Citation:

Chen, F.Y. and Hum, S.H. and Sun, J. 2001. Analysis of third-party warehousing contracts
with commitments. European Journal of Operational Research. 131 (3): pp. 603-610.
http://doi.org/10.1016/S0377-2217(00)00102-8

Analysis of Third-Party Warehousing Contracts
with Commitments

Frank Y. Chen', S.H. Hum?, J. Sun?®

Department of Decision Sciences
National University of Singapore
Republic of Singapore 117591

Abstract

This paper considers multi-period warehousing contracts under random space de-
mand. A typical contract is specified by a starting space commitment plus a certain
number of times at which the commitment can be further modified. Three forms of
contracts are analyzed: (1) There is a restriction on the range of commitment changes
and the schedule for the changes is pre-set by the warehouser; (2) the same as form 1
but there is no restriction on the range; (3) the same as form 2 but the schedule for
the changes is chosen by the user. We explore properties and algorithms for the three
problems from the user’s perspective. Solutions of simple form are obtained for the first
two models and an efficient dynamic programming procedure is proposed for the last.
A numerical comparison of the total expected leasing costs suggests that under certain
demand patterns, contract forms 2 and 3 could be cost effective.
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1 Introduction

Since the late 1980s logistics outsourcing has been recognized as a strategic weapon that
can provide competitive advantages and help curtail distribution costs. The sales figures of
major third-party-logistics (3PL) service providers in the US reflected this trend: Annual
growth rates of 20% to 40% are common. As part of the 3PL service, third party warehous-
ing (3PW) also enjoys a parallel growth and has advanced from being a form of reactive
tactic to becoming an integral source of competitive advantages. This growth is augmented
by the trend towards the expansion of stocking locations in order to have products posi-
tioned closer to end customers because of new services such as continuous replenishment,
just-in-time deliveries, vendor-managed inventories and customization postponement (Co-
pacino [2]). It has been estimated that the warehousing cost currently represents the greatest
share of total Asia-Pacific logistics costs, about 39 percent, and logistics itself accounts for
up to 25 percent of total operating costs in the region (see McAdam [6]).

The 3PW process generally involves a user entering a contract with the 3PW provider for
specific services at agreed prices over a fixed contract duration, normally covering multiple
periods. The long-term commitment in a contract creates many issues that have significant
impacts on management practices and research. One of the important decisions is how
large space the user should commit to. On one hand, the 3PW provider would like the user
to commit the same size of space over the contract duration so as to ensure stable sales.
To entice such a response from the user, the warehouser will provide disincentives so that
there will be a premium charge for any requirement of space above the committed size.
On the other hand, due to the uncertainty on storage space requirement, it is in the best
interest of the user that it makes no firm commitment before the demand realizes in each
period. The common ground stands therefore in the middle: During the multiple periods
of contract duration the user firm may obligate to certain commitments of space sizes but
enjoys some degree of flexibility in that adjustments may be exercised. In this paper we
analyze one, perhaps the most important, type of the 3SPW contract — warehousing lease

with size commitments and certain flexibilities.



The motivation for considering commitments with certain degree of flexibility arises from
our experience with an actual contract of this type used by a division of a multi-national
corporation (MNC) in Singapore. Currently, the MNC contracts its warehousing operations
to a local 3PW. The 3PW bills to the MNC with respect to occupancy charge according to
a contract with commitments. The contract can be described as follows: Fairly ahead of
the beginning of the year the MNC firm makes an annual commitment (base commitment)
but can make up to a certain percentage of up-/down-ward adjustment on the quarterly
basis. For instance, if the base commitment is 10,000 pallets and an adjustment cap is
25%, then each of the 4 quarterly commitments can vary between 7,500 and 12, 500 pallets.
The charge on space is essentially according to the peak usage: The daily usage of space is
tracked by the end-of-day net space taken by the company and the monthly charge is then
determined by the highest daily usage. If the highest usage is greater than the commitment,
the extra space is billed at a premium rate, and if it is at or below the commitment, the
company is only charged for a basic fee.

The MNC attempts to remove the basic commitment as well as to have flexible com-
mencements for individual commitments. They are concerned with the inflexibility of the
present contract because the quarterly adjustment does not necessarily reflect the pattern of
its warehousing demand. This leads to the two objectives of this research: First, we investi-
gate the impact of the base commitment in the current contract; i.e., we evaluate the costs
of the contracts with/without a base commitment. Second, we investigate a new contract
which allows the user to choose the optimal timings to adjust the previous commitment and
see the saving potential from such an additional flexibility. These flexibilities — removing
the base commitment and relaxing the fixed schedule for individual commitments — may
be pursued, however, at higher cost rates. Evaluation procedures are therefore essential for
comparing the alternatives.

The literature in warehousing operations is vast. Cormier and Gunn [3] provide a
comprehensive review of analytical research on warehouse models from the warehouser’s

perspective. The work by Lowe, Francis and Reinhardt [5] is probably most relevant to our



problem in the warehouse management literature. In their model changes in storage capac-
ity are allowed from period to period, e.g., by leasing additional storage space, procuring
additional storage racks or closing a section of the warehouse. The change from one size in
one period to a different size in the next period incurs either (linear) “expansion” or “con-
traction” costs. The current research is also motivated by the work of Hum and Ngoh [4].
Hum and Ngoh provide a first definition of the contract problem and provide insights into
the nature of the problem using numerical examples. However, only deterministic demand
is considered in [4].

The reader familiar with inventory literature may relate the problems considered here to
inventory models. While warehouse space resembles to perishable inventory and committing
on a space size is similar to committing on an order-up-to inventory level, the contract for
warehouse space is like take-or-pay. In addition, under the inventory management context,
it does not make sense for a buyer to commit on any order-up-to level. Finally, the optimal
timings for starting individual commitments are not addressed in the literature (For non-
perishable inventory models with order quantity commitments and flexibilities, the reader
might refer to Tray [8] and Bassok and Anupindi [1]).

The rest of the paper is organized as follows. In the first part of the next section we
define the problem and formulate the model. We then discuss the evaluation procedure
for each of the three models. We report our computational experience and observations in
Section 3 and conclude the paper in Section 4 with a brief summary and some direction for

possible future research.

2 Formulation of Models

We first present assumptions and basic notation, then define the cost structure which un-
derlies the interested models.

Demand for space in period ¢ = 1,2, ..., N is a non-negatively valued random variable,
denoted by &;, with a known probability distribution ®;(£;). We require & to be independent

but not necessarily stationary over time. Though it is tempting to include correlation



between demands of different periods, here we consider only the independent case. This
simplification makes it easier to gain insight into the impact of the changes in the contract
since the independence assumption makes the problem computationally more tractable.

The cost incurred in period ¢ consists of the following components:

e A fixed charge ¢S is paid if the commitment size for the period is S and the cost of

per-unit committed space is c.

e The variable — “overflow” — leasing cost is pmax(0,&; — S), where p is the premium

charge per-unit space and &; is the demand. Let

Gi(S) = Blmaax(0,6 — 5)) = [ (6~ S)ai(6y). (1)

Then pG(S) is the expected variable leasing cost when the size of S is committed in

period ¢. Note that G}(S) = ®;(S) — 1, which shows that G;(S) is convex in S.

Let m denote the number of adjustment opportunities and k; be the period at the beginning
of which the ith adjustment is to be made: 2 < ky < ky < -+ < k;, < N. (Hence there
are total of m + 1 commitments.) Associated with k; is the commitment size S;. For
convenience of notations, define kg = 1, ki1 = N + 1, and two vectors K = (ky,--+, k)

and S = (Sp, S1,--+,Sm). Then the total expected costs is:

m m ki+171
FIK,S) =c¢> (kis1 —k)Si+pd . Y. Gu(S)). (2)
=0 =0 t=k;

2.1 Model FSB - Fixed Schedule for Commitments around a Base Level

Suppose that the contract requires a base commitment (), a decision variable, and each
commitment should be set within [(1 — @)@, (1 + B)Q], where 0 < o < 1,5 > 0. The
schedule for adjustment, K, is set by the warehouser. That is, the user wants to determine
@ for minimum cost given «, 8 and vector K. In each commitment duration, let C;(S;) =

c(kiv1 —ki)Si+p Zf’:ﬁé—l G(S;). Note that C;(S;) is convex in S;. Then the minimum-cost



contract problem can be formulated as

m

(FSB) Iglétl Z:ZO Ci(Si) (3)

)

st (1—a)Q <8 < (1+8)Q.

A remark is in order. The user can choose optimal base size @* and commitment sizes S}
although the latter are not necessarily documented in the contract. The commitment sizes
are in fact set “dynamically” in practice. Since demands for space are serially independent,
knowing demands in periods 1,2,---,7 — 1, does not improve choosing S;, which means all

S; can be determined “up-front”, suggesting that FSB is a static multiple period problem.

Proposition 1 Problem FSB is equivalent to
(FSBy)  mint(Q), (4)

where

Z min C;(Si).

=5 (1-0)Q<Si<(1+8)Q

Furthermore, m(Q) is convex in Q.

Proof. The equivalence between FSB and FSBy is evident because Y i~ C;(S;) is sepa-
rable. It is well known that if C;(S;) is convex in S;, then Min(|_a)Q<s;<(148)Q C;(S;) is
convex in Q. As a result, 7(Q) is convex in Q. |

Now we show how to obtain Cf(Q) = ming_s)0<s,<(1+8)Q Ci(Si). Let us assume that
all values of C;(y) are available and y; is the minimizer of C;(y) without the constraint

(1-a0)Q <y < (1+p6)Q. If Q is between

{ Yi Yi }
1+8 1—al’

then C}(Q)=Ci(y;); if Q is below T’JFLB, then C}(Q)=Ci(Q + AQ); and if Q is above 7%,

then C}(Q)=C;(Q — aQ). Therefore once we have all values of C;(y;), we automatically
have all the values of C}(Q). Moreover, the computation of y; is not difficult. It reduces to

the solution of equation



kiy1—1 p—c
> @uyi) = ——(kir1 — ki), (5)
t=k; p
for i =0, ...,m, which is obtained by taking derivative of (2) and setting it to zero.
Equation (5) is quite easy to solve. Thus, a simple linear search procedure for 7(Q) will

suffice to find the optimal commitment size Q*.

2.2 Model FSNB — Fixed Schedule without Base Commitment

Suppose that the schedule of adjustments is predetermined as in FSB but there is no
restriction on the range of changes, i.e., no base commitment. Then the problem can be

formulated as

(FSNB)  min Y Ci(Si) = Zf%ln Ci(Si) (6)
i=0 i=0 "

for i = 0,...,m. Hence we minimize C;(S;) separately by letting S; = y;, where y; is the

solution to (5), i =0, ...,m.
2.3 Model P,, - Fixed Number of Commitments with Flexible Schedule

The last model is the most flexible, denoted by Py,:

min  f(K,S) = ¢S o(kir1 — ki) Si +p Yo SE4 T Gy(S))
(Pm) s.t.
ki <kyy 1=1,2,---,m.

The difference between FSNB and Py, is that, in addition to S, the latter further allows

the user to optimally choose the schedule K for all commitments.

2.3.1 Nature of the General Problem

Problem Py, is hard to solve since there are potentially total of (Nn; ! ) different schedules
in designing the contract. The solution procedure now includes a search for the optimal
schedule. We had hoped to find some monotonicity property so that the search can proceed
in a certain pattern rather than going through an enumeration of all choices. However, it

turns out that such a property may not exist, making the solution of Py, difficult.
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Figure 1. An Example

Consider an example of Py with four periods and deterministic demands : Demands for
warehouse space in the four periods are 4, 14, 12 and 20, respectively (see Figure 1). Suppose
¢ = 1 and p is arbitrarily large. There is one adjustment option provided for between period
2 and period 4, and there is no restriction on the two commitment sizes. If the adjustment
period is chosen as period 2 (L = 1, ki = 2), then Sy = 4 and S; = 20 (since p >> ¢) is
optimal and the total cost for such a solution is 4 + 3 * 20 = 64. Now consider k7, = 3, then
Sp = 14 and S7 = 20 is optimal and the resulting total cost is 2 x 14 4+ 2 x 20 = 68, greater
than the cost in the former case. Finally, let k;, = 4. Then Sy = 14 and S7 = 20 is optimal;
the total cost equals 3 x 14 4+ 20 = 62, which is the minimum cost. To summarize, the costs
associated with the adjustments in periods 2, 3 and 4 are 64, 68 and 62, respectively. We
see a non-monotonic pattern in terms of costs. This suggests the same difficulty for the
general case (i.e., problem Py,) where multiple adjustment options are provided.

We therefore resort to a dynamic programming (DP) solution procedure that is the
subject of the next subsection. A nice property of the problem, which makes the DP

approach a reasonable choice, is that optimal commitment sizes are uniformly bounded as



described by the following proposition.

Proposition 2 Let y; be the minimizer of cy + pGi(y), t =1,2,---, N,
min

Yy = min{ylay%"'ayN}a fmdy
P, satisfies y™" < SE<y™, j=0,1,---,m.

maX = max{y1,y2, -+ ,yn}. Then an optimal solution to

Proof. Note that cy + pGy(y) is decreasing in y when y < y™". Suppose that, to the
contrary, S5 < y™" for some period kj. We raise ST to ST + €, where € is a small positive
number. We keep all other S} unchanged. As a result, the total cost will be reduced or at
least remains the same because cy 4 pGy(y) is decreasing when y < y™". If we keep raising
the S7, then either it will reach y™i" or it will reach some S7. In the latter case we then
min

raise 57 and S together until both of them reach y or some third S} join the team.

Obviously, when all S7 in the team reach y™" which is necessarily the case after a finite
number of adjustments, the total cost will be pulled down or at least “stand still” in the
process. Thus, an optimal solution must be found to have all 57 > ymin,

Noting that cy + pGy(y) is increasing over y > y™?*, the relationship y™?* > S} can be

established analogously. O

2.3.2 The Solution Procedure

Now we reformulate Py, as a dynamic programming problem. To this end, we need to define
the state at the beginning of any period. Assume that after a decision has been made on
whether the commitment size should be adjusted at the beginning of period ¢, the number
of adjustment options available from periods ¢ + 1 to period N is ¢; and the commitment
size becomes S;. Denote by (44, S;) the state of period ¢ (after the decision on adjustment
has been made but before the demand is observed), where ¢, > 0. Note now that the state
of period 1 is (m, Sy). Let fi(¢:, Si) denote the achievable minimum cost if period ¢ begins
with state (¢4, S¢) (after possible adjustment). Then for t =1,2,.... N — 1

ft(gta St) = th(St) + ¢S; + min {ft-l—l (ft, St), min . ft-l—l(gt — 1, St+1)} ,

St+1 c [ymin’yma



where if the outside minimum is attained by f;11 (¢, S;), then the best strategy is not to
adjust the space at time t. Otherwise, the best is to adjust, so we have ¢; = £, 11 + 1 and
Siy1 is the minimizer of the inside minimum.

To initialize the algorithm we have

fN(gma Sm) = pGN(Sm) +cSm
for any given /4, and S,,. The algorithm will end with
folm,S5) = min fi(m,Sp).
Soe[ymm’ymax]
Thus, the minimum total expected leasing cost and optimal commitment sizes S; can be
found by solving fo(m, S§) through the standard DP backward search algorithm. We denote
by {Sg, ST, -+, SN} the sequence of optimal commitment sizes.
The complexity of the DP solution procedure can easily be estimated as follows. Suppose
min

ma,x]

we divide interval [y into M points. Assume that values of G;(y) are available for y

Yy
at all these M points, and ¢t = 1,2,---, N. The complexity of the backward search algorithm
is thus bounded by O(N2m?2M?).

It should be noted that the algorithm can also incorporate range restrictions over possible

changes in commitment. For example,
(1_ai)Si—1 SSlS (1+/Bl)Sl_1 ’i:l’---,m’

where 0 < «; < 1 and §; > 0 are the downward and upward proportions that bound
the change of space commitment, respectively. From the warehouser’s perspective, such a
restriction is to avoid a sudden change in any two consecutive commitments. Thus it may

be incorporated into the contract terms.

2.3.3 A Special Case: Stochastically Increasing/Decreasing Demands

At the end of this section we discuss a special, yet interesting case, which can further reduce
the amount of computation in the DP algorithm. A demand sequence {{1,&2,---,¢én} is

said to be stochastically increasing if 1 — ®1(y) < 1 — Po(y) < --- < 1 — Dy (y) for any



finite y. Evidently, a stochastically increasing demand sequence means that the sequence
of corresponding demand means is increasing (see Ross [7]). That is, when the sequence
of demand means is denoted by {1, 2, -+, un}, then py < po <--- < ppy if the demand
sequence is stochastically increasing. For a stochastically decreasing demand sequence, all

the above relationships are just reversed.

Proposition 3 If the demand over the contract duration is stochastically increasing (de-
creasing), then ST < ST < --- < Sk (S5 > S; > --- > S),), where S} is the optimal

commitment size, 1 =0,---,m.

Proof. We only prove the case with stochastically increasing demands since the proof for
stochastically decreasing demand case can be carried out similarly.

Suppose the optimal solution partitions N periods into m + 1 segments with breakpoints
ki,ka, -+, kp. That is, for the first £y — 1 periods, the optimal commitment size is Sg; for
periods from k; + 1 to k2, the optimal commitment size is S7; -- -, for periods from k,, + 1
to N, the optimal commitment size is S,.

There might be the case in which the number m of adjustment options is more than
what is actually needed. That is, the actual number of adjustments in the optimal solution
is less than m. In this case, we arbitrarily insert a point between k; and k; 1 if k;+1 < kjyq.
Repeat the insertion until we have obtained m time points.

According to (5) we have

kiy1—1

S w5y =2
t=k;

—c
p

(Kiv1 — ki). (7)

Note that when the demand is increasing over time, ®;(y) > ®;,1(y) for any y > 0. Thus

from (7) we obtain
Dk, 1(S7) = (p—)/p.
Similarly by considering the time interval [k;j_; + 1, k;] we obtain

O, (S;1) < (p—<)/p

10



Hence we have

(Dki(stl) < CI)kiJrl(Sz)'k) < CI)ki(S;(),

2
which implies S7_; < S/, ¢ =1,...,m. O
Obviously, if the demand is stochastically increasing, then the upper bound y™#* of S}
can be replaced by S}, ; in the DP algorithm. Similarly, the lower bound of S} can be

improved if the demand is stochastically decreasing.

3 Computational Experience and Discussion

To evaluate the three forms of contracts, we tested them on three different data sets repre-
senting ordinary, divergent and seasonal demand scenarios.

The set of experiments reported here used realistic input data as follows:
p/c=1.5; a=0.255=.25.

We arbitrarily chose ¢ = 10.0. All contracts were assumed to cover 12 periods during
which 4 commitments could be made. In Model FSB and Model FSNB, each commitment
covered a quarter, while in Model Py,, the timing to start each of the four commitments
was optimally chosen.

Demands of space for 12 periods follow the normal distribution. We show three demand
scenarios in Table 1, where the numbers without parenthesizes are the mean demands and
those in parenthesizes are the corresponding standard deviations. In the case of Ordinary
Demand, space requirements over time are relatively steady; in the case of Divergent De-
mand, they vary significantly but not-seasonally over time, while in the case of Seasonal
Demand, they exhibit both divergence and seasonality (as well as stochastic increase). In
the case of Divergent Demand, the degree of divergency - the ratio of the highest mean
to the lowest mean is: 110/50 = 2.2, while in the case of Seasonal Demand, this ratio
is: 120/30 = 4.0. The cost evaluation is summarized in Table 2, where the figures in

parenthesizes are percentage saving as compared with Model FSB.
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The DP algorithm is implemented on a Pentium II-300 PC. For each setting, our DP
program takes only a fraction of a second in searching for the optimal solution. The same
problems were also solved by an integer programming approach. We found that the DP algo-
rithm is substantially faster than the branch-and-bound algorithm used by the commercial

integer programming package we used.

Period 1 2 3 4 5 6 7 & 9 10 11 12
Ordinary 50 50 80 75 80 52 52 & 53 53 60 70
(15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15)
Divergent 50 50 60 80 110 50 60 8 70 50 110 110
(15) (15) (20) (25) (30) (10) (20) (20) (15) (15) (30) (30)
Seasonal 30 30 30 50 50 50 & 80 80 120 120 120
© (6 (6 8 ©® (8 (@15 (15 (15 30) (30) (30)

Table 1 Demand Scenarios

Ordinary Divergent Seasonal
Model FSB 8792 11294 12897
Model FSNB 8792 11294 12312
Improvement over FSB 0% 0% 4.5%
Model Py, 8615 10902 12312
Improvement over FSB 2.0% 3.4% 4.5%

Table 2 Cost Evaluation of 3 Contract Forms

In general, Model P, could result in saving in warehousing cost. In the case of Seasonal
Demand, Model FSNB also leads to sizable saving due to the restriction imposed in Model
FSB (the range for adjustments). The impact of the base commitment is reflected in the
case of Seasonal Demand: As it was removed, we observe a cost reduction of 4.5% (from
FSB to FSNB). Comparing between Models FBNB and Py,, we can see the impact of
the fixed time schedule for adjustments on cost. For example, under Divergent Demand,
the flexible schedule (Py,) costs 3.4% less than FSNB. The saving potential provides the

base for negotiating the terms of new contracts.
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We also conduct sensitivity analysis for the case of Divergent Demand. For example,
we raise the degree of divergency from 2.2 to 3, which is not unusual from our observation

of the MNC data. The changed demand data is as follows:

Period 1 2 3 4 ) 6 7 8 9 10 11 12
Divergent 50 a0 60 50 150 150 110 80 60 70 120 120
(15) (15) (20) (15) (45) (40) (10) (20) (15) (15) (40) (30)

Table 3 Demand Scenarios

Then the resulted cost for each model: Model FSB: 12984; Model FSNB: 12972; Model
P 12276. The saving from switching contract form of either FSB or FSNB to form of
P, is as high as 5.5%.

4 Conclusions

In this paper we provide a framework for analyzing three forms of warehousing contracts
with space commitments and adjustment options, which were motivated by a practical
situation. The first form allows a number of commitments for prespecified time intervals but
imposes that the commitments must fall within a certain range around a base commitment.
The next contract form removes the restriction on the range of adjustments (hence also
removes the base commitment), while the last goes a step even further by relaxing the
times for adjustments as well.

Various procedures are proposed for evaluating different forms of contract. The prelimi-
nary computational experience suggests that if requirement for space is highly seasonal and
variant, the user firm should pursue the second contract form, while if it varies considerably
over time but without clear seasonality, then it is the interest of the user to go after the last
contract form. Of course, the ultimate choice depends also on the cost structure associated
with each contract alternative. Evaluation procedures could then be applied to aid the
selection of the optimal contract.

There is a possible topic for future research. In this study we considered only one

type of space while in reality, multiple types of space may be available, for example, non-

13



air-conditioned and air-conditioned storage. Then substitution between different types of

storage may exist. It will be of practical interest to know how to contract for each type of

space under this situation.
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