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Abstract. Objective measures such as support, confidence, interest fac-
tor, correlation, and entropy are often used to evaluate the interesting-
ness of association patterns. However, in many situations, these measures
may provide conflicting information about the interestingness of a pat-
tern. Data mining practitioners also tend to apply an objective measure
without realizing that there may be better alternatives available for their
application. In this paper, we describe several key properties one should
examine in order to select the right measure for a given application. A
comparative study of these properties is made using twenty-one measures
that were originally developed in diverse fields such as statistics, social
science, machine learning, and data mining. We show that depending on
its properties, each measure is useful for some application, but not for
others. We also demonstrate two scenarios in which many existing mea-
sures become consistent with each other, namely, when support-based
pruning and a technique known as table standardization are applied. Fi-
nally, we present an algorithm for selecting a small set of patterns such
that domain experts can find a measure that best fits their requirements
by ranking this small set of patterns.

1 Introduction

The analysis of relationships between variables is a fundamental task at the
heart of many data mining problems. For example, the central task of associ-
ation analysis [3, 2] is to discover sets of binary variables (called items) that
co-occur together frequently in a transaction database, while the goal of feature
selection is to identify groups of variables that are highly correlated with each
other, or with respect to a specific target variable. Regardless of how the rela-
tionships are defined, such analyses often require a suitable measure to evaluate
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the dependencies between variables. For example, objective measures such as
support, confidence, interest factor, correlation, and entropy have been used ex-
tensively to evaluate the interestingness of association patterns — the stronger
is the dependence relationship, the more interesting is the pattern. These objec-
tive measures are defined in terms of the frequency counts tabulated in a 2× 2
contingency table, as shown in Table 1.

Table 1. A 2× 2 contingency table for items A and B.

B B

A f11 f10 f1+
A f01 f00 f0+

f+1 f+0 N

Although there are numerous measures available for evaluating association
patterns, a significant number of them provide conflicting information about the
interestingness of a pattern. To illustrate this, consider the ten contingency ta-
bles, E1 through E10, shown in Table 2. Table 3 shows the ranking of these tables
according to 21 different measures developed in diverse fields such as statistics,
social science, machine learning, and data mining 1. The table also shows that
different measures can lead to substantially different rankings of contingency ta-
bles. For example, E10 is ranked highest according to the I measure but lowest
according to the φ-coefficient; while E3 is ranked lowest by the AV measure
but highest by the IS measure. Thus, selecting the right measure for a given
application poses a dilemma because many measures may disagree with each
other.

Table 2. Ten examples of contingency tables.

Contingency table f11 f10 f01 f00

E1 8123 83 424 1370
E2 8330 2 622 1046
E3 9481 94 127 298
E4 3954 3080 5 2961
E5 2886 1363 1320 4431
E6 1500 2000 500 6000
E7 4000 2000 1000 3000
E8 4000 2000 2000 2000
E9 1720 7121 5 1154
E10 61 2483 4 7452

1 A complete definition of these measures is given in Section 2.



Table 3. Rankings of contingency tables using various objective measures. (Lower
number means higher rank.)

Contingency φ λ α Q Y κ M J G s c L V I IS PS F AV S ζ K
Table

E1 1 1 3 3 3 1 2 2 1 3 5 5 4 6 2 2 4 6 1 2 5
E2 2 2 1 1 1 2 1 3 2 2 1 1 1 8 3 5 1 8 2 3 6
E3 3 3 4 4 4 3 3 8 7 1 4 4 6 10 1 8 6 10 3 1 10
E4 4 7 2 2 2 5 4 1 3 6 2 2 2 4 4 1 2 3 4 5 1
E5 5 4 8 8 8 4 7 5 4 7 9 9 9 3 6 3 9 4 5 6 3
E6 6 6 7 7 7 7 6 4 6 9 8 8 7 2 8 6 7 2 7 8 2
E7 7 5 9 9 9 6 8 6 5 4 7 7 8 5 5 4 8 5 6 4 4
E8 8 9 10 10 10 8 10 10 8 4 10 10 10 9 7 7 10 9 8 7 9
E9 9 9 5 5 5 9 9 7 9 8 3 3 3 7 9 9 3 7 9 9 8
E10 10 8 6 6 6 10 5 9 10 10 6 6 5 1 10 10 5 1 10 10 7

To understand why some of the measures are inconsistent, we need to examine
the properties of each measure. In this paper, we present several key properties
one should consider in order to select the right measure for a given application.
Some of these properties are well-known to the data mining community, while
others, which are as important, have received less attention. One such property
is the invariance of a measure under row and column scaling operations. We
illustrate this with the following classic example by Mosteller [25].

Table 4. The Grade-Gender example.

Male Female Male Female
High 2 3 5 High 4 30 34
Low 1 4 5 Low 2 40 42

3 7 10 6 70 76

(a) (b)

Tables 4(a) and 4(b) illustrate the relationship between the gender of a stu-
dent and the grade obtained for a particular course for two different samples.
Note that the sample used in Table 4(b) contains twice the number of male
students in Table 4(a) and ten times the number of female students. However,
the relative performance of male students is the same for both samples and the
same applies to the female students. Mosteller concluded that the dependencies
in both tables are equivalent because the underlying association between gen-
der and grade should be independent of the relative number of male and female
students in the samples [25]. Yet, as we show later, many intuitively appealing
measures, such as the φ-coefficient, mutual information, Gini index or cosine
measure, are sensitive to scaling of rows and columns of the table. Although
there are measures that consider the association in both tables to be equivalent



(e.g., odds ratio [25]), they have properties that make them unsuitable for other
applications.
In this paper, we perform a comparative study of the properties for twenty-

one existing objective measures. Despite the general lack of agreement among
many of these measures, there are two situations in which they become consistent
with each other. First, we show that the rankings produced by many measures
become highly correlated when support-based pruning is used. Support-based
pruning also tends to eliminate mostly uncorrelated and poorly correlated pat-
terns. Second, we show that a technique known as table standardization [25, 5]
can also be used to make the measures consistent with each other.
An alternative way to find a desirable measure is by comparing how well

the rankings produced by each measure agree with the expectations of domain
experts. This would require the domain experts to manually rank all the contin-
gency tables extracted from data, which is quite a laborious task. Instead, we
show that it is possible to identify a small set of “well-separated” contingency
tables such that finding the most suitable measure using this small set of tables
is almost equivalent to finding the best measure using the entire data set.

1.1 Paper Contribution

The specific contributions of this paper are as follows.

1. We present an overview of twenty-one objective measures that were proposed
in the statistics, social science, machine learning, and data mining literature.
We show that application of different measures may lead to substantially
differing orderings of patterns.

2. We present several key properties that will help analysts to select the right
measure for a given application. A comparative study of these properties is
made using the twenty-one existing measures. Our results suggest that we
can identify several groups of consistent measures having similar properties.

3. We illustrate two situations in which most of the measures become consistent
with each other, namely, when support-based pruning and a technique known
as table standardization are used. We also demonstrate the utility of support-
based pruning in terms of eliminating uncorrelated and poorly correlated
patterns.

4. We present an algorithm for selecting a small set of tables such that domain
experts can determine the most suitable measure by looking at their rankings
for this small set of tables.

1.2 Related Work

The problem of analyzing objective measures used by data mining algorithms has
attracted considerable attention in recent years [26, 21, 20, 24, 6, 16, 35]. Piatetsky-
Shapiro proposed three principles that must be satisfied by any reasonable ob-
jective measures. Our current work analyzes the properties of existing measures
using these principles as well as several additional properties.



Bayardo et al. [6] compared the optimal rules selected by various objective
measures. They showed that given a collection of rules A −→ B, where B is
fixed, the most interesting rules selected by many well-known measures reside
along the support-confidence border. There is an intuitive reason for this obser-
vation. Because the rule consequent is fixed, the objective measure is a function
of only two parameters, P (A,B) and P (A), or equivalently, the rule support
P (A,B) and rule confidence P (B|A). More importantly, Bayardo et al. showed
that many well-known measures are monotone functions of support and confi-
dence, which explains the reason for the optimal rules to be located along the
support-confidence border. Our work is quite different because our analysis is not
limited to rules that have identical consequents. In addition, we focus on under-
standing the properties of existing measures under certain transformations (e.g.,
support-based pruning and scaling of rows or columns of contingency tables).
Hilderman et al. [20, 21] compared the various diversity measures used for

ranking data summaries. Each summary is a relational table containing a set
of attribute-domain pairs and a derived attribute called Count, which indicates
the number of objects aggregated by each tuple in the summary table. Diversity
measures are defined according to the distribution of Count attribute values.
In [20], the authors proposed five principles a good measure must satisfy to be
considered useful for ranking summaries. Some of these principles are similar to
the ones proposed by Piatetsky-Shapiro, while others may not be applicable to
association analysis because they assume that the Count attribute values are in
certain sorted order (such ordering is less intuitive for contingency tables).
Kononenko [24] investigated the properties of measures used in the construc-

tion of decision trees. The purpose of his work is to illustrate the effect of the
number of classes and attribute values on the value of a measure. For exam-
ple, he showed that the values for measures such as Gini index and J-measure
increase linearly with the number of attribute values. In contrast, the focus of
our work is to study the general properties of objective measures for binary-
valued variables. Gavrilov et al. [16] and Zhao et al. [35] compared the various
objective functions used by clustering algorithms. In both of these methods, it
was assumed that the ground truth, i.e., the ideal cluster composition, is known
a priori. Such an assumption is not needed in our approach for analyzing the
properties of objective measures. However, they might be useful for validating
whether the selected measure agrees with the expectation of domain experts.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present
an overview of the various measures examined in this paper. Section 3 describes
a method to determine whether two measures are consistent with each other.
Section 4 presents several key properties for analyzing and comparing objective
measures. Section 5 describes the effect of applying support-based pruning while
Section 6 describes the effect of table standardization. Section 7 presents an
algorithm for selecting a small set of tables to be ranked by domain experts.
Finally, we conclude with a summary and directions for future work.



2 Overview of Objective Measures

Table 5 provides the list of measures examined in this study. The definition
for each measure is given in terms of the probabilities estimated from a 2 × 2
contingency table.

Table 5. Objective Measures for Association Patterns.

# Measure Definition

1 φ-coefficient P (A,B)−P (A)P (B)√
P (A)P (B)(1−P (A))(1−P (B))

2 Goodman-Kruskal’s (λ)
∑

j maxk P (Aj ,Bk)+
∑

k maxj P (Aj ,Bk)−maxj P (Aj)−maxkP (Bk)

2−maxj P (Aj)−maxk P (Bk)

3 Odds ratio (α) P (A,B)P (A,B)

P (A,B)P (A,B)

4 Yule’s Q P (A,B)P (AB)−P (A,B)P (A,B)

P (A,B)P (AB)+P (A,B)P (A,B)
= α−1

α+1

5 Yule’s Y

√
P (A,B)P (AB)−

√
P (A,B)P (A,B)√

P (A,B)P (AB)+
√
P (A,B)P (A,B)

=
√
α−1√
α+1

6 Kappa (κ) P (A,B)+P (A,B)−P (A)P (B)−P (A)P (B)

1−P (A)P (B)−P (A)P (B)

7 Mutual Information (M)

∑

i

∑

j P (Ai,Bj) log
P (Ai,Bj)

P (Ai)P (Bj)

min(−∑

i P (Ai) logP (Ai),−
∑

j P (Bj) logP (Bj))

8 J-Measure (J) max
(

P (A,B) log(P (B|A)
P (B)

) + P (AB) log(P (B|A)

P (B)
),

P (A,B) log(P (A|B)
P (A)

) + P (AB) log(P (A|B)

P (A)
)
)

9 Gini index (G) max
(

P (A)[P (B|A)2 + P (B|A)2] + P (A)[P (B|A)2 + P (B|A)2]
−P (B)2 − P (B)2,

P (B)[P (A|B)2 + P (A|B)2] + P (B)[P (A|B)2 + P (A|B)2]
−P (A)2 − P (A)2

)

10 Support (s) P (A,B)
11 Confidence (c) max(P (B|A), P (A|B))
12 Laplace (L) max

(NP (A,B)+1
NP (A)+2

, NP (A,B)+1
NP (B)+2

)

13 Conviction (V ) max
(P (A)P (B)

P (AB)
, P (B)P (A)

P (BA)

)

14 Interest (I) P (A,B)
P (A)P (B)

15 cosine (IS) P (A,B)√
P (A)P (B)

16 Piatetsky-Shapiro’s (PS) P (A,B)− P (A)P (B)

17 Certainty factor (F ) max
(P (B|A)−P (B)

1−P (B)
, P (A|B)−P (A)

1−P (A)

)

18 Added Value (AV ) max(P (B|A)− P (B), P (A|B)− P (A))

19 Collective strength (S) P (A,B)+P (AB)

P (A)P (B)+P (A)P (B)
× 1−P (A)P (B)−P (A)P (B)

1−P (A,B)−P (AB)

20 Jaccard (ζ) P (A,B)
P (A)+P (B)−P (A,B)

21 Klosgen (K)
√

P (A,B)max(P (B|A)− P (B), P (A|B)− P (A))

Below, we provide a summary description for each measure.

φ-coefficient [5]. This measure is analogous to Pearson’s product-moment
correlation coefficient for continuous variables. It is closely related to the
χ2 statistic since φ2 = χ2/N . Although the χ2 statistic is often used for



goodness of fit testing, it is seldom used as a measure of association because
it depends on the size of the database [25].

λ-coefficient [18]. The λ coefficient, also known as the index of predictive
association, was initially proposed by Goodman and Kruskal [18]. The intu-
ition behind this measure is that if two variables are highly dependent on
each other, then the error in predicting one of them would be small whenever
the value of the other variable is known. λ is used to capture the amount of
reduction in the prediction error.

Odds ratio [25]. This measure represents the odds for obtaining the different
outcomes of a variable. For example, consider the frequency counts given in
Table 1. If B is present, then the odds of finding A in the same transaction
is f11/f01. On the other hand, if B is absent, then the odds for finding A
is f10/f00. If there is no association between A and B, then the odds for
finding A in a transaction should remain the same, regardless of whether B
is present in the transaction. We can use the ratio of these odds, f11f00

f01f10
, to

determine the degree to which A and B are associated with each other.
Yule’s Q- [33] and Y-coefficients [34]. The value for odds ratio ranges

from 0 (for perfect negative correlation) to ∞ (for perfect positive correla-
tion). Yule’s Q and Y coefficients are normalized variants of the odds ratio,
defined in a way that they range from -1 to +1.

κ-coefficient [13]. This measure captures the degree of agreement between a
pair of variables. If the variables agree with each other, then the values for
P (A,B) and P (A,B) will be large, which in turn, results in a higher value
for κ.

Entropy [14], J-measure [30], and Gini [7]. Entropy is related to the vari-
ance of a probability distribution. The entropy of a uniform distribution is
large, whereas the entropy of a skewed distribution is small. Mutual infor-
mation is an entropy-based measure for evaluating the dependencies among
variables. It represents the amount of reduction in the entropy of a vari-
able when the value of a second variable is known. If the two variables are
strongly associated, then the amount of reduction in entropy, i.e., its mutual
information, is high. Other measures defined according to the probability
distribution of variables include J-Measure [30] and Gini index [7].

Support [3]. Support is often used to represent the significance of an as-
sociation pattern [3, 4]. It is also useful from a computational perspective
because it has a nice downward closure property that allows us to prune the
exponential search space of candidate patterns.

Confidence, Laplace [11], and Conviction [10]. Confidence is often used
to measure the accuracy of a given rule. However, it can produce misleading
results, especially when the support of the rule consequent is higher than
the rule confidence [9]. Other variants of the confidence measure include the
Laplace function [11] and conviction [10].

Interest factor [9, 29, 8, 12, 15]. This measure is used quite extensively in
data mining for measuring deviation from statistical independence. However,
it is sensitive to the support of the items (f1+ or f+1). DuMouchel has
recently proposed a statistical correction to I for small sample sizes, using



an empirical Bayes technique [15]. Other variants of this measure include
Piatetsky-Shapiro’s rule-interest [26], certainty factor [28], collective strength
[1] and added value [27].

IS measure [31] This measure can be derived from the φ-coefficient [31]. It is
the geometric mean between interest factor (I) and the support measure (s).
The IS measure for pairs of items is also equivalent to the cosine measure,
which is a widely-used similarity measure for vector-space models.

Jaccard [32] and Klosgen measures [23] The Jaccard measure [32] is used
extensively in information retrieval to measure the similarity between doc-
uments, while Klosgen K measure [23] was used by the Explora knowledge
discovery system.

3 Consistency between Measures

Let T (D) = {t1, t2, · · · tN} denote the set of 2 × 2 contingency tables derived
from a data set D. Each table represents the relationship between a pair of
binary variables. Also, let M be the set of objective measures available for
our analysis. For each measure, Mi ∈ M, we can construct an interest vec-

tor Mi(T ) = {mi1,mi2, · · · ,miN}, where mij corresponds to the value of Mi

for table tj . Each interest vector can also be transformed into a ranking vec-

tor Oi(T ) = {oi1, oi2, · · · , oiN}, where oij corresponds to the rank of mij and
∀j, k : oij ≤ oik if and only if mik ≥ mij .
We can define the consistency between a pair of measures in terms of the sim-

ilarity between their ranking vectors. For example, consider the pair of ranking
vectors produced by φ and κ in Table 3. Since their rankings are very simi-
lar, we may conclude that both measures are highly consistent with each other,
with respect to the data set shown in Table 2. In contrast, comparison between
the ranking vectors produced by φ and I suggests that both measures are not
consistent with each other.
There are several measures available for computing the similarity between

a pair of ranking vectors. This include Spearman’s rank coefficient, Pearson’s
correlation, cosine measure, and the inverse of the L2-norm. Our experimental
results suggest that there is not much difference between using any one of the
measures as our similarity function. In fact, if the values within each ranking
vector is unique, we can prove that Pearson’s correlation, cosine measure and
the inverse of the L2-norm are all monotonically related. Thus, we decide to use
Pearson’s correlation as our similarity measure.

Definition 1. [Consistency between Measures] Two measures, M1 and

M2, are consistent each other with respect to data set D if the correlation between

O1(T ) and O2(T ) is greater than or equal to some positive threshold t 2.

2 The choice for t can be tied to the desired significance level of correlation. The
critical value for correlation depends on the number of independent tables available
and the confidence level desired. For example, at 99% confidence level and 50 degrees
of freedom, any correlation above 0.35 is statistically significant.



4 Properties of Objective Measures

In this section, we describe several important properties of an objective measure.
While some of these properties have been extensively investigated in the data
mining literature [26, 22], others are not well-known.

4.1 Desired Properties of a Measure

Piatetsky-Shapiro [26] has proposed three key properties a good measure M
should satisfy:

P1: M = 0 if A and B are statistically independent;
P2: M monotonically increases with P (A,B) when P (A) and P (B) remain the

same;
P3: M monotonically decreases with P (A) (or P (B)) when the rest of the pa-

rameters (P (A,B) and P (B) or P (A)) remain unchanged.

These properties are well-known and have been extended by many authors [22,
20]. Table 6 illustrates the extent to which each of the existing measure satisfies
the above properties.

4.2 Other Properties of a Measure

There are other properties that deserve further investigation. These properties
can be described using a matrix formulation. In this formulation, each 2 × 2
contingency table is represented by a contingency matrix, M = [f11f10; f01f00]
while each objective measure is a matrix operator, O, that maps the matrix M
into a scalar value, k, i.e., OM = k. For instance, the φ coefficient is equivalent to
a normalized form of the determinant operator, whereDet(M) = f11f00−f01f10.
Thus, statistical independence is represented by a singular matrix M whose
determinant is equal to zero. The underlying properties of a measure can be
analyzed by performing various operations on the contingency tables as depicted
in Figure 1.

Property 1. [Symmetry Under Variable Permutation] A measure O is
symmetric under variable permutation (Figure 1(a)), A↔ B, if O(MT ) = O(M)
for all contingency matricesM. Otherwise, it is called an asymmetric measure.

The asymmetric measures investigated in this study include confidence, laplace,
J-Measure, conviction, added value, Gini index, mutual information, and Klosgen
measure. Examples of symmetric measures are φ-coefficient, cosine (IS), interest
factor (I) and odds ratio (α). In practice, asymmetric measures are used for
implication rules, where there is a need to distinguish between the strength of
the rule A −→ B from B −→ A. Since every contingency matrix produces two
values when we apply an asymmetric measure, we use the maximum of these
two values to be its overall value when we compare the properties of symmetric
and asymmetric measures.



Table 6. Properties of objective measures. Note that none of the measures satisfies all
the properties.

Symbol Measure Range P1 P2 P3 O1 O2 O3 O3’ O4

φ φ-coefficient −1 · · · 0 · · · 1 Yes Yes Yes Yes No Yes Yes No
λ Goodman-Kruskal’s 0 · · · 1 Yes No No Yes No No∗ Yes No
α odds ratio 0 · · · 1 · · ·∞ Yes∗ Yes Yes Yes Yes Yes∗ Yes No
Q Yule’s Q −1 · · · 0 · · · 1 Yes Yes Yes Yes Yes Yes Yes No
Y Yule’s Y −1 · · · 0 · · · 1 Yes Yes Yes Yes Yes Yes Yes No
κ Cohen’s −1 · · · 0 · · · 1 Yes Yes Yes Yes No No Yes No
M Mutual Information 0 · · · 1 Yes Yes Yes No∗∗ No No∗ Yes No
J J-Measure 0 · · · 1 Yes No No No∗∗ No No No No
G Gini index 0 · · · 1 Yes No No No∗∗ No No∗ Yes No
s Support 0 · · · 1 No Yes No Yes No No No No
c Confidence 0 · · · 1 No Yes No No∗∗ No No No Yes
L Laplace 0 · · · 1 No Yes No No∗∗ No No No No
V Conviction 0.5 · · · 1 · · ·∞ No Yes No No∗∗ No No Yes No
I Interest 0 · · · 1 · · ·∞ Yes∗ Yes Yes Yes No No No No

IS Cosine 0 · · ·
√

P (A,B) · · · 1 No Yes Yes Yes No No No Yes
PS Piatetsky-Shapiro’s −0.25 · · · 0 · · · 0.25 Yes Yes Yes Yes No Yes Yes No
F Certainty factor −1 · · · 0 · · · 1 Yes Yes Yes No∗∗ No No Yes No
AV Added value −0.5 · · · 0 · · · 1 Yes Yes Yes No∗∗ No No No No
S Collective strength 0 · · · 1 · · ·∞ No Yes Yes Yes No Yes∗ Yes No
ζ Jaccard 0 · · · 1 No Yes Yes Yes No No No Yes

K Klosgen’s ( 2√
3
− 1)1/2[2−

√
3− 1√

3
] · · · 0 · · · 2

3
√

3
Yes Yes Yes No∗∗ No No No No

where: P1: O(M) = 0 if det(M) = 0, i.e., whenever A and B are statistically independent.
P2: O(M2) > O(M1) if M2 =M1+ [k − k; −k k].
P3: O(M2) < O(M1) if M2 =M1+ [0 k; 0 − k] or M2 =M1 + [0 0; k − k].
O1: Property 1: Symmetry under variable permutation.
O2: Property 2: Row and Column scaling invariance.
O3: Property 3: Antisymmetry under row or column permutation.
O3’: Property 4: Inversion invariance.
O4: Property 5: Null invariance.
Yes∗: Yes if measure is normalized.
No∗: Symmetry under row or column permutation.
No∗∗: No unless the measure is symmetrized by taking max(M(A,B),M(B,A)).
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(a) Variable Permutation Operation

(b) Row & Column Scaling Operation

(c) Row & Column Permutation Operation

(d) Inversion Operation

(e) Null Addition Operation

Fig. 1. Operations on a contingency table.

Property 2. [Row/Column Scaling Invariance] Let R = C = [k1 0; 0 k2]
be a 2 × 2 square matrix, where k1 and k2 are positive constants. The product
R × M corresponds to scaling the first row of matrix M by k1 and the second
row by k2, while the product M × C corresponds to scaling the first column of
M by k1 and the second column by k2 (Figure 1(b)). A measure O is invariant
under row and column scaling if O(RM) = O(M) and O(MC) = O(M) for all
contingency matrices, M.

Odds ratio (α) along with Yule’s Q and Y coefficients are the only measures in
Table 6 that are invariant under the row and column scaling operations. This
property is useful for data sets containing nominal variables such as Mosteller’s
grade-gender example in Section 1.

Property 3. [Antisymmetry Under Row/Column Permutation] Let S =
[0 1; 1 0] be a 2 × 2 permutation matrix. A normalized 3 measure O is anti-
symmetric under the row permutation operation if O(SM) = −O(M), and an-
tisymmetric under the column permutation operation if O(MS) = −O(M) for
all contingency matrices M (Figure 1(c)).

3 A measure is normalized if its value ranges between -1 and +1. An unnormalized
measure U that ranges between 0 and +∞ can be normalized via transformation

functions such as U−1
U+1

or tan−1 log(U)
π/2

.



The φ-coefficient, PS, Q and Y are examples of antisymmetric measures under
the row and column permutation operations while mutual information and Gini
index are examples of symmetric measures. Asymmetric measures under this
operation include support, confidence, IS and interest factor. Measures that are
symmetric under the row and column permutation operations do not distinguish
between positive and negative correlations of a table. One should be careful when
using them to evaluate the interestingness of a pattern.

Property 4. [Inversion Invariance] Let S = [0 1; 1 0] be a 2×2 permutation
matrix. A measure O is invariant under the inversion operation (Figure 1(d)) if
O(SMS) = O(M) for all contingency matrices M.

Inversion is a special case of the row/column permutation where both rows
and columns are swapped simultaneously. We can think of the inversion opera-
tion as flipping the 0’s (absence) to become 1’s (presence), and vice-versa. This
property allows us to distinguish between symmetric binary measures, which
are invariant under the inversion operation, from asymmetric binary measures.
Examples of symmetric binary measures include φ, odds ratio, κ and collective
strength, while the examples for asymmetric binary measures include I, IS, PS
and Jaccard measure.
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Fig. 2. Comparison between the φ-coefficients for 3 pairs of vectors. The φ values for
(a), (b) and (c) are -0.1667, -0.1667 and 0.1667, respectively.

We illustrate the importance of inversion invariance with an example depicted
in Figure 2. In this figure, each column vector is a vector of transactions for a
particular item. It is intuitively clear that the first pair of vectors, A and B,
have very little association between them. The second pair of vectors, C and D,
are inverted versions of vectors A and B. Despite the fact that both C and D
co-occur together more frequently, their φ coefficient are still the same as before.
In fact, it is smaller than the φ-coefficient of the third pair of vectors, E and
F , for which E = C and F = B. This example demonstrates the drawback of



using φ-coefficient and other symmetric binary measures for applications that
require unequal treatments of the binary values of a variable, such as market
basket analysis [19].
Other matrix operations, such as matrix addition, can also be applied to a

contingency matrix. For example, the second property, P2, proposed by Piatetsky-
Shapiro is equivalent to adding the matrixM with [k −k; −k k], while the third
property, P3, is equivalent to adding [0 k; 0 − k] or [0 0; k − k] to M.

Property 5. [Null Invariance] A measure is null-invariant if O(M + C) =
O(M) where C = [0 0; 0 k] and k is a positive constant.

For binary variables, this operation corresponds to adding more records that do
not contain the two variables under consideration, as shown in Figure 1(e). Some
of the null-invariant measures include IS (cosine) and the Jaccard similarity
measure, ζ. This property is useful for domains having sparse data sets, where co-
presence of items is more important than co-absence. Examples include market-
basket data and text documents.

4.3 Summary

The discussion in this section suggests that there is no measure that is consis-
tently better than others in all application domains. This is because different
measures have different intrinsic properties, some of which may be desirable for
certain applications but not for others. Thus, in order to find the right measure,
we need to match the desired properties of an application against the properties
of the existing measures. This can be done by computing the similarity between
a property vector that represents the desired properties of the application with
the property vectors that represent the intrinsic properties of existing measures.
Each component of the property vector corresponds to one of the columns given
in Table 6. Since property P1 can be satisfied trivially by rescaling some of the
measures, it is not included in the property vector. Each vector component can
also be weighted according to its level of importance to the application.
Figure 3 shows the correlation between the property vectors of various mea-

sures. Observe that there are several groups of measures with very similar prop-
erties, as shown in Table 7. Some of these groupings are quite obvious, e.g.,
Groups 1 and 2, while others are quite unexpected, e.g., Groups 3, 6, and 7. In
the latter case, since the properties listed in Table 6 are not necessarily compre-
hensive, we do not expect to distinguish all the available measures using these
properties.

5 Effect of Support-based Pruning

Support-based pruning is often used as a pre-filter prior to the application of
other objective measures such as confidence, φ-coefficient, interest factor, etc.
Because of its anti-monotone property, support allows us to effectively prune
the exponential number of candidate patterns. Beyond this, little else is known



Table 7. Groups of objective measures with similar properties.

Group Objective measures

1 Odds ratio, Yule’s Q, and Yule’s Y .
2 Cosine (IS) and Jaccard.
3 Support and Laplace.
4 φ-coefficient, collective strength, and PS.
5 Gini index and λ.
6 Interest factor, added value, and Klosgen K.
7 Mutual information, certainty factor, and κ.
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Fig. 3. Correlation between measures based on their property vector. Note that the
column labels are the same as the row labels.

about the advantages of applying this strategy. The purpose of this section is to
discuss two additional effects it has on the rest of the objective measures.

5.1 Elimination of Poorly Correlated Contingency Tables

First, we will analyze the quality of patterns eliminated by support-based prun-
ing. Ideally, we prefer to eliminate only patterns that are poorly correlated.
Otherwise, we may end up missing too many interesting patterns.
To study this effect, we have created a synthetic data set that contains

100,000 2 × 2 contingency tables. Each table contains randomly populated fij

values subjected to the constraint
∑

i,j fij = 1. The support and φ-coefficient for
each table can be computed using the formula shown in Table 5. By examining
the distribution of φ-coefficient values, we can determine whether there are any



highly correlated patterns inadvertently removed as a result of support-based
pruning.

For this analysis, we apply two kinds of support-based pruning strategies.
The first strategy is to impose a minimum support threshold on the value of f11.
This approach is identical to the support-based pruning strategy employed by
most of the association analysis algorithms. The second strategy is to impose a
maximum support threshold on both f1+ and f+1. This strategy is equivalent to
removing the most frequent items from a data set (e.g., staple products such as
sugar, bread, and milk). The results for both of these experiments are illustrated
in Figures 4(a) and (b).

For the entire data set of 100,000 tables, the φ-coefficients are normally dis-
tributed around φ = 0, as depicted in the upper left-hand corner of both graphs.
When a maximum support threshold is imposed, the φ-coefficient of the elimi-
nated tables follows a bell-shaped distribution, as shown in figure 4(a). In other
words, imposing a maximum support threshold tends to eliminate uncorrelated,
positively correlated, and negatively correlated tables at equal proportions. This
observation can be explained by the nature of the synthetic data — since the fre-
quency counts of the contingency tables are generated randomly, the eliminated
tables also have a very similar distribution as the φ-coefficient distribution for
the entire data.

On the other hand, if a lower bound of support is specified (Figure 4(b)),
most of the contingency tables removed are either uncorrelated (φ = 0) or neg-
atively correlated (φ < 0). This observation is quite intuitive because, for a
contingency table with low support, at least one of the values for f10, f01 or f00
must be relatively high to compensate for the low frequency count in f11. Such
tables tend to be uncorrelated or negatively correlated unless their f00 values
are extremely high. This observation is also consistent with the property P2
described in Section 4.2, which states that an objective measure should increase
as the support count increases.

Support-based pruning is a viable technique as long as only positively cor-
related tables are of interest to the data mining application. One such situation
arises in market basket analysis where such a pruning strategy is used exten-
sively.

5.2 Consistency of Measures under Support Constraints

Support-based pruning also affects the issue of consistency among objective mea-
sures. To illustrate this, consider the diagram shown in Figure 5. The figure is
obtained by generating a synthetic data set similar to the previous section ex-
cept that the contingency tables are non-negatively correlated. Convex measures
such as mutual information, Gini index, J-measure, and λ assign positive values
to their negatively-correlated tables. Thus, they tend to prefer negatively corre-
lated tables over uncorrelated ones, unlike measures such as φ-coefficient, Yule’s
Q and Y , PS, etc. To avoid such complication, our synthetic data set for this
experiment is restricted only to uncorrelated and positively correlated tables.
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Fig. 4. Effect of Support Pruning on Contingency tables.
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Using Definition 1, we can determine the consistency between every pair of
measures by computing the correlation between their ranking vectors. Figure 5
depicts the pair-wise correlation when various support bounds are imposed. We
have re-ordered the correlation matrix using the reverse Cuthill-McKee algo-
rithm [17] so that the darker cells are moved as close as possible to the main
diagonal. The darker cells indicate that the correlation between the pair of mea-
sures is approximately greater than 0.8.
Initially, without support pruning, we observe that many of the highly cor-

related measures agree with the seven groups of measures identified in Section
4.3. For Group 1 through Group 5, the pairwise correlations between measures
from the same group are greater than 0.94. For Group 6, the correlation between
interest factor and added value is 0.948; interest factor and K is 0.740; and K
and added value is 0.873. For Group 7, the correlation between mutual infor-
mation and κ is 0.936; mutual information and certainty factor is 0.790; and κ
and certainty factor is 0.747. These results suggest that the properties defined in
Table 6 may explain most of the high correlations in the upper left-hand diagram
shown in Figure 5.
Next, we examine the effect of applying a maximum support threshold to the

contingency tables. The result is shown in the upper right-hand diagram. No-
tice the growing region of dark cells compared to the previous case, indicating
that more measures are becoming highly correlated with each other. Without
support-based pruning, nearly 40% of the pairs have correlation above 0.85. With
maximum support pruning, this percentage increases to more than 68%. For ex-
ample, interest factor, which is quite inconsistent with almost all other measures
except for added value, have become more consistent when high-support items
are removed. This observation can be explained as an artifact of interest factor.
Consider the contingency tables shown in Table 8, where A and B correspond
to a pair of uncorrelated items, while C and D correspond to a pair of per-
fectly correlated items. However, because the support for item C is very high,
I(C,D) = 1.0112, which is close to the value for statistical independence. By
eliminating the high support items, we may resolve this type of inconsistency
between interest factor and other objective measures.

Table 8. Effect of high-support items on interest factor.

B B D D
A 100 200 300 C 890 0 890

A 200 400 600 C 0 10 10
300 600 900 890 10 900

(a) I(A,B) = 1, (b) I(C,D) = 1.012,
φ(A,B) = 0. φ(C,D) = 1.

Our result also suggests that imposing a minimum support threshold does
not seem to improve the consistency among measures. However, when it is used



along with a maximum support threshold, the correlations among measures do
show some slight improvements compared to applying the maximum support
threshold alone — more than 71% of the pairs have correlation above 0.85. This
analysis suggests that imposing a tighter bound on the support of association
patterns may force many measures become highly correlated with each other.

6 Table Standardization

Standardization is a widely-used technique in statistics, political science, and
social science studies to handle contingency tables that have different marginals.
Mosteller suggested that standardization is needed to get a better idea of the
underlying association between variables [25], by transforming an existing table
so that their marginals become equal, i.e., f ∗1+ = f∗0+ = f∗+1 = f∗+0 = N/2 (see
Table 9). A standardized table is useful because it provides a visual depiction
of how the joint distribution of two variables would look like after eliminating
biases due to non-uniform marginals.

Table 9. Table Standardization.

B B B B B B
A f11 f10 f1+ A f∗11 f∗10 f∗1+ A x N/2− x N/2

A f01 f00 f0+ −→ A f∗01 f∗00 f∗0+ −→ A N/2− x x N/2
f+1 f+0 N f∗+1 f

∗
+0 N N/2 N/2 N

6.1 Effect of Non-Uniform Marginals

Standardization is important because some measures can be affected by differ-
ences in the marginal totals. To illustrate this point, consider a pair of contin-
gency tables, X = [a b; c d] and Y = [p q; r s]. We can compute the difference
between the φ-coefficients for both tables as follows.

log(φX) = log(ad− bc)−
1

2
[log(a+ b) + log(a+ c)

+ log(b+ c) + log(b+ d)] (1)

log(φY ) = log(pq − rs)−
1

2
[log(p+ q) + log(p+ r)

+ log(q + s) + log(r + s)] (2)

where the φ-coefficient is expressed as a logarithmic value to simplify the calcu-
lations. The difference between the two coefficients can be written as

log(φX)− log(φY ) = ∆1 − 0.5∆2,



where
∆1 = log(ad− bc)− log(pq − rs)

and

∆2 = log(a+ b)(a+ c)(b+ c)(b+ d)− log(p+ q)(p+ r)(q + s)(r + s).

If the marginal totals for both tables are identical, then any observed difference
between log(φX) and log(φY ) comes from the first term, ∆1. Conversely, if the
marginals are not identical, then the observed difference in φ can be caused by
either ∆1, ∆2, or both.
The problem of non-uniform marginals is somewhat analogous to using ac-

curacy for evaluating the performance of classification models. If a data set
contains 99% examples of class 0 and 1% examples of class 1, then a classifier
that produces models that classify every test example to be class 0 would have
a high accuracy, despite performing miserably on class 1 examples. Thus, accu-
racy is not a reliable measure because it can be easily obscured by differences
in the class distribution. One way to overcome this problem is by stratifying the
data set so that both classes have equal representation during model building. A
similar “stratification” strategy can be used to handle contingency tables with
non-uniform support, i.e., by standardizing the frequency counts of a contingency
table.

6.2 IPF Standardization

Mosteller presented the following iterative standardization procedure, which is
called the Iterative Proportional Fitting algorithm or IPF [5], for adjusting the
cell frequencies of a table until the desired margins, f ∗i+ and f

∗

+j , are obtained:

Row scaling : f
(k)
ij = f

(k−1)
ij × f∗i+

f
(k−1)
i+

(3)

Column scaling : f
(k+1)
ij = f

(k)
ij ×

f∗+j

f
(k)
+j

(4)

An example of the IPF standardization procedure is demonstrated in Figure 6.

Theorem 1. The IPF standardization procedure is equivalent to multiplying the

contingency matrix M = [a b; c d] with

[

k1 0
0 k2

] [

a b
c d

] [

k3 0
0 k4

]

where k1, k2, k3 and k4 are products of the row and column scaling factors.

Proof. The following lemma is needed to prove the above theorem.

Lemma 1. The product of two diagonal matrices is also a diagonal matrix.



15 10 25
35 40 75
50 50 100

30.0020.00 50.00
23.3326.67 50.00
53.3346.67100.00

28.1221.43 49.55
21.8828.57 50.45
50.0050.00100.00

28.3821.62 50.00
21.6828.32 50.00
50.0649.94100.00

Original Table

Standardized
Table

k=0 k=1

k=3 k=2

28.3521.65 50.00
21.6528.35 50.00
50.0050.00100.00

28.3421.65 49.99
21.6628.35 50.01
50.0050.00100.00

k=4 k=5

Fig. 6. Example of IPF standardization.

This lemma can be proved in the following way. Let M1 = [f1 0; 0 f2] and
M2 = [f3 0; 0 f4]. Then,M1×M2 = [(f1f3) 0; 0 (f2f4)], which is also a diagonal
matrix.
To prove theorem 1, we also need to use definition 2, which states that scaling

the row and column elements of a contingency table is equivalent to multiplying
the contingency matrix by a scaling matrix [k1 0; 0 k2]. For IPF, during the k

th

iteration, the rows are scaled by f∗i+/f
(k−1)
i+ , which is equivalent to multiplying

the matrix by [f∗1+/f
(k−1)
1+ 0; 0 f∗0+/f

(k−1)
0+ ] on the left. Meanwhile, during the

(k + 1)th iteration, the columns are scaled by f ∗+j/f
(k)
+j , which is equivalent to

multiplying the matrix by [f∗+1/f
(k)
+1 0; 0 f∗+0/f

(k)
+0 ] on the right. Using lemma 1,

we can show that the result of multiplying the row and column scaling matrices
is equivalent to

[

f∗1+/f
(m)
1+ · · · f∗1+/f

(0)
1+ 0

0 f∗0+/f
(m)
0+ · · · f∗0+/f

(0)
0+

]

×
[

a b
c d

]

×
[

f∗+1/f
(m+1)
+1 · · · f∗+1/f

(1)
+1 0

0 f∗+0/f
(m+1)
+0 · · · f∗+0/f

(1)
+0

]

thus, proving theorem 1.

The above theorem also suggests that the iterative steps of IPF can be re-
placed by a single matrix multiplication operation if the scaling factors k1, k2,
k3 and k4 are known. In Section 6.4, we will provide a non-iterative solution for
k1, k2, k3 and k4.



6.3 Consistency of Measures under Table Standardization

Interestingly, the consequence of doing standardization goes beyond ensuring
uniform margins in a contingency table. More importantly, if we apply different
measures from Table 5 on the standardized, positively-correlated tables, their
rankings become identical. To the best of our knowledge, this fact has not been
observed by anyone else before. As an illustration, Table 10 shows the results of
ranking the standardized contingency tables for each example given in Table 3.
Observe that the rankings are identical for all the measures. This observation
can be explained in the following way. After standardization, the contingency
matrix has the following form [x y; y x], where x = f ∗11 and y = N/2 − x. The
rankings are the same because many measures of association (specifically, all
21 considered in this paper) are monotonically increasing functions of x when
applied to the standardized, positively-correlated tables. We illustrate this with
the following example.

Example 1. The φ-coefficient of a standardized table is:

φ =
x2 − (N/2− x)2

(N/2)2
=
4x

N
− 1 (5)

For a fixed N , φ is a monotonically increasing function of x. Similarly, we can
show that other measures such as α, I, IS, PS, etc., are also monotonically
increasing functions of x.

Table 10. Rankings of contingency tables after IPF standardization.

Example φ λ α Q Y κ M J G s c L V I IS PS F AV S ζ K

E1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
E2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
E4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
E5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
E6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
E7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
E8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
E9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
E10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

The only exceptions to this are λ, Gini index, mutual information, J-measure,
and Klosgen’s K, which are convex functions of x. Nevertheless, these measures
are monotonically increasing when we consider only the values of x between
N/4 and N/2, which correspond to non-negatively correlated tables. Since the
examples given in Table 3 are positively-correlated, all 21 measures given in this
paper produce identical ordering for their standardized tables.



6.4 Generalized Standardization Procedure

Since each iterative step in IPF corresponds to either a row or column scaling
operation, odds ratio is preserved throughout the transformation (Table 6). In
other words, the final rankings on the standardized tables for any measure are
consistent with the rankings produced by odds ratio on the original tables. For
this reason, a casual observer may think that odds ratio is perhaps the best
measure to use. This is not true because there are other ways to standardize
a contingency table. To illustrate other standardization schemes, we first show
how to obtain the exact solutions for f ∗ijs using a direct approach. If we fix
the standardized table to have equal margins, this forces the f ∗ijs to satisfy the
following equations:

f∗11 = f∗00; f∗10 = f∗01; f∗11 + f∗10 = N/2 (6)

Since there are only three equations in (6), we have the freedom of choosing a
fourth equation that will provide a unique solution to the table standardization
problem. In Mosteller’s approach, the fourth equation is used to ensure that the
odds ratio of the original table is the same as the odds ratio of the standardized
table. This leads to the following conservation equation:

f11f00
f10f01

=
f∗11f

∗

00

f∗10f
∗

01

(7)

After combining equations 6 and 7, the following solutions are obtained:

f∗11 = f∗00 =
N
√
f11f00

2(
√
f11f00 +

√
f10f01)

(8)

f∗10 = f∗01 =
N
√
f10f01

2(
√
f11f00 +

√
f10f01)

(9)

The above analysis suggests the possibility of using other standardization schemes
for preserving measures besides the odds ratio. For example, the fourth equation
could be chosen to preserve the invariance of IS (cosine measure). This would
lead to the following conservation equation:

f11
√

(f11 + f10)(f11 + f01)
=

f∗11
√

(f∗11 + f∗10)(f
∗

11 + f∗01)
(10)

whose solutions are:

f∗11 = f∗00 =
Nf11

2
√

(f11 + f10)(f11 + f01)
(11)

f∗10 = f∗01 =
N

2

√

(f11 + f10)(f11 + f01)− f11
√

(f11 + f10)(f11 + f01)
(12)

Thus, each standardization scheme is closely tied to a specific invariant measure.
If IPF standardization is natural for a given application, then odds ratio is
the right measure to use. In other applications, a standardization scheme that
preserves some other measure may be more appropriate.



6.5 General Solution of Standardization Procedure

In theorem 1, we showed that the IPF procedure can be formulated in terms of a
matrix multiplication operation. Furthermore, the left and right multiplication
matrices are equivalent to scaling the row and column elements of the original
matrix by some constant factors k1, k2, k3 and k4. Note that one of these factors
is actually redundant; theorem 1 can be stated in terms of three parameters, k′1,
k′2 and k

′

3, i.e.,

[

k1 0
0 k2

] [

a b
c d

] [

k3 0
0 k4

]

=

[

k′1 0
0 k′2

] [

a b
c d

] [

k′3 0
0 1

]

Suppose M = [a b; c d] is the original contingency table and Ms = [x y; y x]
is the standardized table. We can show that any generalized standardization pro-
cedure can be expressed in terms of three basic operations: row scaling, column
scaling, and addition of null values 4.

[

k1 0
0 k2

] [

a b
c d

] [

k3 0
0 1

]

+

[

0 0
0 k4

]

=

[

x y
y x

]

This matrix equation can be easily solved to obtain

k1 =
y

b
, k2 =

y2a

xbc
, k3 =

xb

ay
, k4 = x

(

1−
ad
bc

x2

y2

)

For IPF, since ad
bc
= x2/y2, therefore k4 = 0, and the entire standardization

procedure can be expressed in terms of row and column scaling operations.

7 Measure Selection based on Rankings by Experts

Although the preceding sections describe two scenarios in which many of the
measures become consistent with each other, such scenarios may not hold for all
application domains. For example, support-based pruning may not be useful for
domains containing nominal variables, while in other cases, one may not know
the exact standardization scheme to follow. For such applications, an alternative
approach is needed to find the best measure.
In this section, we describe a subjective approach for finding the right mea-

sure based on the relative rankings provided by domain experts. Ideally, we
want the experts to rank all the contingency tables derived from the data. These
rankings can help us identify the measure that is most consistent with the ex-
pectation of the experts. For example, we can compare the correlation between
the rankings produced by the existing measures against the rankings provided
by the experts and select the measure that produces the highest correlation.

4 Note that although the standardized table preserves the invariant measure, these
intermediate steps of row or column scaling and addition of null values may not
preserve the measure.



Unfortunately, asking the experts to rank all the tables manually is often
impractical. A more practical approach is to provide a smaller set of contingency
tables to the experts for ranking and use this information to determine the most
appropriate measure. To do this, we have to identify a small subset of contingency
tables that optimizes the following criteria:

1. The subset must be small enough to allow domain experts to rank them
manually. On the other hand, the subset must be large enough to ensure that
choosing the best measure from the subset is almost equivalent to choosing
the best measure when the rankings for all contingency tables are available.

2. The subset must be diverse enough to capture as much conflict of rankings
as possible among the different measures.

The first criterion is usually determined by the experts because they are the
ones who can decide the number of tables they are willing to rank. Therefore, the
only criterion we can optimize algorithmically is the diversity of the subset. In
this paper, we investigate two subset selection algorithms: RANDOM algorithm
and DISJOINT algorithm.

RANDOM Algorithm. This algorithm randomly selects k of the N tables
to be presented to the experts. We expect the RANDOM algorithm to work
poorly when k ¿ N . Nevertheless, the results obtained using this algorithm
is still interesting because they can serve as a baseline reference.

DISJOINT Algorithm. This algorithm attempts to capture the diversity of
the selected subset in terms of
1. Conflicts in the rankings produced by the existing measures. A contin-
gency table whose rankings are (1, 2, 3, 4, 5) according to five different
measures have larger ranking conflicts compared to another table whose
rankings are (3, 2, 3, 2, 3). One way to capture the ranking conflicts is by
computing the standard deviation of the ranking vector.

2. Range of rankings produced by the existing measures. Suppose there are
five contingency tables whose rankings are given as follows.

Table t1: 1 2 1 2 1
Table t2: 10 11 10 11 10
Table t3: 2000 2001 2000 2001 2000
Table t4: 3090 3091 3090 3091 3090
Table t5: 4000 4001 4000 4001 4000

The standard deviation of the rankings are identical for all the tables. If
we are forced to choose three of the five tables, it is better to select t1,
t3, and t5 because they span a wide range of rankings. In other words,
these tables are “furthest” apart in terms of their average rankings.

A high-level description of the algorithm is presented in Table 11. First, the
algorithm computes the average and standard deviation of rankings for all
the tables (step 2). It then adds the contingency table that has the largest
amount of ranking conflicts into the result set Z (step 3). Next, the algorithm
computes the “distance” between each pair of table in step 4. It then greedily
tries to find k tables that are “furthest” apart according to their average



rankings and produce the largest amount of ranking conflicts in terms of the
standard deviation of their ranking vector (step 5a).

Table 11. The DISJOINT algorithm.

Input: T : a set of N contingency tables,
P: measures of association,
k: the sample size,
p: oversampling parameter

Output: Z: a set of k contingency tables.

1. T ′ ← randomly select p× k tables from T .
2. For each contingency table t ∈ T ′,

2a. ∀Mi ∈ P, compute the rankings OMi(t).
2b. Compute mean and standard deviation of rankings:

µ(t) =
∑

iOMi(t)/|P|
σ(t) =

√
∑

i(OMi(t)− µ(t))2/(|P| − 1)
3. Z = {tm} and T ′ = T ′ − {tm}, where tm = argmaxt σ(t)
4. For each (ti, tj) ∈ T ′

4a. ∀Mk ∈ P, ∆k(ti, tj) = OMk
(ti)−OMk

(tj)
4b. µ(ti, tj) =

∑

k ∆k(ti, tj)/|P|
4c. σ(ti, tj) =

√
∑

k(∆k(ti, tj)− µ(ti, tj))2/(|P| − 1)
4d. d(ti, tj) = µ(ti, tj) + σ(ti, tj)

5. while |Z| < k
5a. Find t ∈ T ′ that maximizes

∑

j d(t, tj) ∀tj ∈ Z
5b. Z = Z ∪ {t} and T ′ = T ′ − {t}

The DISJOINT algorithm can be quite expensive to implement because we

need to compute the distance between all N×(N−1)
2 pairs of tables. To avoid this

problem, we introduce an oversampling parameter, p, where 1 < p¿ dN/ke, so
that instead of sampling from the entire N tables, we select the k tables from a
sub-population that contains only k × p tables. This reduces the complexity of
the algorithm significantly to kp×(kp−1)

2 distance computations.

7.1 Experimental Methodology

To evaluate the effectiveness of the subset selection algorithms, we use the ap-
proach shown in Figure 7. Let T be the set of all contingency tables and S be the
tables selected by a subset selection algorithm. Initially, we rank each contin-
gency table according to all the available measures. The similarity between each
pair of measure is then computed using Pearson’s correlation coefficient. If the
number of available measures is p, then a p× p similarity matrix will be created
for each set, T and S. A good subset selection algorithm should minimize the
difference between the similarity matrix computed from the subset, Ss, and the
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Fig. 7. Evaluating the contingency tables selected by a subset selection algorithm.

similarity matrix computed from the entire set of contingency tables, ST . The
following distance function is used to determine the difference between the two
similarity matrices:

D(Ss, ST ) = max
i,j
|ST (i, j)− Ss(i, j)| (13)

If the distance is small, then we consider S as a good representative of the entire
set of contingency tables T .

7.2 Experimental Evaluation

We have conducted our experiments using the data sets shown in Table 12. For
each data set, we randomly sample 100,000 pairs of binary items5 as our initial
set of contingency tables. We then apply the RANDOM and DISJOINT table
selection algorithms on each data set and compare the distance function D at
various sample sizes k. For each value of k, we repeat the procedure 20 times
and compute the average distance D. Figure 8 shows the relationships between
the average distance D and sample size k for the re0 data set. As expected, our

5 Only frequent items are considered, i.e., those with support greater than a user-
specified minimum support threshold.



Table 12. Data sets used in our experiments.

Name Description Number of Variables

re0 Reuters-21578 articles 2886
la1 LA-Times articles 31472
product Retail data 14462
S&P 500 Stock market data 976
E-Com Web data 6664
Census Survey data 59

results indicate that the distance function D decreases with increasing sample
size, mainly because the larger the sample size, the more similar it is to the entire
data set. Furthermore, the DISJOINT algorithm does a substantially better job
than random sampling in terms of choosing the right tables to be presented to
the domain experts. This is because it tends to select tables that are furthest
apart in terms of their relative rankings and tables that create a huge amount of
ranking conflicts. Even at k = 20, there is little difference (D < 0.15) between
the similarity matrices Ss and ST .
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Fig. 8. Average distance between similarity matrix computed from the subset (Ss) and
the similarity matrix computed from the entire set of contingency tables (ST ) for the
re0 data set.

We complement our evaluation above by showing that the ordering of mea-
sures produced by the DISJOINT algorithm on even a small sample of 20 tables



is quite consistent with the ordering of measures if the entire tables are ranked
by the domain experts. To do this, we assume that the rankings provided by
the experts is identical to the rankings produced by one of the measures, say,
the φ-coefficient. Next, we remove φ from the set of measures M considered by
the DISJOINT algorithm and repeat the experiments above with k = 20 and
p = 10. We compare the best measure selected by our algorithm against the
best measure selected when the entire set of contingency tables is available. The
results are depicted in Figure 9. In nearly all cases, the difference in the ranking
of a measure between the two (all tables versus a sample of 20 tables) is 0 or 1.

re0 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 8 7 4 16 15 10 11 9 17 18 2 12 19 3 20 5 1 13 6 14

k=20 6 6 5 16 13 10 11 12 17 18 2 15 19 4 20 3 1 9 6 14

la1 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 10 9 2 7 5 3 6 16 18 17 13 14 19 1 20 12 11 15 8 4

k=20 13 13 2 5 8 3 6 16 18 17 10 11 19 1 20 9 4 12 13 7

Product Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 12 11 3 10 8 7 14 16 17 18 1 4 19 2 20 5 6 15 13 9

k=20 13 13 2 7 11 10 9 17 16 18 1 4 19 3 20 6 5 8 13 11

S&P500 Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 9 8 1 10 6 3 4 11 15 14 12 13 19 2 20 16 18 17 7 5

k=20 7 7 2 10 4 3 6 11 17 18 12 13 19 1 20 15 14 16 7 4

E-Com Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 9 8 3 7 14 13 16 11 17 18 1 4 19 2 20 6 5 12 10 15

k=20 7 7 3 10 15 14 13 11 17 18 1 4 19 2 20 6 5 12 7 15

Census Q Y κκκκ PS F AV K I c L IS ξξξξ s S λ λ λ λ M J G αααα V

All tables 10 10 2 3 7 5 4 11 13 12 14 15 16 1 20 19 18 17 10 6

k=20 6 6 3 2 9 5 4 11 13 12 14 15 16 1 17 18 19 20 6 9

All tables:  Rankings when all contingency tables are ordered.

k=20 : Rankings when 20 of the selected tables are ordered.

Fig. 9. Ordering of measures based on contingency tables selected by the DISJOINT
algorithm.



8 Conclusions

This paper presents several key properties for analyzing and comparing the vari-
ous objective measures developed in the statistics, social science, machine learn-
ing, and data mining literature. Due to differences in some of their properties, a
significant number of these measures may provide conflicting information about
the interestingness of a pattern. However, we show that there are two situations
in which the measures may become consistent with each other, namely, when
support-based pruning or table standardization are used. We also show another
advantage of using support in terms of eliminating uncorrelated and poorly cor-
related patterns. Finally, we develop an algorithm for selecting a small set of
tables such that an expert can find a suitable measure by looking at just this
small set of tables.
For future work, we plan to extend the analysis beyond two-way relation-

ships. Only a handful of the measures shown in Table 5 (such as support, in-
terest factor, and PS measure) can be generalized to multi-way relationships.
Analyzing such relationships is much more cumbersome because the number of
cells in a contingency table grows exponentially with k. New properties may also
be needed to capture the utility of an objective measure in terms of analyzing
k-way contingency tables. This is because a good objective measure must be
able to distinguish between the direct association among k variables from their
partial associations. More research is also needed to derive additional properties
that can distinguish between some of the similar measures shown in Table 7.
In addtion, new properties or measures may be needed to analyze the relation-
ship between variables of different types. A common approach for doing this is
to transform one of the variables into the same type as the other. For exam-
ple, given a pair of variables, consisting of one continuous and one categorical
variable, we can discretize the continuous variable and map each interval into a
discrete variable before applying an objective measure. In doing so, we may lose
information about the relative ordering among the discretized intervals.
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