
Analysis of Third-Party Warehousing Contra
ts

with Commitments

Frank Y. Chen

1

, S.H. Hum

2

, J. Sun

3

Department of De
ision S
ien
es

National University of Singapore

Republi
 of Singapore 117591

Abstra
t

This paper 
onsiders multi-period warehousing 
ontra
ts under random spa
e de-

mand. A typi
al 
ontra
t is spe
i�ed by a starting spa
e 
ommitment plus a 
ertain

number of times at whi
h the 
ommitment 
an be further modi�ed. Three forms of


ontra
ts are analyzed: (1) There is a restri
tion on the range of 
ommitment 
hanges

and the s
hedule for the 
hanges is pre-set by the warehouser; (2) the same as form 1

but there is no restri
tion on the range; (3) the same as form 2 but the s
hedule for

the 
hanges is 
hosen by the user. We explore properties and algorithms for the three

problems from the user's perspe
tive. Solutions of simple form are obtained for the �rst

two models and an eÆ
ient dynami
 programming pro
edure is proposed for the last.

A numeri
al 
omparison of the total expe
ted leasing 
osts suggests that under 
ertain

demand patterns, 
ontra
t forms 2 and 3 
ould be 
ost e�e
tive.
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1 Introdu
tion

Sin
e the late 1980s logisti
s outsour
ing has been re
ognized as a strategi
 weapon that


an provide 
ompetitive advantages and help 
urtail distribution 
osts. The sales �gures of

major third-party-logisti
s (3PL) servi
e providers in the US re
e
ted this trend: Annual

growth rates of 20% to 40% are 
ommon. As part of the 3PL servi
e, third party warehous-

ing (3PW) also enjoys a parallel growth and has advan
ed from being a form of rea
tive

ta
ti
 to be
oming an integral sour
e of 
ompetitive advantages. This growth is augmented

by the trend towards the expansion of sto
king lo
ations in order to have produ
ts posi-

tioned 
loser to end 
ustomers be
ause of new servi
es su
h as 
ontinuous replenishment,

just-in-time deliveries, vendor-managed inventories and 
ustomization postponement (Co-

pa
ino [2℄). It has been estimated that the warehousing 
ost 
urrently represents the greatest

share of total Asia-Pa
i�
 logisti
s 
osts, about 39 per
ent, and logisti
s itself a

ounts for

up to 25 per
ent of total operating 
osts in the region (see M
Adam [6℄).

The 3PW pro
ess generally involves a user entering a 
ontra
t with the 3PW provider for

spe
i�
 servi
es at agreed pri
es over a �xed 
ontra
t duration, normally 
overing multiple

periods. The long-term 
ommitment in a 
ontra
t 
reates many issues that have signi�
ant

impa
ts on management pra
ti
es and resear
h. One of the important de
isions is how

large spa
e the user should 
ommit to. On one hand, the 3PW provider would like the user

to 
ommit the same size of spa
e over the 
ontra
t duration so as to ensure stable sales.

To enti
e su
h a response from the user, the warehouser will provide disin
entives so that

there will be a premium 
harge for any requirement of spa
e above the 
ommitted size.

On the other hand, due to the un
ertainty on storage spa
e requirement, it is in the best

interest of the user that it makes no �rm 
ommitment before the demand realizes in ea
h

period. The 
ommon ground stands therefore in the middle: During the multiple periods

of 
ontra
t duration the user �rm may obligate to 
ertain 
ommitments of spa
e sizes but

enjoys some degree of 
exibility in that adjustments may be exer
ised. In this paper we

analyze one, perhaps the most important, type of the 3PW 
ontra
t | warehousing lease

with size 
ommitments and 
ertain 
exibilities.
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The motivation for 
onsidering 
ommitments with 
ertain degree of 
exibility arises from

our experien
e with an a
tual 
ontra
t of this type used by a division of a multi-national


orporation (MNC) in Singapore. Currently, the MNC 
ontra
ts its warehousing operations

to a lo
al 3PW. The 3PW bills to the MNC with respe
t to o

upan
y 
harge a

ording to

a 
ontra
t with 
ommitments. The 
ontra
t 
an be des
ribed as follows: Fairly ahead of

the beginning of the year the MNC �rm makes an annual 
ommitment (base 
ommitment)

but 
an make up to a 
ertain per
entage of up-/down-ward adjustment on the quarterly

basis. For instan
e, if the base 
ommitment is 10; 000 pallets and an adjustment 
ap is

25%, then ea
h of the 4 quarterly 
ommitments 
an vary between 7; 500 and 12; 500 pallets.

The 
harge on spa
e is essentially a

ording to the peak usage: The daily usage of spa
e is

tra
ked by the end-of-day net spa
e taken by the 
ompany and the monthly 
harge is then

determined by the highest daily usage. If the highest usage is greater than the 
ommitment,

the extra spa
e is billed at a premium rate, and if it is at or below the 
ommitment, the


ompany is only 
harged for a basi
 fee.

The MNC attempts to remove the basi
 
ommitment as well as to have 
exible 
om-

men
ements for individual 
ommitments. They are 
on
erned with the in
exibility of the

present 
ontra
t be
ause the quarterly adjustment does not ne
essarily re
e
t the pattern of

its warehousing demand. This leads to the two obje
tives of this resear
h: First, we investi-

gate the impa
t of the base 
ommitment in the 
urrent 
ontra
t; i.e., we evaluate the 
osts

of the 
ontra
ts with/without a base 
ommitment. Se
ond, we investigate a new 
ontra
t

whi
h allows the user to 
hoose the optimal timings to adjust the previous 
ommitment and

see the saving potential from su
h an additional 
exibility. These 
exibilities | removing

the base 
ommitment and relaxing the �xed s
hedule for individual 
ommitments | may

be pursued, however, at higher 
ost rates. Evaluation pro
edures are therefore essential for


omparing the alternatives.

The literature in warehousing operations is vast. Cormier and Gunn [3℄ provide a


omprehensive review of analyti
al resear
h on warehouse models from the warehouser's

perspe
tive. The work by Lowe, Fran
is and Reinhardt [5℄ is probably most relevant to our
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problem in the warehouse management literature. In their model 
hanges in storage 
apa
-

ity are allowed from period to period, e.g., by leasing additional storage spa
e, pro
uring

additional storage ra
ks or 
losing a se
tion of the warehouse. The 
hange from one size in

one period to a di�erent size in the next period in
urs either (linear) \expansion" or \
on-

tra
tion" 
osts. The 
urrent resear
h is also motivated by the work of Hum and Ngoh [4℄.

Hum and Ngoh provide a �rst de�nition of the 
ontra
t problem and provide insights into

the nature of the problem using numeri
al examples. However, only deterministi
 demand

is 
onsidered in [4℄.

The reader familiar with inventory literature may relate the problems 
onsidered here to

inventory models. While warehouse spa
e resembles to perishable inventory and 
ommitting

on a spa
e size is similar to 
ommitting on an order-up-to inventory level, the 
ontra
t for

warehouse spa
e is like take-or-pay. In addition, under the inventory management 
ontext,

it does not make sense for a buyer to 
ommit on any order-up-to level. Finally, the optimal

timings for starting individual 
ommitments are not addressed in the literature (For non-

perishable inventory models with order quantity 
ommitments and 
exibilities, the reader

might refer to Tray [8℄ and Bassok and Anupindi [1℄).

The rest of the paper is organized as follows. In the �rst part of the next se
tion we

de�ne the problem and formulate the model. We then dis
uss the evaluation pro
edure

for ea
h of the three models. We report our 
omputational experien
e and observations in

Se
tion 3 and 
on
lude the paper in Se
tion 4 with a brief summary and some dire
tion for

possible future resear
h.

2 Formulation of Models

We �rst present assumptions and basi
 notation, then de�ne the 
ost stru
ture whi
h un-

derlies the interested models.

Demand for spa
e in period t = 1; 2; :::; N is a non-negatively valued random variable,

denoted by �

t

, with a known probability distribution �

t

(�

t

). We require �

t

to be independent

but not ne
essarily stationary over time. Though it is tempting to in
lude 
orrelation
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between demands of di�erent periods, here we 
onsider only the independent 
ase. This

simpli�
ation makes it easier to gain insight into the impa
t of the 
hanges in the 
ontra
t

sin
e the independen
e assumption makes the problem 
omputationally more tra
table.

The 
ost in
urred in period t 
onsists of the following 
omponents:

� A �xed 
harge 
S is paid if the 
ommitment size for the period is S and the 
ost of

per-unit 
ommitted spa
e is 
.

� The variable { \over
ow" { leasing 
ost is pmax(0; �

t

� S), where p is the premium


harge per-unit spa
e and �

t

is the demand. Let

G

t

(S) = E[max(0; �

t

� S)℄ =

Z

1

S

(�

t

� S)d�

t

(�

t

): (1)

Then pG

t

(S) is the expe
ted variable leasing 
ost when the size of S is 
ommitted in

period t. Note that G

0

t

(S) = �

t

(S)� 1; whi
h shows that G

t

(S) is 
onvex in S:

Let m denote the number of adjustment opportunities and k

i

be the period at the beginning

of whi
h the ith adjustment is to be made: 2 � k

1

< k

2

< � � � < k

m

� N . (Hen
e there

are total of m + 1 
ommitments.) Asso
iated with k

i

is the 
ommitment size S

i

. For


onvenien
e of notations, de�ne k

0

= 1, k

m+1

= N + 1, and two ve
tors K = (k

1

; � � � ; k

m

)

and S = (S

0

; S

1

; � � � ; S

m

). Then the total expe
ted 
osts is:

f(K;S) = 


m

X

i=0

(k

i+1

� k

i

)S

i

+ p

m

X

i=0

k

i+1

�1

X

t=k

i

G

t

(S

i

): (2)

2.1 Model FSB - Fixed S
hedule for Commitments around a Base Level

Suppose that the 
ontra
t requires a base 
ommitment Q, a de
ision variable, and ea
h


ommitment should be set within [(1 � �)Q; (1 + �)Q℄, where 0 � � � 1; � � 0. The

s
hedule for adjustment, K, is set by the warehouser. That is, the user wants to determine

Q for minimum 
ost given �; � and ve
tor K. In ea
h 
ommitment duration, let C

i

(S

i

) =


(k

i+1

�k

i

)S

i

+p

P

k

i+1

�1

t=k

i

G

t

(S

i

): Note that C

i

(S

i

) is 
onvex in S

i

. Then the minimum-
ost
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ontra
t problem 
an be formulated as

(FSB) min

Q;S

m

X

i=0

C

i

(S

i

) (3)

s.t. (1� �)Q � S

i

� (1 + �)Q:

A remark is in order. The user 
an 
hoose optimal base size Q

�

and 
ommitment sizes S

�

i

although the latter are not ne
essarily do
umented in the 
ontra
t. The 
ommitment sizes

are in fa
t set \dynami
ally" in pra
ti
e. Sin
e demands for spa
e are serially independent,

knowing demands in periods 1; 2; � � � ; i� 1, does not improve 
hoosing S

�

i

, whi
h means all

S

�

i


an be determined \up-front", suggesting that FSB is a stati
 multiple period problem.

Proposition 1 Problem FSB is equivalent to

(FSB

0

) min

Q

�(Q); (4)

where

�(Q) =

m

X

i=0

min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

):

Furthermore, �(Q) is 
onvex in Q.

Proof. The equivalen
e between FSB and FSB

0

is evident be
ause

P

m

i=0

C

i

(S

i

) is sepa-

rable. It is well known that if C

i

(S

i

) is 
onvex in S

i

, then min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

) is


onvex in Q. As a result, �(Q) is 
onvex in Q.

Now we show how to obtain C

�

i

(Q) = min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

). Let us assume that

all values of C

i

(y) are available and y

i

is the minimizer of C

i

(y) without the 
onstraint

(1� �)Q � y � (1 + �)Q. If Q is between

�

y

i

1 + �

;

y

i

1� �

�

;

then C

�

i

(Q)=C

i

(y

i

); if Q is below

y

i

1+�

, then C

�

i

(Q)=C

i

(Q + �Q); and if Q is above

y

i

1��

,

then C

�

i

(Q)=C

i

(Q � �Q). Therefore on
e we have all values of C

i

(y

i

), we automati
ally

have all the values of C

�

i

(Q). Moreover, the 
omputation of y

i

is not diÆ
ult. It redu
es to

the solution of equation
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k

i+1

�1

X

t=k

i

�

t

(y

i

) =

p� 


p

(k

i+1

� k

i

); (5)

for i = 0; :::;m; whi
h is obtained by taking derivative of (2) and setting it to zero.

Equation (5) is quite easy to solve. Thus, a simple linear sear
h pro
edure for �(Q) will

suÆ
e to �nd the optimal 
ommitment size Q

�

.

2.2 Model FSNB { Fixed S
hedule without Base Commitment

Suppose that the s
hedule of adjustments is predetermined as in FSB but there is no

restri
tion on the range of 
hanges, i.e., no base 
ommitment. Then the problem 
an be

formulated as

(FSNB) min

S

m

X

i=0

C

i

(S

i

) =

m

X

i=0

min

S

i

C

i

(S

i

) (6)

for i = 0; :::;m: Hen
e we minimize C

i

(S

i

) separately by letting S

i

= y

i

, where y

i

is the

solution to (5), i = 0; :::;m.

2.3 Model P

m

- Fixed Number of Commitments with Flexible S
hedule

The last model is the most 
exible, denoted by P

m

:

(P

m

)

8

>

<

>

:

min f(K;S) = 


P

m

i=0

(k

i+1

� k

i

)S

i

+ p

P

m

i=0

P

k

i+1

�1

t=k

i

G

t

(S

i

)

s.t.

k

i�1

< k

i

; i = 1; 2; � � � ;m:

The di�eren
e between FSNB and P

m

is that, in addition to S, the latter further allows

the user to optimally 
hoose the s
hedule K for all 
ommitments.

2.3.1 Nature of the General Problem

ProblemP

m

is hard to solve sin
e there are potentially total of

�

N � 1

m

�

di�erent s
hedules

in designing the 
ontra
t. The solution pro
edure now in
ludes a sear
h for the optimal

s
hedule. We had hoped to �nd some monotoni
ity property so that the sear
h 
an pro
eed

in a 
ertain pattern rather than going through an enumeration of all 
hoi
es. However, it

turns out that su
h a property may not exist, making the solution of P

m

diÆ
ult.
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Period

1 2 3 4

Demand Level

4

14

12

20

0

Figure 1. An Example

Consider an example of P

1

with four periods and deterministi
 demands : Demands for

warehouse spa
e in the four periods are 4, 14, 12 and 20, respe
tively (see Figure 1). Suppose


 = 1 and p is arbitrarily large. There is one adjustment option provided for between period

2 and period 4, and there is no restri
tion on the two 
ommitment sizes. If the adjustment

period is 
hosen as period 2 (L = 1, k

L

= 2), then S

0

= 4 and S

1

= 20 (sin
e p >> 
) is

optimal and the total 
ost for su
h a solution is 4 + 3 � 20 = 64. Now 
onsider k

L

= 3, then

S

0

= 14 and S

1

= 20 is optimal and the resulting total 
ost is 2 � 14 + 2 � 20 = 68, greater

than the 
ost in the former 
ase. Finally, let k

L

= 4. Then S

0

= 14 and S

1

= 20 is optimal;

the total 
ost equals 3 � 14 + 20 = 62, whi
h is the minimum 
ost. To summarize, the 
osts

asso
iated with the adjustments in periods 2, 3 and 4 are 64, 68 and 62, respe
tively. We

see a non-monotoni
 pattern in terms of 
osts. This suggests the same diÆ
ulty for the

general 
ase (i.e., problem P

m

) where multiple adjustment options are provided.

We therefore resort to a dynami
 programming (DP) solution pro
edure that is the

subje
t of the next subse
tion. A ni
e property of the problem, whi
h makes the DP

approa
h a reasonable 
hoi
e, is that optimal 
ommitment sizes are uniformly bounded as
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des
ribed by the following proposition.

Proposition 2 Let y

t

be the minimizer of 
y + pG

t

(y), t = 1; 2; � � � ; N;

y

min

= minfy

1

; y

2

; � � � ; y

N

g; and y

max

= maxfy

1

; y

2

; � � � ; y

N

g: Then an optimal solution to

P

m

satis�es y

min

� S

�

j

� y

max

, j = 0; 1; � � � ;m.

Proof. Note that 
y + pG

t

(y) is de
reasing in y when y < y

min

. Suppose that, to the


ontrary, S

�

j

< y

min

for some period k

j

. We raise S

�

j

to S

�

j

+ �, where � is a small positive

number. We keep all other S

�

k

un
hanged. As a result, the total 
ost will be redu
ed or at

least remains the same be
ause 
y+ pG

t

(y) is de
reasing when y < y

min

. If we keep raising

the S

�

j

, then either it will rea
h y

min

or it will rea
h some S

�

i

. In the latter 
ase we then

raise S

�

j

and S

�

i

together until both of them rea
h y

min

or some third S

�

k

join the team.

Obviously, when all S

�

j

in the team rea
h y

min

, whi
h is ne
essarily the 
ase after a �nite

number of adjustments, the total 
ost will be pulled down or at least \stand still" in the

pro
ess. Thus, an optimal solution must be found to have all S

�

j

� y

min

:

Noting that 
y + pG

t

(y) is in
reasing over y � y

max

, the relationship y

max

� S

�

t


an be

established analogously.

2.3.2 The Solution Pro
edure

Now we reformulate P

m

as a dynami
 programming problem. To this end, we need to de�ne

the state at the beginning of any period. Assume that after a de
ision has been made on

whether the 
ommitment size should be adjusted at the beginning of period t, the number

of adjustment options available from periods t + 1 to period N is `

t

and the 
ommitment

size be
omes S

t

. Denote by (`

t

; S

t

) the state of period t (after the de
ision on adjustment

has been made but before the demand is observed), where `

t

� 0. Note now that the state

of period 1 is (m;S

0

). Let f

t

(`

t

; S

t

) denote the a
hievable minimum 
ost if period t begins

with state (`

t

; S

t

) (after possible adjustment). Then for t = 1; 2; :::; N � 1

f

t

(`

t

; S

t

) = pG

t

(S

t

) + 
S

t

+min

(

f

t+1

(`

t

; S

t

); min

S

t+1

2[y

min

;y

max

℄

f

t+1

(`

t

� 1; S

t+1

)

)

;

8



where if the outside minimum is attained by f

t+1

(`

t

; S

t

), then the best strategy is not to

adjust the spa
e at time t. Otherwise, the best is to adjust, so we have `

t

= `

t+1

+ 1 and

S

t+1

is the minimizer of the inside minimum.

To initialize the algorithm we have

f

N

(`

m

; S

m

) = pG

N

(S

m

) + 
S

m

for any given `

m

and S

m

: The algorithm will end with

f

0

(m;S

�

0

) = min

S

0

2[y

min

;y

max

℄

f

1

(m;S

0

):

Thus, the minimum total expe
ted leasing 
ost and optimal 
ommitment sizes S

t


an be

found by solving f

0

(m;S

�

0

) through the standard DP ba
kward sear
h algorithm. We denote

by fS

�

0

; S

�

1

; � � � ; S

�

N

g the sequen
e of optimal 
ommitment sizes.

The 
omplexity of the DP solution pro
edure 
an easily be estimated as follows. Suppose

we divide interval [y

min

; y

max

℄ intoM points. Assume that values of G

t

(y) are available for y

at all theseM points, and t = 1; 2; � � � ; N . The 
omplexity of the ba
kward sear
h algorithm

is thus bounded by O(N

2

m

2

M

2

).

It should be noted that the algorithm 
an also in
orporate range restri
tions over possible


hanges in 
ommitment. For example,

(1� �

i

)S

i�1

� S

i

� (1 + �

i

)S

i�1

i = 1; � � � ;m;

where 0 � �

i

< 1 and �

i

� 0 are the downward and upward proportions that bound

the 
hange of spa
e 
ommitment, respe
tively. From the warehouser's perspe
tive, su
h a

restri
tion is to avoid a sudden 
hange in any two 
onse
utive 
ommitments. Thus it may

be in
orporated into the 
ontra
t terms.

2.3.3 A Spe
ial Case: Sto
hasti
ally In
reasing/De
reasing Demands

At the end of this se
tion we dis
uss a spe
ial, yet interesting 
ase, whi
h 
an further redu
e

the amount of 
omputation in the DP algorithm. A demand sequen
e f�

1

; �

2

; � � � ; �

N

g is

said to be sto
hasti
ally in
reasing if 1 � �

1

(y) � 1 � �

2

(y) � � � � � 1 � �

N

(y) for any

9



�nite y. Evidently, a sto
hasti
ally in
reasing demand sequen
e means that the sequen
e

of 
orresponding demand means is in
reasing (see Ross [7℄). That is, when the sequen
e

of demand means is denoted by f�

1

; �

2

; � � � ; �

N

g, then �

1

� �

2

� � � � � �

N

if the demand

sequen
e is sto
hasti
ally in
reasing. For a sto
hasti
ally de
reasing demand sequen
e, all

the above relationships are just reversed.

Proposition 3 If the demand over the 
ontra
t duration is sto
hasti
ally in
reasing (de-


reasing), then S

�

1

� S

�

1

� � � � � S

�

m

( S

�

0

� S

�

1

� � � � � S

�

m

), where S

�

i

is the optimal


ommitment size, i = 0; � � � ;m.

Proof. We only prove the 
ase with sto
hasti
ally in
reasing demands sin
e the proof for

sto
hasti
ally de
reasing demand 
ase 
an be 
arried out similarly.

Suppose the optimal solution partitions N periods into m+1 segments with breakpoints

k

1

; k

2

; � � � ; k

m

. That is, for the �rst k

1

� 1 periods, the optimal 
ommitment size is S

�

0

; for

periods from k

1

+ 1 to k

2

, the optimal 
ommitment size is S

�

1

; � � �, for periods from k

m

+ 1

to N , the optimal 
ommitment size is S

�

m

.

There might be the 
ase in whi
h the number m of adjustment options is more than

what is a
tually needed. That is, the a
tual number of adjustments in the optimal solution

is less thanm. In this 
ase, we arbitrarily insert a point between k

i

and k

i+1

if k

i

+1 < k

i+1

.

Repeat the insertion until we have obtained m time points.

A

ording to (5) we have

k

i+1

�1

X

t=k

i

�

t

(S

�

i

) =

p� 


p

(k

i+1

� k

i

): (7)

Note that when the demand is in
reasing over time, �

t

(y) � �

t+1

(y) for any y � 0. Thus

from (7) we obtain

�

k

i

+1

(S

�

i

) � (p� 
)=p:

Similarly by 
onsidering the time interval [k

j�1

+ 1; k

j

℄ we obtain

�

k

i

(S

�

i�1

) � (p� 
)=p:
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Hen
e we have

�

k

i

(S

�

i�1

) � �

k

i

+1

(S

�

i

) � �

k

i

(S

�

i

);

whi
h implies S

�

i�1

� S

�

i

; i = 1; :::;m.

Obviously, if the demand is sto
hasti
ally in
reasing, then the upper bound y

max

of S

�

i


an be repla
ed by S

�

i+1

in the DP algorithm. Similarly, the lower bound of S

�

i


an be

improved if the demand is sto
hasti
ally de
reasing.

3 Computational Experien
e and Dis
ussion

To evaluate the three forms of 
ontra
ts, we tested them on three di�erent data sets repre-

senting ordinary, divergent and seasonal demand s
enarios.

The set of experiments reported here used realisti
 input data as follows:

p=
 = 1:5; � = 0:25; � = :25:

We arbitrarily 
hose 
 = 10:0. All 
ontra
ts were assumed to 
over 12 periods during

whi
h 4 
ommitments 
ould be made. In Model FSB and Model FSNB, ea
h 
ommitment


overed a quarter, while in Model P

m

, the timing to start ea
h of the four 
ommitments

was optimally 
hosen.

Demands of spa
e for 12 periods follow the normal distribution. We show three demand

s
enarios in Table 1, where the numbers without parenthesizes are the mean demands and

those in parenthesizes are the 
orresponding standard deviations. In the 
ase of Ordinary

Demand, spa
e requirements over time are relatively steady; in the 
ase of Divergent De-

mand, they vary signi�
antly but not-seasonally over time, while in the 
ase of Seasonal

Demand, they exhibit both divergen
e and seasonality (as well as sto
hasti
 in
rease). In

the 
ase of Divergent Demand, the degree of divergen
y - the ratio of the highest mean

to the lowest mean is: 110=50 = 2:2, while in the 
ase of Seasonal Demand, this ratio

is: 120=30 = 4:0. The 
ost evaluation is summarized in Table 2, where the �gures in

parenthesizes are per
entage saving as 
ompared with Model FSB.
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The DP algorithm is implemented on a Pentium II-300 PC. For ea
h setting, our DP

program takes only a fra
tion of a se
ond in sear
hing for the optimal solution. The same

problems were also solved by an integer programming approa
h. We found that the DP algo-

rithm is substantially faster than the bran
h-and-bound algorithm used by the 
ommer
ial

integer programming pa
kage we used.

Period 1 2 3 4 5 6 7 8 9 10 11 12

Ordinary 50 50 80 75 80 52 52 80 53 53 60 70

(15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15)

Divergent 50 50 60 80 110 50 60 80 70 50 110 110

(15) (15) (20) (25) (30) (10) (20) (20) (15) (15) (30) (30)

Seasonal 30 30 30 50 50 50 80 80 80 120 120 120

(6) (6) (6) (8) (8) (8) (15) (15) (15) (30 ) (30) (30)

Table 1 Demand S
enarios

Ordinary Divergent Seasonal

Model FSB 8792 11294 12897

Model FSNB 8792 11294 12312

Improvement over FSB 0% 0% 4.5%

Model P

m

8615 10902 12312

Improvement over FSB 2.0% 3.4% 4.5%

Table 2 Cost Evaluation of 3 Contra
t Forms

In general, Model P

m


ould result in saving in warehousing 
ost. In the 
ase of Seasonal

Demand, Model FSNB also leads to sizable saving due to the restri
tion imposed in Model

FSB (the range for adjustments). The impa
t of the base 
ommitment is re
e
ted in the


ase of Seasonal Demand: As it was removed, we observe a 
ost redu
tion of 4:5% (from

FSB to FSNB). Comparing between Models FBNB and P

m

, we 
an see the impa
t of

the �xed time s
hedule for adjustments on 
ost. For example, under Divergent Demand,

the 
exible s
hedule (P

m

) 
osts 3:4% less than FSNB. The saving potential provides the

base for negotiating the terms of new 
ontra
ts.

12



We also 
ondu
t sensitivity analysis for the 
ase of Divergent Demand. For example,

we raise the degree of divergen
y from 2.2 to 3, whi
h is not unusual from our observation

of the MNC data. The 
hanged demand data is as follows:

Period 1 2 3 4 5 6 7 8 9 10 11 12

Divergent 50 50 60 50 150 150 110 80 60 70 120 120

(15) (15) (20) (15) (45) (40) (10) (20) (15) (15) (40) (30)

Table 3 Demand S
enarios

Then the resulted 
ost for ea
h model: Model FSB: 12984; Model FSNB: 12972; Model

P

m

: 12276. The saving from swit
hing 
ontra
t form of either FSB or FSNB to form of

P

m

is as high as 5:5%.

4 Con
lusions

In this paper we provide a framework for analyzing three forms of warehousing 
ontra
ts

with spa
e 
ommitments and adjustment options, whi
h were motivated by a pra
ti
al

situation. The �rst form allows a number of 
ommitments for prespe
i�ed time intervals but

imposes that the 
ommitments must fall within a 
ertain range around a base 
ommitment.

The next 
ontra
t form removes the restri
tion on the range of adjustments (hen
e also

removes the base 
ommitment), while the last goes a step even further by relaxing the

times for adjustments as well.

Various pro
edures are proposed for evaluating di�erent forms of 
ontra
t. The prelimi-

nary 
omputational experien
e suggests that if requirement for spa
e is highly seasonal and

variant, the user �rm should pursue the se
ond 
ontra
t form, while if it varies 
onsiderably

over time but without 
lear seasonality, then it is the interest of the user to go after the last


ontra
t form. Of 
ourse, the ultimate 
hoi
e depends also on the 
ost stru
ture asso
iated

with ea
h 
ontra
t alternative. Evaluation pro
edures 
ould then be applied to aid the

sele
tion of the optimal 
ontra
t.

There is a possible topi
 for future resear
h. In this study we 
onsidered only one

type of spa
e while in reality, multiple types of spa
e may be available, for example, non-

13



air-
onditioned and air-
onditioned storage. Then substitution between di�erent types of

storage may exist. It will be of pra
ti
al interest to know how to 
ontra
t for ea
h type of

spa
e under this situation.
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