we report on our experiences in
building BODHI, and also present its performance
profile with regard to a representative set of user
queries.

1.1. Background

The study of bio-diversity, as outlined by the
World Conservation Monitoring Center (WCMC)
[2], is an integrated study of Species, Ecosystem

and Genetic diversity. The data associated with
these domains vary greatly in the scale of their
structural complexity, their query processing cost,
and also their storage volume. For example, while
the taxonomy information of species diversity has
complex hierarchical structure, spatial data and
spatial operators associated with ecosystem diver-
sity are inherently voluminous and computation-
ally expensive. On the other hand, genetic diversity

*Corresponding author.
1Gautama Buddha gained enlightenment under the Bodhi tree.
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is based on specialized pattern recognition and
similarity identification algorithms over DNA or
protein sequences of the species. Thus, supporting
such diverse domains under a single integrated
platform is a challenge to the data management
tools currently used by the ecologists. More often
than not, these scientists make use of different

tools for managing and querying over each of the
domains, leading to difficulties in performing
cross-domain queries.
To illustrate the above point, consider the

following target query, which is of interest to
modern evolutionary biologists and similar to
those that have appeared in the ecological
literature (for example [3]):

Query 1. Retrieve names of all fruit-bearing shrubs

that share a part of their habitats and have a

chromosomal DNA sequence score of over 70 with

Magnolia champa.

The above query is typical in the new age of bio-
diversity studies, where researchers are simulta-
neously studying the macro-level and micro-level
relationships between various target species. An-
swering the query requires the ability to perform
integrated queries over taxonomy hierarchies
(‘‘fruit-bearing shrubs’’), recorded spatial distribu-
tion of species (‘‘common habitat’’), and the
genome sequence databases (‘‘Chromosomal DNA

sequence score above 70’’). Unfortunately, how-
ever, due to the lack of holistic database systems,
biologists are usually forced to split the query into
component queries, each of which can be pro-
cessed separately over independent databases, and
then either manually or through a customized tool
perform the join of the results obtained from the
component queries.
For example, a typical ‘‘experience story’’ for

answering the above query, as gathered from
domain experts, would be:

(1) Locate all fruit-bearing shrubs by performing
a selection query over the taxonomy database,
stored in MS-Access [4], a ubiquitous PC-
based relational database, and retrieve the
keys for their habitats.

(2) For all the keys output in Step 1, access the

associated habitat data, stored as polygons in
ArcView [5], a popular spatial database
product. Then, for each qualifying polygon,
find all the habitats in the spatial database
that intersect this polygon. Finally, compute
an intersection between the original set of
polygons and the newly derived set of poly-
gons in order to prune away the habitats of
organisms other than fruit-bearing shrubs.

(3) From the output of Step 2, identify the names
of the species of the target shrubs, and then
perform repeated BLAST [6] searches over the
EMBL GenBank [7] DNA sequence database
to identify the sequences (and, thereby the
species), that have a score of more than 70.
Note that this final score-based pruning has to
be performed externally by the researcher.

Long procedures, such as the above, for answering
standard queries are not only cumbersome but can
also lead to delays in understanding various micro-
level and macro-level bio-diversity patterns. Even
worse, the patterns may not be found at all due to
limited human capabilities (an example of this
problem was reported in the molecular biology
study of [8], where comparison of sequences ‘‘by
hand’’ missed out some of the significant align-
ments thereby leading to erroneous conclusions
about the functional similarity of the proteins
examined in the study).

1.2. The BODHI system

Based on the above discussion, there appears to
be a clear need for building an integrated database
system that can be productively used by the bio-
diversity community. To address this need, we
have built the BODHI database system in associa-
tion with the ecologists and biologists at our
institute. The project has been funded by the
Department of Biotechnology, Ministry of Science
and Technology, Government of India.
BODHI is a native object-oriented system that

naturally models the complex objects ranging from
hierarchies to geometries to sequences that are
intrinsic to the bio-diversity domain. In particular,
it seamlessly integrates taxonomic characteristics,
spatial distributions, and genomic sequences,



thereby spanning the range from molecular to
organism-level information. To the best of our
knowledge, BODHI is the first system to provide

such an integrated view.
BODHI is fully built around publicly available

database components and system software, and is
therefore completely free. In particular, the
SHORE micro-kernel [9] from the University of
Wisconsin (Madison) forms the back-end of our
software, while the l-DB extensible rule-based
query optimizer [10] from the University of Texas
(Arlington) is utilized for production of efficient
execution plans. The system is currently opera-
tional on a Pentium-III-based PC hosting the
Linux operating system.
A variety of sophisticated access structures,

drawing on the recent research literature, have
been implemented to provide efficient access to the
various data types. For example, the Path-Dic-
tionary [11] and Multi-key Type indexes [12]
accelerate access to inheritance and aggregation
hierarchies, while the R*-tree [13] and Hilbert R-
tree [14] are used for negotiating spatial queries.
The BODHI server is compliant with the

ODMG standard [15], supporting an OQL/ODL
query and data modeling interface. To enable
biologists to interface with the system in a more
intuitive manner, BODHI also supports access
through the Web client–server model wherein
clients submit requests through the HTTP proto-
col and CGI-bin scripts, and the results are
provided through the browser interface. Further,
the server is ‘‘XML-friendly’’, outputting the result
objects in XML format, enabling clients to
visualize the results in their favorite metaphor.
We view BODHI’s role as not merely that of a

database system in isolation, but as a central
repository that provides a common information
exchange platform for all the tools used in a
biologist’s ‘‘data workbench’’ such as decision
support systems, visualization packages, etc. That
is, BODHI occupies a role similar to that played
by the Management Information Base (MIB) in
tele-communication network management.
Algorithms proposed in the research literature

typically tend to be evaluated in isolation and it is
never clear whether their claimed benefits really
carry through in practice with regard to end-user

metrics in complete systems. We suggest that
researchers may find it possible to address this
deficiency by using BODHI as a ‘‘test-bed’’ on
which new ideas can be evaluated in a real-world
kind of setting. As reported later in this paper, we
have ourselves carried out this exercise with regard
to spatial indexes.
Finally, BODHI is living proof that developing

a viable biological DBMS does not necessarily
entail expensive hardware or software but can be
cobbled together using commodity components.
In this paper, we report on our experiences in

building BODHI, and also present its performance
profile with regard to a representative set of
biological queries (including Query 1 mentioned
above).2 Since, as mentioned earlier, there are no
comparable systems that we are aware of, for the
most part our results can be placed only in an
absolute perspective. However, specifically for
queries restricted solely to spatial data, we were
able to utilize the well-known Sequoia 2000
benchmark [17], and additional spatial aggregate
operators such as Closest introduced in the [18].
Here, our numbers are competitive with those
obtained by the Paradise GIS system [18], that was
highly optimized for handling only spatial queries.

1.3. Contributions

To summarize, the main contributions of this
paper are the following:
First, we present the architecture and imple-

mentation of a high-performing object database
system tuned specially for the needs of the bio-
diversity research community. To the best of our
knowledge, this is the first such system supporting
diverse data domains ranging from genomic
sequences to geographical features, and allowing
queries that span across these domains.
Second, we show that BODHI is comparable in

performance to other special purpose data man-
agement systems by evaluating its spatial data
handling, involving computationally expensive
operations, against Paradise, a high performance
spatial data management system.

2A preliminary position paper focusing solely on the BODHI

architectural design was presented in [16].



Finally, through a detailed performance study
we show that genomic sequencing queries are
extremely expensive to compute, even more so
than spatial operations, highlighting the urgent
need for developing efficient sequence indexing
strategies.

1.4. Organization

The remainder of the paper is organized as
follows: Desirable design goals for bio-diversity
DBMS are laid out in Section 2. The BODHI
system architecture and its implementation are
covered in Sections 3 and 4, respectively. Then in
Section 5, we present our experiences in building
BODHI, and followup with a detailed perfor-
mance evaluation in Section 6. Related work is
reviewed in Section 7. Finally, in Section 8, we
present our conclusions and future research
avenues.

2. Design goals

In this section, we highlight the main features
that would be desirable in a bio-diversity informa-
tion system. These include efficient handling of
complex data types, facilities for molecular pattern
discovery, and user-friendly interfaces, described
in more detail below.

2.1. Handling of complex data types

Plant bio-diversity data can be broadly classified
into the following three categories:

Taxonomy data: This is data about the relation-
ships between species based on their characteris-
tics. This includes phenetic relationships (based on
comparison of physical characteristics) and phylo-

genetic relationships (based on evolutionary theo-
ry) [19]. The various characteristics on which these
relationships depend may vary in time due to
discovery of a new class of characteristics, correc-
tions to previously recorded characteristics, etc.

Geo-spatial data: The study of ecology of species
involves recording the geographical and geological
features of their habitats, water-bodies, artificial
structures such as highways which might affect the

ecology, etc. These are represented on a map of the
region and have to be handled as spatial data by
the database.

Bio-molecular data: The genetic makeup of
species is becoming increasingly important with a
large number of genome sequencing projects
working on organisms and plants. For example,
‘‘bio-prospectors’’ look for indigenous sources of
medicines, pesticides and other useful extracts.
Such data can be discovered from the biomole-
cular and genetic composition of species.
The above data-types have complex and deeply

nested relationships within and between them-
selves. Further, they may involve sophisticated
structures such as sequences and sets.

2.2. Molecular pattern discovery

The molecules that are of interest in bio-
diversity are DNA and proteins. DNA is repre-
sented as a long sequence based on a four
nucleotide alphabet. There are regions in the
DNA sequence, called exons, which contain the
genetic code for the synthesis of proteins. The
proteins are long chains of 20 amino acids. Each
protein is characterized by the amino acid patterns
it has, and is responsible for various functionalities
in a cell which determine the characteristics of the
organism or plant.
The similarity between two genetic sequences is

a measure of their functional similarity. Analysis
of DNA and protein sequences from different
sources gives important clues about the structure
and function of proteins, evolutionary relation-
ships between organisms, and helps in discovering
drug targets.
There are a number of popular algorithms, such

as Dynamic Programming, BLAST [6], FastA [20]
etc., for performing the similarity search over
genetic sequences. Researchers and bio-prospec-
tors frequently search the database using these
algorithms to locate gene sequences of interest.
However, the implementation of these algorithms
is typically external to the database, making them
relatively slow. It therefore appears attractive to
consider the possibility of integrating these algo-
rithms in the database engine (this observation is
gaining currency in the commercial database arena



as well, as exemplified by IBMs provision of
homology searching through UDFs in DB2 [21]).

2.3. Usage interface

As with all other scientific communities, the bio-
diversity community relies on timely knowledge
dissemination. Therefore, supporting access
through the Internet is vital for maximizing the
utility of the information stored in the database.
Typically, bio-diversity data is autonomously

collected and managed by individual research
institutions and commercial enterprises. In order
to improve data availability, it is necessary that
such localized and autonomous data repositories
be able to exchange data. The current state of
information exchange amongst various bio-diver-
sity data repositories is not very satisfactory [22].
However, with the advent of XML, many research
groups are proposing DTDs in individual fields of
ecology and genetics [23,24]. The bio-diversity
information system should support these DTDs
for handling data over heterogenous set of
repositories.
It is imperative to have a good visualization

interface for the results produced by the system
since (a) the end-users are biologists, not computer
scientists and (b) the results could range from
simple text to multi-dimensional spatial objects.
Finally, most of the research in bio-diversity is

done by small teams of researchers who work
within low budgets and are unable to afford high-
cost data repository systems. Therefore, solutions
that are completely or largely based on public-
domain freeware which can be hosted on com-
modity hardware, with total cost not exceeding
$1000, are essential for these groups.

3. Architectural overview of BODHI

As mentioned earlier, bio-diversity data is
inherently hierarchical and has complex relation-
ships. In order to enable natural modeling of these
entities and their relationships, BODHI is designed
as an object oriented database server, with OQL/
ODL query and data modeling interfaces. While
we consciously adopted this technology from the

very beginning of our project in 1998, it is
gratifying to note that the same approach is now
being taken by large-scale biological repositories
such as European Molecular Biology Laboratory
(EMBL)—in a recent report, they have indicated
their intention in moving from their current
Oracle-based relational database system to an
object-based data management and distribution
scheme for their massive genomic databases [25].
The overall architecture of BODHI is shown in

Fig. 1. At the base is the storage manager, which
provides the fundamental needs of a database
server such as device and storage management,
transaction processing, logging and recovery
management. The application-specific modules,
which supply the taxonomic, spatial and genomic
services, are built over this storage manager and
form the functional core of the system. The query
processor interfaces with the functional modules
and performs query processing and optimization
using statistics exported by these modules. Finally,
the client interface framework receives query
forms over the Internet from clients and returns
results in the desired format. In the remainder of
this section, we describe the core database
components in more detail.

Client Interface Framework

STORAGE MANAGER

ObjectSpatial Sequence
ServicesServicesServices

Query Processor

The Internet

Fig. 1. Schematic of architecture of BODHI.



3.1. Service modules

The three service modules: Object Services,
Spatial Services and Sequence Services, provide
the functionalities for each of the bio-diversity
data domains mentioned in the Introduction, and
are described in more detail below.

Object Services: While the storage manager
handles basic object management, it is necessary
to support specialized access methods for efficient
processing of queries over the object schema and
its instantiation. The Object Services component
bundles together these access methods.
In querying over object oriented data models, it

is common for predicates to follow arbitrarily long
(sometimes recursive) relationship paths, or be
evaluated over an inheritance hierarchy rooted at a
chosen base type. As illustrations, consider the
following query types over a typical bio-diversity
data model such as that given in Fig. 2, which
captures the taxonomic, spatial and genomic
components:

(1) Identify the PlantSpecies based on one or more

of its IdentCharacteristics.

(2) Retrieve all IdentCharacteristics of a given

PlantSpecies.
(3) List the names of all PlantSpecies associated

with a GeoRegion.

The above queries illustrate the fact that queries
over relationship graphs of bio-diversity data
models may have either an ancestor class or a
nested class as the predicate, and might need to be
evaluated over an inheritance hierarchy. These
queries may involve joins between extents of
objects in the traversal paths, or scanning over
multiple extents for the predicate in the case of
queries over type hierarchies. Therefore, access
methods for both inheritance and aggregation
hierarchies are included in this module.

Spatial Services: Spatial (or geographic) data, in
both vector (object) and raster (bitmap) formats,
constitutes the bulk of the bio-diversity informa-
tion. Due to the inherent complexity of spatial
operations (such as overlap, closest, etc.), com-
bined with large volumes of data, spatial query
processing is considered to be a major bottleneck
in the expeditious processing of a cross-domain
query (such as Query 1 in Section 1).
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Fig. 2. Bio-diversity object model.



The Spatial Services module provides efficient
implementations of access methods and spatial
operations.
To ensure that the access methods have efficient

disk allocations, and thereby alleviate the perfor-
mance bottleneck mentioned above, these methods
are built within the storage manager. While this
choice makes it cumbersome to replace or upgrade
the storage manager, we felt that the resulting
performance benefits would outweigh the disad-
vantages.
The Spatial module provides a spatial-type

system based on the ROSE Algebra [26]. These
types, whose hierarchy is shown in Fig. 2, consist
of Simple primitives: Point, Polyline, and Polygon;
and Compound primitives: Layer and Network,
which are collections of related Polygons and
Polylines, respectively.

Sequence Services: In modern bio-diversity
studies, genetic data plays an important role [3].
The Sequence Services module interfaces with the
storage manager to provide efficient storage of
genetic sequences and sequence retrieval algo-
rithms such as BLAST, FasTa, etc. These algo-
rithms are expensive to compute since there are
currently no obvious ways of caching or indexing
to speed up their computation, and a full scan of
the sequence database is therefore entailed each
time. The Sequence Services module uses appro-
priate storage structures for efficient execution of
the genetic algorithms.
This module supports two primitive types: DNA

and protein. The DNA alphabet of 4 nucleotides is
encoded using 2 bits and similarly the protein
sequence alphabet of 20 is encoded in 5 bits. The
functions for translation of DNA sequences into
and from protein sequences for complementary
DNA strand generation, and for substring opera-
tions are also included in this module. Finally, the
alignment-based sequence similarity algorithms
such as BLAST (using standard scoring matrices
like BLAST or BLOSUM) are also part of the
module.

3.2. Query System

The data modeling and query language for
BODHI is based on the ODL and OQL languages,

respectively, from the ODMG standard [15]. These
languages have been enhanced with support for
both the typesystems over spatial and genetic data,
and the operators over these typesystems.
The query processor contains, in addition to the

techniques available in generic database systems,
specialized optimization schemes for:

* Spatial operators, when spatial indexes are
available on predicate attributes.

* Relationship path traversals.
* Queries over a type hierarchy of the data model.

The presence of user defined methods in the
synthesized object types (for example, Print

method on objects, Area over polygons, etc.),
form a serious obstacle for optimal plan genera-
tion, since their costs are not directly available to
the query optimizer. A variety of strategies for
handling this situation have been proposed in the
literature [27,28]. In BODHI, we have extended
the ODL language to allow optional definition of
cost functions, and functionally equivalent meth-
ods. These extensions enable the cost-based
optimizer to compute the cost associated with
each of the equivalent methods, before choosing
the best execution strategy.

Client Interface Framework: The client interfa-
cing is an important layer in the query interface of
BODHI. We have developed a simple framework
to transform the objects of the query results into
formats amenable for transportation to end-
clients. With clients following different needs for
their visualization and query capabilities, we feel
this becomes an important part of the query
interface. Using this framework, users can easily
implement their transformation rules which are
then applied to the appropriate objects in the
query results. The transformed results are then
shipped to the clients.

4. Implementation choices

In this section, we highlight the important
software choices that we had to consider in
BODHI, and provide the rationale for the
decisions that we made. We discuss these choices
under the following heads: (i) selection of storage



manager and query processor, (ii) selection of
access methods, and (iii) positioning of implemen-
tation components.

4.1. Selection of storage manager and query

processor

For the back-end storage manager, we selected
the SHORE system [9] developed at the University
of Wisconsin (Madison) which, at the time we
began the project in late 1998, had a major release
the previous year that was operational on both
Solaris and Linux platforms. We were drawn
towards SHORE due to its attractive array of
features, including:

* Well-implemented support for basic database
functionalities such as transactions, logging and
recovery management, device and storage man-
agement, etc. Recovery is implemented through
the ARIES algorithm [29] which has become the
de-facto industry standard, while multi-granu-
larity locking is provided for enhanced con-
currency.

* Integrated file-system interface with DBMS
functionality. This can be extremely useful in
handling genomics data which is available
largely as flat-files.

* First-class support for user defined types.
* Availability of a framework for writing Value

Added Servers (VAS)—to provide additional
features to the storage manager.

* Presence of Rn-Tree [13], a spatial indexing
structure built within the SHORE kernel (in
addition to the standard Bþ-Tree index).

* Availability of source code, which enabled us to
enhance many of the features of SHORE (the
version we have used is Version 1.1.1, which
was the latest at the time we began our project).

* Successfully tested under at least two large scale
research prototypes [18,30].

* Intrinsic support for parallelism on a multi-
processor or network of workstations.

After we had been into development for about a
year, we had reached the stage wherein we were
thinking about the implementation of the query
processor. In particular, we were considering the
possibility of building our own query processor,

using either a Volcano-style framework or a
Tigukat-style framework. We dropped this idea,
however, when news broke (on the dbworld [31]
mailing list) of the first release of l-DB [10], an
extensible rule-based optimizer from the Univer-
sity of Texas (Arlington), which, serendipitously
enough, had been implemented on Shore! This
vastly reduced our design time on the query
processor front. Further, l-DB came with an
attractive set of features including query transfor-
mation and optimization rules for OQL (specified
using the OPTL optimization specification lan-
guage), and a functional design that made it easy
to enhance and specify additional rules. Finally, it
had a firm mathematical foundation in monoid
comprehension calculus that permitted optimiza-
tions similar to those found in relational query
rewriting engines.

4.2. Selection of access methods

As discussed earlier, BODHI includes indexes
for inheritance hierarchies, aggregation hierar-
chies, and spatial data that are implemented in
the Object and Spatial Services modules. For each
of these indexing categories, there have been
numerous proposals in the research literature,
requiring us to make a carefully selected choice.
We had intended to add indexes for sequence

data as well. Unfortunately, however, until this
issue was addressed very recently in [32,33], no
practical solutions for indexing the sequences were
available, rendering it impossible to realize our
objective. We are now investigating the incorpora-
tion of these new methods in the BODHI system.

Inheritance hierarchies: For indexing inheritance
hierarchies, we have chosen the Multi-key Type

Indexing [12]: The basic idea behind MT-index is a
mapping algorithm that maps type hierarchies to
linearly ordered attribute domains in such a way
that each sub-hierarchy is represented by an
interval of this domain. Using this algorithm,
MT-index incorporates the type hierarchy struc-
ture into a standard multi-attribute search struc-
ture, with the hierarchy mapped onto one of the
attribute domains (type domain). This scheme
supports queries over a single extent as well as over



extents of classes under a subtree. This can also be
extended to support the multi-attribute queries.
Apart from its simple transformation of the tree

into a linear path, a major attraction of the MT-
index is that it can be implemented using any of
the multi-dimensional indexing schemes. In parti-
cular, since SHORE natively supports Rn-trees,
the MT-index could be directly implemented using
this structure, resulting in considerably reduced
programming and integration effort.

Containment hierarchies: For indexing aggrega-
tion hierarchies, we have chosen the Path-Dic-

tionary (PD) index [11]. The PD-Index consists of
three parts: the Path-Dictionary which supports
the efficient traversal of the path, and the identity

index and the attribute index which support
associative search. The identity index and attribute
index are built on top of the Path-Dictionary.
Conceptually, the Path-Dictionary extracts the

compound objects, without the primitive attri-
butes, to represent the connections between these
objects in the aggregation graph. Since attribute
values are not stored in the Path-Dictionary, it is
much faster to traverse the nodes in the extracted
Path-Dictionary. In order to support associative
search based on attribute values, PD-Index pro-
vides attribute indexes which are built for each
attribute on which there are frequent queries.
When the identifier of an object is given, the path
information is obtained using the identity index
built over the PD.
On the positive side, the PD-index supports

both forward and backward traversals of the
hierarchy with equal ease; further, its performance
evaluation indicated significantly improved access
times in [11]. A limitation, however, is that it only
handles 1:1 and 1:N relationships. Since typical
schemas of bio-diversity databases include aggre-
gations of N:M cardinality, and structures such as
sets, bags and sequences in the aggregation path,
we had to extend the implementation of the PD-
index to handle these constructs as well.

Access methods for spatial data: For spatial data,
SHORE natively supports the Rn-Tree [13], which
is the most popular spatial access method since it
achieves better packing of nodes and requires
fewer disk accesses than most of the alternatives.
However, a problem with the Rn-Tree is that even

though it has tight packing to begin with, its
structure may subsequently degrade in the pre-
sence of dynamic data. To tackle this, we
implemented the Hilbert R-Tree [14], which is
designed for handling the dynamic spatial data
while maintaining good packing of the index
structure. It makes use of a Hilbert space-filling
curve over the data-space to linearize (i.e. obtain a
total ordering of) the objects in the multi-dimen-
sional domain space. A performance evaluation in
[14] shows this structure to provide better packing
in the presence of dynamic spatial data and thus
better performance. However, the evaluation was
considered in isolation and therefore one of the
goals of our study was to investigate how well
these performance improvements carried over to a
real system.

4.3. Positioning of implementation components

In addition to selection of software and the
indexing methods, another important decision that
determines the system performance and extensi-
bility is the placement of functionality in the
implementation. One option is to achieve perfor-
mance improvements by supporting every feature
of the system at the lowest level—for example, by
implementing at the SHORE storage manager
level. However, this becomes a huge effort to
extend and improve the system by addition of new
basic types, new access structures, etc. At the same
time, if we provide all the additional features at
layers external to the storage manager then the
overall performance could suffer. Therefore, we
considered these two competing requirements of
the system carefully while placing the implementa-
tion of the services, and aimed to optimize
extensibility while minimizing the performance
overhead on the system. (Fig. 3)

Object Services: As mentioned previously, this
module bundles the Path-Dictionary and Multi-
key Type indexes over object aggregation and type
hierarchies, respectively. The Path-Dictionary
structure is implemented as a VAS, which main-
tains the path-dictionary on a data repository—
with its own recovery and logging facilities—
independent from the main database. This gives
the query processor an opportunity to scan the



path-dictionary repository in parallel to the other
data scans active at the same time. Further, the
locking overheads are distributed over different
storage management threads.
The Multi-key Type index, on the other hand, is

instantiated as an Rn-Tree, which is available for
spatial indexing, with linearized-type system as a
dimension and each object treated as a ‘‘point’’ in
the spatial sense.

Spatial Services: In addition to the Rn-Tree
provided by the Shore storage manager, the spatial
services module provides the Hilbert R-Tree which
is intended for use with highly dynamic spatial
workloads. This index could be implemented as a
VAS external to the database, utilizing the Shore
SM interface which allows introducing new logical
index structures. With this approach, however, no
page-level storage control is provided, thereby
making it infeasible to implement index structures
such as Hilbert R-Tree that rely on physical
packing of data for performance benefits. We
were thus forced to implement the Hilbert R-Tree

by refactoring the existing Rn-Tree implementa-
tion.
We had the option of implementing the spatial-

type system, illustrated in Fig. 2, either as part of
the basic-type system (similar to the support of
types like integers, strings, references, etc.) or at
the same level as a user defined-type system. In the
former approach, we do gain the storage efficiency
and low object creation overhead, but we lack the
extensibility and ease of implementation available
in the latter approach. The final choice was to go
for an extensible-type system, that is, to provide
the spatial-type system (along with sequence-type
system—discussed below), as a user level library
which can be modified and extended by the
database administrator without having to work
on the storage manager layers.

Sequence Services: The type system of the
Sequence Services, consisting of DNA and Protein

types, are provided in the same way as the spatial
types, which we have described above. In addition,
the DNA sequence type has extra requirements for
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its storage. The DNA sequences are usually very
long (1000–10 000 basepairs), and consists of only
four alphabets. Instead of storing them as char-
acter strings, we store them in a compressed form
and perform queries over the compressed records
rather than on the character strings. The efficient
storage of the raw sequences is implemented as a
separate VAS which provides advantages similar
to those mentioned in the Path-Dictionary
implementation.

4.4. Implementation of user interface

The user interface allows users to graphically
construct OQL queries, and post them to the query
processor through the web-server. These OQL
queries are validated at the browser end, by
javascripts associated with the query forms. The
queries are received by the web-server through
CGI extensions, which enable interaction between
web-server and the BODHI query-processor.
The query-processor generates the output in

XML [34], using semantic tags associated with
each object in the result set. This representation
can be visualized using a tool written on top of the
browser, and enables users to visualize the results
in their favorite metaphor.
A sample query input form and a sample tagged

output are shown in the appendix.

5. Experiences

In the previous sections, we have described the
architectural design of BODHI and the specific
choices that we made for the various components
of the design. We move on now to discussing the
experiences and lessons that we learned during the
course of implementing these choices in our
prototype system. Some of the issues that we raise
here with regard to SHORE and l-DB have been
addressed in subsequent releases of these code-
bases—we are constrained, however, to continue
to use version 1.1.1 of Shore and version 0.3 of l-
DB, the versions that were current at the time we
began the project three years ago, since we have
made significant alterations and enhancements to
these software.

The overall detailed implementation of the
system is illustrated in Fig. 4. As illustrated, the
schema declarations in ODL are first converted
into SDL (the definition language provided on top
of the SHORE storage manager), by l-DB. The
implementations of the schema declarations are
stored in a separate source file that is compiled
into a linkable library for the applications.
Similarly, the query in the OQL format is type-
checked, optimized and converted into an imple-
mentation of the optimal physical plan by l-DB.

5.1. Index key formats

l-DB generates the query implementation mak-
ing use of its runtime interface to the SDL layer of
SHORE. The query is evaluated in a streaming
fashion, avoiding the materialization of the sub-
queries as much as possible. Indexing over object
extents is achieved by maintaining a separate
extent of indexes. In SHORE, the index objects
have to reside within a ‘‘user level’’ object. Now,
while l-DB uses an ExtentIndex type to hold the
indexes, it also converts all the index keys into a
string format in order to handle them in a generic
way. This turns out be a problem when handling
keys that cannot be converted into character
strings (such as in the case of spatial indexes),
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and in handling keys which result in a loss of
information during the conversion (such as float-
ing point values). Therefore, in order to support
the spatial indexes from the ODL/OQL layers, we
were forced to introduce a specialized key type for
spatial indexes and also implement a special index
holder class. This required a considerable amount
of modification and extensions to the code in the
query processor.
At the same time, the rule-based optimization

scheme of the l-DB simplified the process of
adding new operators into OQL, as well as their
optimization and rewritings into the physical
operators based on the statistics. We added
operators such as Overlaps, Inside, etc. for spatial
operations, and sequence retrieval operators such
as BLAST into the OQL specification supported
by the query processor.

5.2. Index visibility

The implementation of access structures for
spatial data and object hierarchies raised some of
the subtle issues with regard to hosting them on
the l-DB and SHORE combination. One of the
most surprising revelations was the lack of spatial
index support at the SDL layer in SHORE—which
is still not available since there have been no
further releases of the SDL layer. The Rn-Tree is
available only at the storage manager level, but is
not exported to the SDL interface. This also meant
that l-DB which uses the SHORE through the
SDL interface also has no knowledge of the spatial
indexes. In order to provide the support at the
OQL level we first had to rework the SHORE
code, and then integrate it with the query
processor.

5.3. PD Index implementation

While implementing the Path-Dictionary-based
indexing for aggregation path queries, we found
that the index structure as presented in [11] cannot
be used in a stream based query processor such as
l-DB, without breaking the pipeline structure and
materializing the query results at that join node.
We addressed this problem by inverting the storage
of paths to proceed from the top of the aggrega-

tion tree instead of the suggested bottom-up
approach. While this inversion may partially
reduce the effectiveness of the Path-Dictionary,
the major benefit of avoiding the huge cost of joins
over object extents is retained.
We have extended the implementation given in

[11] to support the additional requirements of
allowing N:M relationships and presence of bags
and sequences in the aggregation path. The main
idea behind our extensions for the of N:M
relationships is to break them into multiple 1:N
relationships. But a straightforward application of
this idea introduces complications in maintenance
of s-expressions.

Supporting N:M relationships: Consider the
representative N:M relationship graph shown in
Fig. 5(a). If we break this into multiple 1:N
relationships, the graphs and the corresponding
s-expressions look as in Fig. 5(b). Note the
redundancy in these s-expressions: The children
of B1 are replicated in both of the s-expressions of
A1 and A2: This problem can be solved by using a
flag in the entries of s-expression. The flag denotes
whether the entry is a direct reference or an
indirect reference. All the descendant entries of an
OID will be stored only in the entry which
contains direct reference to that OID. This
modification is shown in form of a graph in

(b) (c)

(a)

A2    (  B1   )

A1  (   B1     (    C1     C2   )    )

d - direct ref
i - indirect ref

C2

1C

B1
A2

A
1

B1

C2
A2

B1A1 C1

B1
C1

C2

A
1

A2

B1
C1

C2

A1  (  B1  (  C1  C2  )  )

A2  (  B1  (  C1  C2  )  )

Indirect Reference

d         d            d        d

 d          i

Fig. 5. Representing N:M relationships (a) N:M relationship

(b) Equivalent 1:N relationships with replicated paths (c)

Equivalent 1:N relationships with indirect references.



Fig. 5(c) with their corresponding s-expressions.
Note that the suffix for each entry denotes whether
it is a direct reference or an indirect reference.
Though this modification duplicates (with differ-
ent flag values) the B1 entry, we avoid duplicating
the children of B1; thus saving space.

Extensions to support bags and sequences: The
previous modification works fine for storing
ordinary references and sets. But in the presence
of bags, further redundancy is possible. The
example for this is shown in Fig. 6. The number
on the edge from a to b denotes the number of
times b appeared as a reference in the bag of a: The
corresponding s-expressions for this graph using
the above implementation are given in Fig. 6(b).
Note that the entry of B1 is repeated n times in
each expression, where n denotes the number of
times B1 is referenced in the parent object. This
replication can be eliminated by introducing one
more field in the entry of s-expression which stores
this replication count. This reduces the storage
overhead for storing bags since OIDs are not
duplicated. The s-expressions with this modifica-
tion are shown in Fig. 6(c). The implementation
also supports sequences by maintaining the order
of the children of a given parent in the s-
expressions.

5.4. VAS feature

In building the PD-index, we exploited the
concept of Value Added Server (VAS), one of
the strong features of SHORE. The ability to
provide a concurrent storage manager with a full

set of database features such as transactions,
logging, recovery, etc., eased the task of extending
the storage manager capabilities tremendously.
Although RPC-based interaction between the
storage server instances results in communication
delays and reduced type-support across the storage
servers, it enables cleaner separation of services
provided by the storage manager.
We also used the VAS feature to provide

genome sequence storage, and retrieval algorithms
over this storage. An important advantage of this
implementation is that it is easy to extend and
optimize the sequence retrieval algorithms without
affecting the rest of the system. A problem,
however, was the following: The storage allocation
of the sequences on the VAS is effected through a
specific interface which stores the sequences in a
compressed form on the disk. Ideally, this storage
should be handled transparently. However, due to
lack of post-construction hooks for object instan-
tiation in l-DB and SHORE, this compressed
storage of sequences has to be explicitly called
during database loading.

6. Experimental results

We have evaluated the performance of BODHI
on a test-bed of typical queries in the bio-diversity
domain. These queries make use of a mixture of
synthetic and real datasets and consist of queries
over both single-domain (such as taxonomy, spatial
or sequence domains) and multiple domains—i.e.,
queries similar to Query 1 in the Introduction.
Moreover, since spatial data forms a large fraction
of data and is traditionally considered the main
component of the query processing time, we
studied the performance of the spatial component
in detail. In particular, we evaluated the spatial
data handling capabilities of BODHI over the
datasets and queries of the Sequoia 2000 regional
benchmark [17], a standard benchmark for spatial
databases.
The performance numbers reported were gener-

ated on a Pentium-III 700 MHz processor, with
512 MB memory and an 18 GB 10 000-RPM SCSI
hard disk ðIBM DDYS-T18350 M model), con-
nected with Adaptec AIC-7896/7 Ultra2 SCSI host
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adapter. In order to reduce the effects of Linux’s
aggressive memory mapping of files, we flushed the
benchmark database each time with an I/O over a
large database.
In the rest of the section, we first describe the

synthetic datasets used in our queries, and then
present BODHI’s performance on these datasets
for a variety of single-domain and multi-domain
queries.

6.1. Description of datasets

The synthetic data used in our experiments
conforms to a biodiversity object model, which is
presented in part as an object diagram in Fig. 2.
Even though we collaborated closely with the
scientists of the ecological sciences in designing
this object model to represent their requirements,
we faced difficulties in procuring enough data to
be used in the evaluation experiments of the
system. This is because the domain experts have
the bulk of their data in legacy formats, often on
‘‘herbarium sheets’’.3 While we await the conver-
sion of this data to electronic format, we have for
the interim period created our datasets by boost-
ing, with synthetic data, the limited real data that
is currently available.
As shown in the object model, the schema is

hierarchical in nature and consists of aggregation
paths, inheritance structures over object types,
spatial and genome sequence components. The
well-known taxonomy aggregation path of Order-
Family-Genera-Species forms the backbone of the
model. Each Species has a set of identifying
characters (IdentChar), and there are many sub-
characteristics that are inherited from this. The
spatial component of the model consists of a
collection of reported habitat areas for each
Species. Also associated with each Species is a
collection of DNA sequences that are used to
study the evolutionary pathways amongst the
species by locating homologies (sequences which
have a high likelihood of sharing a common
ancestor). We now describe the mechanism of

generating synthetic data that complies with the
object model.

Taxonomy data: We generated the object rela-
tionships in taxonomy and characteristics hierar-
chy by setting a heuristic probability of association
at each optional relationship. In case of collections
in the aggregation path, the branch factor of the
collection was uniformly distributed over specified
end-points. The real data available for about 15
closely studied Plant species was boosted with this
synthetic data.

Spatial data: We used the synthetic data
generation method followed in [14]. The data
consists of rectangular regions, whose centers are
uniformly distributed over a unit square. The
overlap between rectangular regions can be con-
trolled by specifying the distribution of their
height and width values. It should be noted that
this dataset consists of only rectangular
regions, while in reality we have to handle non-
convex polygonal regions as well. The perfor-
mance of spatial data handling over real dataset
(involving non-convex polygonal regions) will be
evaluated separately through the Sequoia
2000 benchmark. Each species object generated
above is associated with a synthetically generated
polygon that represents the habitat of the
species.

Genome data: In the case of Genome sequence
data, we could use the data that is publicly
available through repositories such as GenBank,
SwissProt, etc. In our experiments, we made use of
a randomly selected sample of ‘‘expressed se-
quence tags’’ (ESTs) of various genomes available
from the BLAST database of EMBL GenBank [7].
We used these sequences to populate the DNA
information of our synthetically generated species.
We summarize the parameters used for the

benchmark dataset in Table 1 and the statistics of
the resultant dataset in Table 2. We consider a set
of 5 queries over this dataset that conforms to the
schema illustrated in Fig. 2. These queries span the
domains of taxonomy, spatial and genome data,
and illustrate the capabilities of BODHI in
handling these domains. In addition, the perfor-
mance numbers of these queries provide an
indicator towards overall expected performance
of the system.

3These are sheets that contain a plant specimen and its

details.



6.2. Biodiversity queries

We now describe the set of queries considered to
illustrate the capabilities of BODHI and present
the performance numbers over each of these
queries. The query mix can be split further into 3
categories: Taxonomy queries, Genome queries
and Multi-Domain Queries. We collectively refer
to Taxonomy and Genome Queries as Single-

domain queries, since predicates involve either
taxonomy hierarchy or genetic sequences asso-
ciated with a species, but not both. The Multi-
domain queries, on the other hand, query across
taxonomy hierarchy, habitat (spatial) collection
and genetic sequences data corresponding to
species. The performance numbers for the queries
are summarized in Tables 3 and 4.

Taxonomy Query-1: Find all species that have the

same Inflorescence characteristic in their Flowers as

that of ‘‘Magnolia-champa’’. With reference to the
bio-diversity data model shown in Fig. 2, this
query performs a three level path traversal over the
aggregation hierarchy of Species, Flower and

Inflorescence Characteristics. The performance
results in Table 3 for this query show that without
any indexing strategy for accessing the aggregation
paths, the query execution times are unacceptably
high—especially considering the modest size of the
dataset. The performance of the query execution
improves by two orders of magnitude with the
presence of a Path-Dictionary index over the
queried path. As discussed earlier in Section 4,
the Path-Dictionary maintains a compact materi-
alization of joins along the queried path, prevent-
ing the repeated computation of these expensive
joins. Interestingly, if we follow the aggregation
paths through the usage of ‘‘swizzled pointers’’
available through C++ interface of SHORE, this
query can be answered in 8:5 s; which is much
faster than even using Path-Dictionary based
indexing. It has to be noted that rewritings
available in query-processors such as l-DB do
not make use of these features available with the
storage managers, thus incurring heavy cost of
joins.

Genome Query-1: Retrieve all DNA sequences of

Magnolia-champa. The DNA sequences are stored
encoded, using context-free encoding, in a separate
storage. This encoding increases the disk-memory
bandwidth and enables the sequence similarity
algorithms to operate in this encoded domain

Table 1

Parameters to synthetic data generator

Parameter Value

Branch factor at each level of taxonomy Uð1; 19Þ
Mean (height, width) of habitat regions (10,12)

Range of distribution of habitat regions From (�100; �100)
to (�1000; �1000)

No. of DNA sequences per species 10

Table 2

Statistics of the synthetic dataset

Element No. of tuples Overall size (in KB)

Order 4 0.6

Family 46 7.1

Genera 496 76.0

Species 5155 1153.1

FlowerChar 5155 564.0

Habitats 5155 607.0

InfloChar 5 20.4

EMBLEntry 51 550 2902

Total 5330.2

Table 3

Performance numbers for single-domain queries

Id Time (min)

Taxonomy Query-1 73 min (without path-dictionary)

0:5 min (with path-dictionary)
Genome Query-1 0:2 s
Genome Query-2 1:5 min:

Table 4

Performance numbers for multi-domain queries

Id Without

index (s)

Path-dictionary

(s)

Spatial

path-dictionary (s)

MDQ1 26.99 11.13 2.1

MDQ2 553.66 542.12 530.2



itself. At the same time, there is an overhead of
decoding them before presenting to the user. The
performance numbers of this query give estimate
of the delay involved in decoding these sequences.

Genome Query-2: List names of all Species that

have a DNA sequence within a BLAST score of 70

with any sequence of Magnolia-champa. The
computation of BLAST scores over a database
could be a time consuming task. We don’t have
any indexing schemes for speeding these queries,
for reasons mentioned earlier in Section 3, and
hence for each query sequence we have to make a
full scan of the sequence database and compute the
scores, significance of the alignments, etc. The
timing for this query—which results in 10 BLAST
computations—is about 1:5 min; as mentioned in
Table 3. When this number is compared against
the query capabilities of BLAST-farms run by
organizations such as EMBL, it might look rather
high. However, BLAST-computation farms make
use of large-scale and heavily optimized data
handling equipment and keep the entire database
in memory for speeding up the processing times,
while BODHI is aimed to handle varied data, and
is running on a general purpose small-scale
machine.

Multi-domain Query-1: Find all Species sharing a

common habitat and having the same Inflorescence

characteristic as Magnolia-Champa. This query,
which is common among ecologists, is targeted at
the combination of hierarchical data of Taxonomy
domain, and associated Spatial data. The query
evaluates the combined effectiveness of the Path-
Dictionary index and Rn-Tree indexes available in
BODHI. The performance numbers provided in
Table 4 are for the optimal query plan which
performs the spatial overlap before computing the
joins over the aggregation paths. Since spatial
overlap is highly selective in the existing dataset,
the number of path aggregation traversals are
reduced to a very small number. As a result, we see
that even though this query is more complicated
than Taxonomy Query-1, it takes less than 0:6% of
time taken for Taxonomy Query-1 even in the
absence of the Path-Dictionary index. The pre-
sence of Path-Dictionary reduces the execution
time further, from 26:99 s to 11:13 s—a reduction
of 58%. In this case, the execution times are

dominated by the spatial overlap computation. We
can see this clearly by looking at the performance
of the query when both Rn-Tree and Path-
Dictionary are present. The query time is just
around 2 s; almost an 80% improvement. This
clearly indicates that both indexing strategies are
extremely useful for such queries.

Multi-domain Query-2: Retrieve all pairs of

Species sharing a common habitat, having same

Inflorescence characteristic and having a DNA

sequence within BLAST score of 70 of each other.
This query, which extends the Multi-domain

Query-1 by adding an extra predicate for the
BLAST score computation for each of the se-
quences in the target species, is similar to the
‘‘goal’’ query that we presented earlier as Query 1
in the Introduction. The OQL version of this
query, which is what is input to the BODHI
system, is given below:

Referring to Table 4, we see that the execution
times are much higher than those of Multi-domain

Query-1—due to the additional 50 BLAST com-
putations. The reduction in execution times are
approximately same as in Multi-domain Query-1,
about 11 s in presence of Path-Dictionary and by a
further 10 s in presence of both Rn-Tree and Path-
Dictionary indices. Hence, this query is clearly
dominated by the BLAST computations. There-
fore, it appears that it is imperative to develop
indexing strategies to improve performance of
such queries over genome sequence data.



6.3. Evaluating spatial data handling

The evaluation of queries over spatial data has
traditionally been considered as a highly compute-
intensive operation, and many indexing strategies
have been proposed to improve the performance
of these queries. The SEQUOIA benchmark has
been quite popular for evaluating the performance
and capabilities of spatial databases. It consists of
a set of 10 queries over a schema involving the
spatial objects (such as polygons, points and
graphs) and also bitmap (raster) objects. As we
do not have support for bitmap data formats in
BODHI, we have chosen to ignore the raster
dataset and queries (2), (3), (4) & (9), which
involve these objects. The vector benchmark data
consists of 62 556 Point objects, 58 585 Polygons
and 201 659 Graph objects. Table 5 summarizes
the response times (in seconds) for the queries on
this data. We have compared BODHI’s perfor-
mance with Paradise [18], a spatial database
system also built on the SHORE storage manager,
and Postgres [35], a popular free object-relational
database. The numbers given for these two systems
are taken from those reported in [18].
The SEQUOIA benchmark results in Table 5

show that BODHI is very close in performance to
that of Paradise, which is a specialized and highly
optimized spatial database system. Even though
the hardware platform used by the two systems are
difficult to compare, it should be noted that both
Paradise and BODHI use the same underlying
storage manager. In addition the following points
regarding numbers reported under BODHI should
be noted: (i) We use file-based storage manage-
ment instead of using raw-disk as done by Paradise

system; (ii) The optimal physical query plan is
generated through a generic object-oriented query
processor; (iii) The type-system is user-defined
whereas in Paradise the basic type system of
SHORE has been augmented; and, (iv) the size of
the buffer pool used by SHORE is the default
value—320 KB; whereas Paradise used 16 MB:
We now present the chosen set of SEQUOIA

queries and their performance statistics. We
also explain a few of these queries and highlight
their importance in a typical set of bio-diversity
query workloads. For detailed explanation and
analysis of all the queries we refer the reader to
[36].

Sequoia 1—dataloading and index creation: This
query populates the database from a given set of
datafiles, and is expected to exercise the bulk-
loading facility in the database. At the time of
writing, we still do not have the bulk-loading
feature in BODHI, resulting in a transaction
commit for each object hierarchy. Therefore, the
table represents only an upper bound on the
dataload and indexing times for the spatial
component. Referring to Table 5, we see that this
is the only benchmark query in which BODHI is
far worse than Paradise which supports bulk-
loading facility. However, we do not see it as a
major bottleneck in BODHI, since the bio-
diversity databases are not expected to have high
rates of bulk data updates. Instead, these data-
bases are highly query-intensive and hence it is
important to have fast query processing speeds. In
addition, we expect improvements in performance
when the bulk-loading scheme is put in place for
BODHI.

Sequoia 5—Select a point based on its name.

Table 5

SEQUOIA Benchmark numbers (in seconds)

Id BODHI BODHI Paradise Postgres

(with R*-Tree) (with Hil. R-Tree)

1 5742.0 4662.0 3613.0 8687.0

(R*-Tree: 1342.0) (Hil. R-Tree: 262.0)

5 0.12 0.11 0.2 0.9

6 8.0 8.0 7.0 36.0

7 0.66 0.7 0.6 30.5

8 9.7 9.6 9.4 62.2

10 11.0 10.8 Not supported 327.2



Sequoia 6—Select polygons overlapping a speci-

fied rectangle: This is one of the typical spatial
queries asked in ecological studies where a
geographic region is split into a set of grids and
the researchers would want to identify the species
whose previously recorded habitat boundaries
overlap with the grid being studied. This could
be important in identifying species whose co-
existence in a region is to be targeted for study.
The performance of spatial operators such as
overlap depend directly on the performance of
implementing these operators on a spatial index
such as Rn-Tree or Hilbert R-Tree. Since the Rn-
Tree implementation of BODHI is the same as
that of Paradise (both use the index provided by
the SHORE storage manager), we do not see much
difference in the query execution performance.

Sequoia 7—Select polygons greater than specified

area, contained within a circle: We see similar
queries occurring in bio-diversity studies with
variations in the area selection clause of the query.
The area of a polygon is provided through a
derived attribute—computed based on the co-
ordinates of the polygon. This is extendible to
allow for selection over arbitrary derived attri-
butes over which an index can be built. Thus, in
ecological study databases, we get variations of the
query that locate all the habitats that are near a
study center, with a derived attribute value (such
as bio-mass index of the habitat, etc.).
This query reflects the combination of B-Tree

and spatial index based query processing. The
order in which this query gets evaluated—whether
the B-Tree lookup or the Rn-Tree based overlap
selection is made as the first step—makes a big
difference in the query answering times. The usage
of query optimizer which maintains cost statistics
and uses it to arrive at the final evaluation order is
also tested in this query. The numbers presented in
Table 5 are for the optimal plan generated by
the query processor of BODHI, which is to
perform the Rn-Tree based overlap selection
first and then the B-Tree-based polygon area
selection.

Sequoia 8—Select polygons overlapping a rec-

tangular region around a point.
Sequoia 10—Select points contained in polygons

with specific landuse type.

We also executed the above Sequoia benchmark
queries with Hilbert R-Tree in place of Rn-Tree.
The results obtained are shown in Table 5. The
building times of Hilbert R-Tree were quite low in
comparison to that of Rn-Tree, and at the same
time provide almost the same performance. The
numbers shown are for Hilbert R-Tree which
employs s-to-ðsþ 1Þ split policy on overflow, with
s ¼ 2: Even though the performance of the Hilbert
R-Tree could be improved by increasing the value
of s; the index creation times increase sharply with
s: Hence, the current choice of split policy was
chosen to optimize on the index building time and
the performance of the index over benchmark
queries.

7. Related work

Bio-diversity data consists of both macro-level
and micro-level information ranging from ecolo-
gical information to genetic makeup of organisms
and plants. Apart from our work, we are not
aware of any other that attempts to combine the
complete spectrum of information, though the
need for it is highlighted in a recent proposal for
Global Bio-diversity Information Facility (GBIF)
[22] by Organization for Economic Co-operation
and Development (OECD). This proposal identi-
fies the domain level challenges in building a
global, interconnected data repository of bio-
diversity information systems and notes that the
urgent requirement in bio-diversity studies is a
suitable information management architecture for
handling vast amounts of diverse data.
In the area of macro-level bio-diversity data

management, there have been many governmental
efforts from various countries such as ERIN [37],
INBio [38] and some global initiatives such as
Species 2000 [39], the Tree of Life [40], etc. And in
a recent report sponsored by the National Science
Foundation in the USA [41], a group of computer
scientists have outlined research directions in bio-
informatics.
The micro-level bio-diversity data, or genetic

information of various species, has been growing
steadily due to the multitude of genome sequen-
cing initiatives. The specific data management



issues in handling such data [42,43] have been
addressed in quite a few proposals. In all of these
proposals, the database management architecture
has been tailored for the specific purposes of the
project. Consider the ACeDB (A C.elegans Data-
base) [44] database system, originally proposed for
the C. elegans genome sequencing project. ACeDB
is an object oriented data management tool that
has many features, including the handling of
missing data and schema evolution issues, that
make it an extremely popular software in many
sequencing projects. However, in spite of its
popularity in the genome sequencing community,
it cannot be considered for the larger requirements
of bio-diversity data handling due to the following
reasons: (1) Its lack of support for geo-spatial
data; (2) Weak support for database updates; and
(3) The lack of recovery mechanisms necessary in
large data repositories.
In BODHI, we have provided the key strengths

of ACeDB (its sequencing algorithms and object-
oriented basis), and augmented it with the strong
database functionalities and the related features
that are necessary for a complete bio-diversity
information repository.

8. Conclusions

We have reported in this paper on our
experiences in building BODHI, an object-
oriented database system intended for use in
bio-diversity applications. To the best of our
knowledge, BODHI is the first system to provide
an integrated view from the molecular to the
organism-level information, including taxonomic
data, spatial layouts and genomic sequences.
BODHI is operational, completely free and is

built around publicly available software compo-
nents and commodity hardware. Further, BODHI
incorporates a variety of indexing strategies taken
from the recent research literature for efficient
access of different data types. Through a detailed
performance study using a range of biological
queries, we showed that these indexes were
extremely effective in reducing the running times
of the queries. Our experiments also showed that
while spatial operations are certainly expensive as
mentioned in the literature, it is perhaps the

genomic sequencing queries that are really the
‘‘hard nuts’’ in the biological context. Therefore,
the importance of developing efficient indexing
strategies for sequence data cannot be over-
emphasized.
We hope that BODHI can be successfully used

by biologists as the central information repository
of their workbench, and by computer scientists as
a realistic test-bed for evaluating the efficacy of
their algorithms. We are currently working on
adding new indexing mechanisms such as the
Pyramid Technique [45] for indexing high-dimen-
sional data, where each data object has thousands
of attributes—such data is especially common in
drug-related datasets.

Appendix A. Typical tagged output from BODHI



Appendix B. Graphical query form of BODHI
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