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Abstract

We present a new Lagrangean relaxation for the hop-constrained minimum spanning tree problem (HMST). The
HMST is A4"2-hard and models the design of centralized telecommunication networks with quality of service con-
straints. The linear programming (LP) relaxation of a hop-indexed flow-based model recently presented in the literature
(see Gouveia, L., 1998. Using variable redefinition for computing lower bounds for minimum spanning and Steiner
trees with hop constraints. INFORMS Journal on Computing 10, 180-188) produces very tight bounds but has the
disadvantage of being very time consuming, especially for dense graphs. In this paper, we present a new Lagrangean
relaxation which is derived from the hop-indexed flow based formulation. Our computational results indicate that the
lower bounds given by the new relaxation dominate the lower bounds given by previous Lagrangean relaxations. Our
results also show that for dense graphs the new Lagrangean relaxation proves to be a reasonable alternative to solving
the LP relaxation of the hop-indexed model. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Design of centralized networks; Quality of service constraints; Hop constraints; Lagrangean relaxation;
Multicommodity flows

1. Introduction

The hop-constrained minimum spanning tree problem (HMST) is defined as follows: Consider a graph
4 = (N,E) with /7 ={0,1,...,n}, costs ¢, for each edge e € E and a natural number #. We want to find
the minimum spanning tree 7" such that the number of hops (arcs) in the unique path from the root node,
node 0, to any other node is not greater than H.
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The HMST is .4 "2-hard because it contains as a particular case (the case with H = 2) a A/"#-hard
version of the simple uncapacitated facility location problem where the potential facility sites coincide with
the locations of the clients to be served (see Dahl, 1998). Manyem and Stallmann (1996) have shown that
the HMST is not in APX, i.e., the class of problems for which it is possible to have polynomial time
heuristics with a guaranteed approximation bound. Dahl (1998) has studied the case with H = 2 from a
polyhedral point of view and also compares related directed and undirected models. Gouveia (1995, 1996,
1998) has presented several lower bounding methods based on different linear integer programming models.
Finally, several variations of a tabu search algorithm for obtaining upper bounds for the HMST are dis-
cussed in Vof3 (1999).

The HMST models the design of centralized telecommunication networks with quality of service con-
straints. The root node corresponds to a computer center and the remaining nodes correspond to terminals,
which are required to be linked to the computer center. Hop constraints limit the number of hops (arcs)
between the root node and any other node and guarantee a certain level of service with respect to some
performance constraints such as availability and reliability (see Woolston and Albin, 1988; LeBlanc et al.,
1998). Availability is the probability that all the transmission lines on the path from the terminal to the
computer center are working. Reliability is the probability that a session will not be interrupted by a link
failure. In general these probabilities decrease with the number of links in the path which means that paths
with fewer hops have a better performance with respect to availability and reliability. Woolston and Albin
(1988) have presented some computational results based on heuristic solutions which show that spanning
tree designs with no hop limit on the path from the computer center to the terminals behave poorly with
respect to reliability and availability. They have also shown that by including hop limits it is possible to
generate designs with a much better service and only with a moderate increase on the total cost.

Centralized terminal networks are usually implemented with multidrop lines for connecting the termi-
nals with the center. In such networks node processing times dominate over queuing delays and fewer hops
mean, in general, lower delays.

In order to motivate the new Lagrangean relaxation, which is proposed in Section 3, Section 2 reviews
the advantages and disadvantages of the lower bounding methods discussed in the literature for the HMST.
Section 4 reports on our computational experience, instances corresponding to complete graphs with up to
60 nodes are used for comparing different lower-bounding schemes.

2. Formulations for the HMST

Recent advances in combinatorial optimization refer that better formulations, i.e., more compact and/or
with a stronger linear programming (LP) relaxation, for several network design problems, can be obtained
by defining the problem in a directed graph (see, for instance, Magnanti and Wolsey, 1995). Thus, we shall
focus our discussion on directed models. A problem defined in a non-directed graph 4 = (A", E) can be
easily transformed into an equivalent problem in a directed graph by substituting each edge e = {i, j} in E
for two arcs, arc (i, j) and arc (j, i), and associating to each of these new arcs the cost of the original edge.
Thus, the resulting graph is directed and symmetric, i.e., ¢;; = c;; for all i, j € ./". The problem of finding a
minimal spanning tree in a graph is then equivalent to the problem of finding a minimal arborescence,
rooted from any given node, in the equivalent directed graph. For simplicity, we assume that node 0 is the
root node. We also assume that the arcs of the arborescence are directed away from the root node.
Therefore, each edge {0,,} € E is only replaced by a single arc, arc (0, ;).

Furthermore, let P, be the LP relaxation of formulation P and let ¥(P) be the optimal value of P.

A directed multicommodity flow (MCF) formulation for the HMST has been presented in Gouveia (1996).
The computational results given in the same work indicate that the LP bounds given by this formulation are
quite good but still need to be improved, namely for instances with H small. One way of improving these
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bounds has been suggested in the same work and is based on an adequate Lagrangean relaxation whose dual
Lagrangean bound is strictly better than the LP bound given by the original formulation. We refer the reader
to Gouveia (1996) for details about the MCF formulation, the Lagrangean relaxation and its properties. This
formulation and Lagrangean relaxation will be denoted by MCF and MCF;, respectively, in the remainder of
the text. The dual Langrangean value associated to MCF; will be denoted by DL.

Computational results given in Gouveia (1996) and more recently in Gouveia (1998) have shown that in
general, the subgradient optimization procedure (see Held et al., 1974) used to obtain the optimal multi-
pliers of MCF; needs a large number of iterations in order to produce a bound which is close to DL. One
explanation for this is that when implementing the subgradient optimization procedure one needs to choose
rules for initializing and updating several parameter values. Usually, the best rules depend on the problem
or instance being solved and for many cases it is difficult to “tune” the method, i.e., to find a set of rules that
produces good lower bounds in a reasonable amount of time. This might explain the previously described
behaviour of the scheme proposed in Gouveia (1996) and why some Lagrangean-based schemes perform
better than others.

To provide an alternative method for computing the value DL, Gouveia (1998) has followed the variable
redefinition technique of Martin (1987) and produced a compact formulation whose LP relaxation bound is
equal to the previous Lagrangean relaxation bound. The key idea for obtaining the new formulation for the
HMST is the generation of a compact and exact (in the sense that the LP relaxation always gives an integer
solution) formulation for the Hop-constrained shortest path (HSP) problem which arises as a subproblem
in the Lagrangean relaxation MCF,. Then, this exact formulation was combined with the older MCF
formulation and a new formulation for the HMST with a much tighter LP bound is obtained. The new
formulation for the HMST uses hop-indexed flow variables and can be seen as an hop-indexed multi-
commodity flow (HMCF) formulation. Details about the derivation of this formulation and the exact and
compact formulation for the HSP problem can be seen in Gouveia (1998).

Before describing the new model, let 2 = .4~ — {0} denote the set of all the nodes in G except the root
node and let .o/ denote the set of arcs in the underlying directed graph specified as above, i.e.,
oA ={(i,)):ieN, jeD}. Let I(j)={i:i€ AN and (i,j) € &/} and J(i)={j:j€ Z and (i,)) € A/},
i.e., I(j) denotes the set of nodes that are tails of arcs going into node j and J (i) denotes the set of nodes that
are heads of the arcs going out from node i.

The new model for the HMST uses the binary directed variables X;; for all (7, /) € ./, which indicate
whether arc (i,/) is in the minimal spanning tree and the binary directed flow variables Z;, for all
(i,j) e o, k€ D and g =1,...,H, which indicate whether arc (i, j) is included exactly in position ¢ in the
only path from the root node to node %.

Formulation HMCF

min Y

(ij)ed
subject to
Y x,=1, jeg, (hmefT)
i€l (j)
Zoik — Z Ziw =0, i€J(0), ke, (hmef2)
JeJ (i)
sziqk_ZZiquJrl,k:Oa i;keo@a q:27"'7H_17 (thB)

JEI() Jes (i)
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ijHk = 1, ke gj, (thf4)
jel(k)u{k}
H
ZZiqu g)([j? (la]) € ‘Mv ke @7 (thfS)
g=1
Z()jlk € {Oa 1}a ] € J(0)7 ke 91 (thf6)
Zjg €{0,1}, (i,))ed, i#0, keZ, q=2,...,H, (hmcf7)
ZkquE{O,l}, k€@7 q:2a~--7H’ (thfg)
X, €1{0,1}, (i,)) € o. (hmef9)

For simplicity, variables Xj;, for all i € &, variables Z;, forallk € 9, i€c 2 —{k}andgq=1,...,H, and
variables Zyy, for all k,i€ &, i # k, and ¢ = 2,...,H, are not considered.

For each k € 9, each system of constraints (hmcf2), (hmcf3), (hmcf4), (hmcf6), (hmef7) and (hmcf8) is a
compact and exact formulation for the HSP problem between node 0 and node k. For each %, constraints
(hmcf?2) state that arc (0,{) in position 1 is in the path to node k if and only if there is one arc in position 2
leaving node i in the path to node &, constraints (hmcf3) state that one arc enters a given node i € & in
position ¢ (¢ = 2,...,H — 1) if and only if one arc leaves node i in position ¢ + 1 and constraints (hmcf4)
state that one and only one arc in position H enters node k. Constraints (hmcf5) are the linking constraints
between variables X;; and variables Z;,, and state that, for each k € Z, each arc (i, /) € ./ is included at
most in one position of the HSP between node 0 and node k if the arc (i, ) is included in the solution.
Notice that, for all £ € &, each one of the HSP system uses variables Zy,, for allg = 2,..., H. It is precisely
because of the inclusion of such variables that each one of these systems allows paths between node 0 and
node k with fewer than H hops. When a path contains less than H hops, self-loops are needed for obtaining
a solution containing exactly H variables with value equal to 1.

To obtain the HMCEF linear programming relaxation HMCFp, we replace constraints (hmcf6), (hmcf7),
(hmcf8) and (hmcf9) with the corresponding upper and lower bounding constraints.

Gouveia (1998) has shown that

DL = 9(HMCF,),

i.e., the LP optimal value given by the new model is equal to the theoretical best bound associated to the
Lagrangean relaxation MCF;.

For many cases, the LP-based approach is definitely better than the equivalent Lagrangean approach.
As an example, consider the instance with 81 nodes, 280 edges and H = 4 reported in Gouveia (1998). The
LP relaxation of the new model, HMCFy, used 56.9 seconds to obtain an optimal LP value of 1660 (which
was also shown to be equal to the optimal integer value) while the Lagrangean relaxation MCF; used 5149
iterations (1438.7 seconds) on the same machine to obtain a value which is strictly greater than 1659 (thus
providing the same lower bound when rounding was performed). The disadvantage of using the LP re-
laxation HMCF is that one might get in trouble if more dense instances or instances with a bigger number
of nodes are solved. In that case, the size of the corresponding LP model might lead to huge computer
storage requirements or to excessive CPU times. For such instances, the original Lagrangean relaxation
MCEF; might still be used. However it is precisely for the dense instances where MCF; performs poorly
(mainly due to the large number of multipliers).
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For completeness, we note that a Lagrangean relaxation which is quite similar to MCF, can also be
derived from the new HMCF model. We attach non-negative multipliers d, for all (i, ;) € o/ and k € 2 to
the coupling constraints (hmcef5) and dualize them in the usual Lagrangean way. This Lagrangean relax-
ation is essentially the original Lagrangean scheme MCF;. The relaxed problem is decomposed into a
simple inspection problem involving the X;; variables and into n HSP subproblems, one for each k € &,
involving the Z;;,, variables. The relaxed problem and the dual Lagrangean problem are solved in the same
way as in the case of MCF; and the dual Lagrangean bound of this relaxation is also equal to DL.

3. A new Lagrangean relaxation

There are two main alternatives in deriving a Lagrangean relaxation in a network flow based formu-
lation as HMCF. One of the alternatives has just been described. The coupling constraints are dualized and
the network flow structure is maintained in the relaxed problem. In the second alternative, the flow con-
servation constraints are dualized and the relaxed problem is usually decomposed into |.«/| subproblems,
one for each arc. Although it can be proved that in general, both types of relaxations provide the same dual
Lagrangean bound, computational results reported in the past for several problems (see, for instance,
Beasley (1984) for the Steiner tree problem, and Gendron et al. (1999) for the capacitated network design
problem) state that in general, the network flow based relaxation dominates the second type of relaxation in
the sense that, for a fixed number of iterations of the subgradient optimization procedure, the first alter-
native provides a better bound than the second one.

These results do not necessarily imply that one should ignore the second type of relaxation. For instance,
Holmberg and Yuan (1996) (see also Yuan, 1997) show that the second relaxation might provide valuable
information for a branch-and-bound procedure. More recently, Crainic et al. (1999) have performed an
extensive set of computations comparing bundle type methods with subgradient optimization methods for
computing the optimal multipliers in the context of these two types of Lagrangean relaxations. They have
shown that with an adequate “tuning” of the subgradient optimization procedure, the second type of re-
laxation is a viable alternative to the network flow-based relaxation. Moreover, they have shown that in the
context of the second type of relaxation, the lower bounds given by the subgradient method are of the same
quality as the ones obtained by using the alternative bundle type methods.

We also note that a similar relaxation has also been described in Gouveia (1996). In this relaxation, as
the hop constraints have also been dualized (together with the flow conservation constraints), the asso-
ciated dual Lagrangean value is shown to be equal to the LP bound given by MCF and thus, weaker than
the dual Lagrangean associated to MCF; (the value DL). However, we have noticed that the subgradient
optimization procedure associated to such relaxation was very often obtaining the theoretical best bound,
the optimal value of the LP relaxation of MCF. This experiment has, in a certain way, triggered the
current paper where the same type of relaxation is developed in the context of the hop-indexed HMCF
formulation (that is, the hop-indexed flow conservation constraints are dualized in the HMCF formula-
tion).

This section describes such a relaxation. We show that the associated dual Lagrangean bound is equal to
DL and present computational results showing that for dense graphs it might be preferable to MCF,
(giving an example, where a Lagrangean relaxation where the coupling constraints are dualized performs
worse than a Lagrangean relaxation where the flow conservation constraints are dualized).

To derive the new Lagrangean relaxation, we attach Lagrangean multipliers y,,,, for all i € J(0) and
k€ 2, to the flow conservation constraints (hmcf2), Lagrangean multipliers y,,, for all i,k € & and
qg=2,...,H—1, to the flow conservation constraints (hmcf3) and Lagrangean multipliers y,,,, for all
k € 9, to the flow conservation constraints (hmcf4) and dualize them in the usual Lagrangean way. This
leads to the following relaxed problem.
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Lagrangean relaxation — HMCF,

min Z cyiXi; + Z Z Z 'I;jqkzijqk-i-ZVka

(ij)ed (ij)eod k€eZ q=1,..H kez
subject to
(hmcf1), (hmef5)—(hmcef9).
The modified costs 7, for all (i,/) € .o/, ¢ =1,...,H and k € & are given by

Noje = — Y for j€J(0), ke,
nijqk = ’yi,quk - yjqk for (l’]) € ‘52{7 ke 97 q = 2) . '7H - 17
Nk = Vim—1x — Vi 1OT i€ D, ke D.

For a given value of the Lagrangean multipliers y,,, (for all j € J(0), ¢ =1, and k € &, for all j, k € & and
g=2,...,H—1;forall k €  and q = H), the relaxed problem HMCF, can be solved using the following
observation. Let X;; be the optimal values of the X;; ((i,/) € /) variables in HMCF,. The optimal values,
Zijg» of the Zjy (1 € 9, j,k € 2 —{i} and ¢ = 1,..., H) variables may be obtained in the following way.
For each triple {i, j, k} for alli € Z and j, k € 2 — {i} note that by (hmcf5), (hmcf6), (hmcf7), (hmef8) and
(hmcf9) at most one of the variables Zj,, for ¢g=1,...,H, can be equal to 1. Then, let

¢f}k =min, _y {’hjqk} (i.e., p is the index for which the minimum value of this simple minimization problem

occurs). If ¢}, >0, then Z;;, = 0 for all ¢ = 2,..., H. Otherwise, if ¢}, <0, then Z,,, = X,; and Z;;,, =0
forallg =2,...,H, g # p. This simply means that

H
Z NijghLijgh = min{0, d’i}k}ly- (1)
q=2

In a similar way, we obtain
Nojuojik = min{0, %jk})_(Oj (2)

with ¢f; = 1o~ Thus, constraints (hmef5), (hmef6) and (hmcf7) can be dropped from formulation
HMCEF, and the relaxed problem can be rewritten in the following way:

min Z (Cij + Z min{0, (M}k}))(ii + Z Z Mgk Ziegk + Z Virik

(ij)ed kez k€2 ¢=2,..H k€2
subject to
(hmefl), (hmef8) and (hmcf9).

This modified relaxation can be separated into two simple inspection subproblems. One involving only the
Xi; ((i,j) € o) variables and another involving only the Zy, (k € 2, ¢ =2,...,H) variables. After the
optimal X;; values have been obtained, we use (1) and (2) to obtain the optimal values, Z;;,, of the re-
maining Z;,, variables. An approximation of the optimal multipliers can be obtained by using the sub-

gradient optimization method from Held et al. (1974).
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Notice that the relaxed problem HMCEF, satisfies the integrality property. Therefore, we have
max ¥(HMCF,) = 9(HMCF,) = 9(DL),

=0
and the theoretical best bound associated with this relaxation is the same as the one associated with the
relaxation MCF;.

4. Computational results

In order to assess the performance of the new Lagrangean relaxation HMCF, we used the 20 and 40
node data set from Gouveia (1996) and generated new instances with 60 nodes. For each value of #, the
data set contains three groups of instances. Two groups of instances are Euclidean instances and the third
group refers to random instances. To obtain the Euclidean instances, the coordinates of »n points corre-
sponding to the nodes were generated accordingly to a uniform distribution on a grid with dimension
100 x 100 and the costs ¢;; for each edge {i,j} (i =0,1,...,nand j =1,...,n) are taken as the integer part
of the Euclidean distance between points i and j generated on the grid. Two locations for the root are
considered, one with the root located in the center of the grid, instances TC, and the other with the root
located on a corner of the grid, instances TE. To obtain the random instances, instances TR, the costs ¢;; for
each edge {i,j} (=0,1,...,nand j=1,...,n) are randomly generated accordingly to a uniform distri-
bution in the interval [0, 100]. For each value of n, and each group, TC, TE and TR, five complete graphs
were considered. For each one of these instances, the hop parameter H was set to 3,4 and 5.

The number of arcs (notice that we are using directed models) in each instance for each value of n is equal
ton+n x (n— 1), hence, for each value of n = 20,40 and 60, we have, respectively, 400, 1600 and 3600 arcs.
In order to reduce the size of each instance, we used the following simple arc elimination test (see Gouveia
(1996)). If ¢;; > ¢y, then any optimal solution does not use arc (7, ) and if ¢;; = ¢o; (i # 0), then there is an
optimal solution without arc (i, j). This means that arc (i, /) can be eliminated whenever c;; > ¢(;. This arc
elimination test is applied to every instance before solving each Lagrangean relaxation or solving the LP
relaxation HMCF| . Table 1 shows for each value of n and for each instance the number of arcs remaining in
each instance after the elimination test was performed. Note that the test is much more effective when applied

Table 1

Size of reduced instances
n 20 40 60
TCl1 153 532 1099
TC2 145 506 1164
TC3 156 533 1111
TC4 127 520 1101
TCS 127 515 1125
TEl 328 1196 2677
TE2 294 1153 2778
TE3 293 1231 2773
TE4 310 1168 2850
TES 276 1196 2650
TR1 209 811 2083
TR2 206 819 1936
TR3 198 995 2075
TR4 228 805 1857

TRS 229 679 1853
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to instances TC rather than to instances TE or TR and more effective to instances TR rather than to in-
stances TE. This means that the reduced instances TE are larger than the reduced instances TC or TR
suggesting that the TE instances will be much more difficult to solve than the remaining instances.

Each Lagrangean relaxation MCF, and HMCF, together with the corresponding subgradient optimi-
zation method were implemented using the programming language FORTRAN. As pointed out before, for
each Lagrangean relaxation and for a fixed value of the corresponding multipliers, an inspection problem
on variables Xj; has to be solved in order to obtain the corresponding Lagrangean optimal value. Consider
the well-known cut constraints

>N x=21 v ca, |92, (3)

i€sc jes

where ¢ = A"\ &.

The subproblems defined in the variables JX;; arising in each Lagrangean relaxation become a minimal
arborescence problem if such constraints are added to them. As constraints (3) are satisfied by the LP
relaxation of the MCF formulation (see, for instance, Magnanti and Wolsey, 1995), the best theoretical
limit obtained by solving the minimal arborescence problem is not better than the best theoretical limit
obtained by solving the inspection subproblem in the variables X;;. Nevertheless, by using this modified
subproblem it is possible to accelerate the convergence rate of the subgradient optimization method as-
sociated to the two Lagrangean relaxations. When the multipliers are initialized to zero, the lower bound
obtained at the first iteration corresponds to the value of the minimal arborescence which is, in general,
much better than the optimal value of the corresponding inspection subproblem. The minimal arborescence
problem can be efficiently solved using the algorithm described by Fischetti and Toth (1993). Furthermore,
solving a minimal arborescence problem instead of solving an inspection subproblem allows us to use, in
each iteration of the subgradient optimization method, the heuristic described in Gouveia (1996) to obtain
an upper bound to the optimal value of the problem.

Different rules for initializing and updating the Lagrangean multipliers can be used for implementing the
iterative subgradient optimization method proposed in Held et al. (1974). We have already referred that,
usually, the best rules depend on the problem or instance being solved and for many cases it is difficult to
find a set of rules that produces good lower bounds in a reasonable amount of time. Usually, the scalar used
in the definition of the step size for updating the multipliers is recommended to be between 0 and 2 (Held
et al., 1974). In our procedures, we noticed that the rate of convergence could be significantly improved
if higher values were tried. This scalar was halved whenever the lower bound was not improved after 15
iterations of the subgradient optimization method. The maximum number of iterations for the subgradient
optimization methods were fixed to 2000 for the instances with » = 20 and n = 40 and were fixed to 5000
for the instances with n = 60.

The computational results were obtained in an Alpha Server 5/300 with 128 Mb of RAM and are pre-
sented in Tables 2-5. The first column, denoted by Prob, identifies the problem and the second column gives
the value of H. In the third column, denoted by UB, we give the value of the best upper bound value which
has been obtained by the heuristic procedure included in the iterative subgradient optimization method. In
some of the cases, this upper bound value is optimal (OPT). The next four columns refer to the results
obtained by the Lagrangean relaxation MCF;. The first of these four columns, denoted by value, gives the
best lower bound (rounded up to the next integer when not integer). The second column gives the number
of iterations used by the associated subgradient optimization procedure to obtain the lower bound reported
in the previous column. The third column gives the CPU time (in seconds) needed to obtain the best lower
bound and the last of these four columns gives the value of the corresponding gap defined by

UB — value
gap = — B x 100.
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Table 2
Computational results for the instances with n = 20
Prob H OPT MCEF, HMCEF, HMCF,
Value Iter Time Gap Value  Iter Time Gap Value  Time Gap
TCl1 3 340 338 1798 6.8 0.6 339 849 5.8 0.3 339 633 03
4 318 318 1651 7.5 0.0 318 799 9.0 0.0 318 53.78 0.0
5 312 312 1498 8.0 0.0 312 801 13.8 0.0 312 9478 0.0
TC2 3 365 362 1700 6.4 0.8 364 697 4.8 0.3 364 875 03
4 338 338 648 29 0.0 338 293 3.6 0.0 338 14335 0.0
5 332 332 1038 5.5 0.0 332 550 9.3 0.0 332 6430 0.0
TC3 3 343 337 1800 6.9 1.7 339 797 5.6 1.2 339 2.47 1.2
4 306 305 1598 7.3 0.3 306 701 8.8 0.0 306 57.87 0.0
5 296 296 1148 6.1 0.0 296 650 11.3 0.0 296 83.03 0.0
TC4 3 390 387 1098 4.0 0.8 387 196 1.3 0.8 387 10.50 0.8
4 376 374 1348 6.0 0.5 376 1649 19.3 0.0 376 5045 0.0
5 364 364 1549 8.1 0.0 364 1100 17.6 0.0 364 102.73 0.0
TCS 3 347 346 1898 7.0 0.3 347 250 1.7 0.0 347 5.02 0.0
4 326 323 1650 7.4 0.9 324 650 7.6 0.6 324 4120 0.6
5 310 310 1 0.004 0.0 310 1 0.001 0.0 310 50.67 0.0
TE1 3 449 434 1950 9.2 33 441 1199 7.7 1.8 444 650.55 1.1
4 385 377 1950 10.7 2.1 382 1800 21.1 0.8 385 274317 0.0
5 366 356 1701 10.6 2.7 358 1551 25.7 2.2 364 6204.72 0.5
TE2 3 435 434 1951 8.8 0.2 435 347 2.1 0.0 435 33837 0.0
4 404 395 1748 9.3 22 398 1501 16.7 1.5 401 1970.23 0.7
5 383 374 1650 10.0 2.3 376 1699 29.5 1.8 381 444285 0.5
TE3 3 435 432 1948 8.8 0.7 435 585 3.6 0.0 435 29477 0.0
4 396 392 1899 10.1 1.0 394 1300 14.6 0.5 395 1009.27 0.3
5 372 371 1998 12.1 0.3 371 1650 26.1 0.3 372 2634.52 0.0
TE4 3 448 438 1900 8.8 2.2 443 998 6.3 1.1 444 41045 0.9
4 402 391 1998 10.8 2.7 396 1949 22.3 1.5 400 1682.70 0.5
5 382 371 1900 11.7 29 373 1901 30.3 2.4 377 2707.10 1.3
TE5 3 428 424 1849 8.2 0.9 427 949 5.7 0.2 428 123.62 0.0
4 376 376 1700 8.9 0.0 376 648 7.1 0.0 376 2120.30 0.0
5 354 353 1251 7.5 0.3 354 1301 19.8 0.0 354 456247 0.0
TR1 3 168 166 1932 7.8 1.2 168 247 14 0.0 168 852 0.0
4 146 145 1782 8.6 0.7 146 297 2.9 0.0 146 18.05 0.0
5 137 137 1 0.005 0.0 137 1 0.01 0.0 137 88.30 0.0
TR2 3 201 201 1501 6.1 0.0 201 144 0.8 0.0 201 62.13 0.0
4 161 159 1936 9.3 1.2 161 847 8.3 0.0 161 522.88 0.0
5 140 140 1195 6.7 0.0 140 343 4.6 0.0 140 1046.88 0.0
TR3 3 157 152 1648 6.6 32 153 332 1.8 2.5 153 19.58 2.5
4 130 130 852 4.1 0.0 130 188 1.8 0.0 130 60.50 0.0
5 121 121 1 0.005 0.0 121 1 0.01 0.0 121 336.50 0.0
TR4 3 183 181 1797 7.5 1.1 183 447 2.5 0.0 183 69.15 0.0
4 158 158 2000 9.9 0.0 158 499 5.1 0.0 158 55437 0.0
5 142 142 846 49 0.0 142 250 35 0.0 142 135332 0.0
TRS 3 148 144 1949 8.2 2.7 148 237 1.4 0.0 148 88.60 0.0
4 121 118 1700 8.5 2.5 120 1100 11.1 0.8 121 584.58 0.0
5 110 107 1853 10.6 2.7 109 1598 22.4 0.9 110 2100.82 0.0
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Table 3
Computational results for the instances with n = 40
Prob H UB MCEF, HMCEF, HMCF,
Value  Iter Time Gap Value  Iter Time Gap Value  Time Gap
TCl1 3 613 566 1992 84.2 7.7 604 898 58.1 1.5 605 9835.2 1.3
4 549 518 1947 94.6 5.6 546 1593 1515 0.5 547 63739.4 0.4
5 522 499 1900  104.0 4.4 518 1698  226.7 0.8 522 223904.8 0.0
TC2 3 566 539 1943 81.9 4.8 565 389 25.0 0.2 566 11398.1 0.0
4 519 498 1998 96.6 4.0 515 1994 188.7 0.8 518 119644.5 0.2
5 496 481 1949  106.3 3.0 492 1595  210.6 0.8 494 73723.6 0.4
TC3 3 580 549 1939 82.4 5.3 579 542 35.7 0.2 580 5866.1 0.0
4 547 512 1949 94.9 6.4 534 1947 187.1 2.4 538 73665.4 1.6
5 522 493 1850  101.5 5.6 509 1398 1875 2.5 514 313660.7 1.5
TC4 3 627 569 1998 84.6 9.3 608 1849  120.6 3.0 609 11203.9 2.9
4 571 520 1998 97.0 8.9 547 1848  174.7 4.2 552 82753.1 33
5 532 500 1950  106.3 7.1 520 1644  216.6 2.3 522 246727.5 1.9
TCS 3 602 562 1943 81.6 6.6 593 1643 106.9 1.5 594 11730.3 1.3
4 567 522 1998 96.3 7.9 544 1188  111.1 4.1 548 86169.9 3.4
5 524 501 1943 105.6 4.4 519 1386 178.5 1.0 522 351232.6 0.4
TE1 3 722 649 1997 99.8 10.1 697 1350 1123 3.5 +259200.0 -
4 654 575 1950  109.5 12.1 616 1939 2384 5.8
5 610 543 1951 1217 11.0 573 1500  248.9 6.1
TE2 3 796 653 1949 96.4 18.0 695 1500 1239 12.7 +172800.0 -
4 627 565 2000 111.4 9.9 612 1486  178.6 2.4
5 609 537 1950  121.1 11.8 564 1700  279.3 7.4
TE3 3 692 614 2000 101.0 11.3 655 1700  142.6 5.3
4 606 534 1948 110.5 11.9 571 1246 1535 5.8
5 549 502 1950  122.7 8.6 528 1943 3338 3.8
TE4 3 749 660 1995 99.4 11.9 710 1591 129.9 5.2
4 629 578 1950  109.3 8.1 618 1799 2189 1.7
5 594 548 2000 124.6 7.7 573 1643 2727 3.5
TES 3 675 618 1994 100.0 8.4 674 929 77.0 0.1
4 643 551 1997  113.1 14.3 597 1799  220.2 7.2
5 591 518 1999 1255 124 552 1899 3133 6.6
TR1 3 176 164 1986 91.1 6.8 175 523 38.1 0.6 176 10334.2 0.0
4 149 140 1888 98.3 6.0 148 840 88.3 0.7 149 110654.4 0.0
5 139 132 1588 92.4 5.0 138 797 1153 0.7 +208800.0 -
TR2 3 219 197 1946 89.2 10.0 218 928 67.1 0.5 219 16856.38 0.0
4 176 159 1989  103.6 9.7 175 876 91.5 0.6
5 155 147 1793  104.4 5.2 154 1080  155.5 0.6
TR3 3 198 174 1951 93.6 12.1 197 477 36.9 0.5 198 44260.37 0.0
4 145 130 1934 104.0 10.3 144 1226  137.5 0.7
5 123 116 1683  100.8 5.7 122 1000 154.0 0.8
TR4 3 167 155 1887 85.4 7.2 166 184 134 0.6 167 10821.65 0.0
4 131 125 1896 97.6 4.6 130 217 22.9 0.8
5 122 117 1451 83.6 4.1 121 1045 152.6 0.8
TRS 3 205 185 1983 86.9 9.8 204 275 19.0 0.5 205 3226.72 0.0
4 159 151 1935 97.3 5.0 158 343 34.5 0.6
5 149 141 1639 92.0 5.4 148 848  118.6 0.7
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Table 4
Computational results with a maximum of 5000 iterations for some instances with n = 20 and n = 40
n Prob H UB MCF, HMCEF,
Value Iter Time Gap Value Iter Time Gap
20 TCl1 3 340 339 3151 12.1 0.3 339 849 43 0.3
4 318 318 1651 7.6 0.0 318 799 7.2 0.0
5 312 312 1498 8.0 0.0 312 801 9.7 0.0
TEI 3 449 439 4601 21.8 22 442 2099 13.5 1.6
4 385 381 4500 24.9 1.0 384 4299 51.1 0.3
5 366 359 4750 29.8 1.9 361 5000 82.6 1.4
TRI1 3 168 168 2481 10.1 0.0 168 247 1.4 0.0
4 146 146 2185 10.6 0.0 146 297 2.9 0.0
5 137 137 1 0.003 0.0 137 1 0.02 0.0
40 TCl1 3 613 590 4849 205.2 3.8 604 898 58.4 1.5
4 549 533 4750 231.8 29 547 3344 314.8 0.4
5 522 509 4948 276.7 2.5 520 2938 376.9 0.4
TE1 3 722 684 4901 247.0 5.3 698 3600 297.9 33
4 654 602 4801 270.1 8.0 620 4050 495.4 5.2
5 610 564 4900 306.0 7.5 581 5000 820.3 4.8
TRI1 3 176 172 4440 202.2 23 175 523 38.0 0.6
4 149 146 4801 248.5 2.0 148 840 88.8 0.7
5 139 136 4048 234.4 22 138 797 114.6 0.7

The next four columns are similar and refer to the Lagrangean relaxation HMCF,. The last three columns
refer to the LP bounds given by HMCF (again, rounded up to the next integer when not integer), the
corresponding CPU time and gap.

The reported results indicate that the lower bounds obtained by the Lagrangean relaxation HMCF, are
a lot better than the lower bounds obtained by the Lagrangean relaxation MCF;. Notice also that the
number of iterations of the subgradient optimization method associated to the Lagrangean relaxation
HMCEF, is substantially smaller than the number of iterations of the subgradient optimization method
associated to the Lagrangean relaxation MCF,. This can be explained by the fact that only O(n*H) mul-
tipliers are involved in HMCF, while @(n|.«/|) multipliers are involved in MCF,. In the case of dense
graphs, the number of multipliers in the relaxation HMCEF, is significantly lower than the number of
multipliers in the relaxation MCF;. This suggests that the number of iterations needed by the subgradient
optimization method to obtain a reasonable lower bound may be smaller with the new Lagrangean re-
laxation HMCEF, (as we said before, this is confirmed by our computational results). However, the CPU
times produced by HMCEF, are, in general, bigger than the CPU times produced by MCF,. The reason for
this is that the CPU time used in each iteration of the new method is substantially bigger than the CPU time
used in each iteration of the older relaxation. At first sight, this seems to be unexpected. Notice that only
two simple inspection problems and a simple minimization problem (with complexity ¢(|.</|H) to compute
(1) and (2)) have to be solved in each iteration of the subgradient optimization procedure associated with
HMCEF,, while one simple inspection problem and »n hop-constrained shortest path problems have to be
solved in each iteration of the subgradient optimization procedure associated with MCF;. This suggests
that one iteration of the subgradient optimization method might be significantly faster with the new re-
laxation. However, as we have said before, this is not confirmed by our computational results. Our ex-
planation for this is that variables with four indexes are involved in HMCF, and the computer programs
implemented for solving the subproblems associated with HMCF, involve four nested cycles (notice that
only three nested cycles are needed in the other relaxation).
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Table 5
Computational results for the instances with n = 60

Prob H UB MCF; HMCEF,
Value Iter Time Gap Value Iter Time Gap
TCl1 3 894 823 4999 888.0 7.9 861 2950 772.9 3.7
4 805 740 4899 997.0 8.1 775 4199 1842.7 3.7
5 734 705 4900 1089.9 4.0 731 4839 3013.7 0.4
TC2 3 845 795 4949 876.8 5.9 844 1299 347.1 0.1
4 767 718 4901 981.3 6.4 763 4521 2014.0 0.5
5 756 691 4849 1075.8 8.6 723 4949 3115.0 44
TC3 3 915 837 4949 878.8 8.5 880 2847 751.4 3.8
4 826 761 4948 982.7 7.9 798 4237 1859.8 34
5 789 729 4850 1063.7 7.6 759 3250 2433.1 3.8
TC4 3 880 807 4949 875.9 8.3 854 3436 901.3 3.0
4 826 733 4901 968.7 11.3 770 2840 1300.2 6.8
5 747 693 4751 1026.5 7.2 722 4694 35134 33
TC5 3 1021 937 4998 868.4 8.2 990 3139 803.2 3.0
4 964 845 4948 966.3 12.3 890 3848 1764.5 7.7
5 879 799 4851 1051.5 9.1 841 4339 3232.3 4.3
TEI 3 1707 1409 4998 1079.3 17.5 1497 4499 1470.1 12.3
4 1503 1202 4999 1190.1 20.0 1296 3899 2108.5 13.8
5 1341 1115 5000 1294.4 16.9 1188 4000 2976.6 11.4
TE2 3 1738 1376 4950 1082.2 20.8 1436 3900 1277.3 17.4
4 1432 1163 4951 1188.3 18.8 1250 4645 2540.6 12.7
5 1317 1084 4998 1305.6 17.7 1145 4447 3340.3 13.1
TE3 3 1572 1315 4998 1088.2 16.3 1419 4848 1605.6 9.7
4 1426 1123 4950 1185.2 21.2 1209 4598 2525.6 15.2
5 1259 1038 4900 1282.2 17.6 1112 4449 3363.6 11.7
TE4 3 1811 1399 5000 1101.7 22.7 1480 4647 1538.8 18.3
4 1454 1173 4901 1186.8 19.3 1262 4846 2672.6 13.2
5 1320 1092 4901 1286.7 17.3 1152 4999 3791.2 12.7
TES 3 1791 1385 4950 1063.4 22.7 1459 4649 1501.3 18.5
4 1499 1166 4900 1156.5 22.2 1256 3694 2004.3 16.2
5 1328 1081 4998 1286.4 18.6 1155 4396 3256.7 13.0
TR1 3 274 247 4837 970.3 9.9 273 535 162.0 0.4
4 207 194 4549 1002.1 6.3 206 594 296.5 0.5
5 190 183 4900 1185.3 3.7 188 1748 1216.4 1.1
TR2 3 243 216 4844 945.3 11.1 242 831 247.5 0.4
4 186 168 4983 1080.2 9.7 183 1848 904.1 1.6
5 165 154 4487 1065.9 6.7 164 1343 921.4 0.6
TR3 3 288 261 4835 961.2 9.4 287 490 150.0 0.3
4 235 209 4748 1045.4 11.1 225 2199 1156.1 4.3
5 227 193 4401 1066.3 15.0 204 4600 3308.9 10.1
TR4 3 204 185 4783 926.0 9.3 203 385 113.6 0.5
4 163 155 4700 1009.9 49 162 488 237.1 0.6
5 151 148 4851 1144.5 2.0 150 545 371.3 0.7
TRS 3 230 212 4985 962.6 7.8 229 283 83.5 0.4
4 180 173 4748 1017.4 3.9 179 349 169.8 0.6

5 172 162 4048 954.9 5.8 169 2291 1652.4 1.7
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As expected, the lower bounds obtained by HMCF| cannot be worse than the lower bounds obtained by
HMCEF,. However, the CPU times produced by the HMCF| relaxation are, in general, bigger than the CPU
times produced by the Lagrangean relaxation HMCEF.,.

For several instances with » = 20 (see Table 2), the optimal value was found (i.e. the reported lower
bound equals the optimal value obtained by a branch and bound procedure using the CPLEX routine). For
all instances TC and most instances TR, the lower bounds obtained by HMCF are equal to the lower
bounds obtained by HMCEF,. For the instances TE, the lower bounds obtained by HMCEF, are better than
the lower bounds obtained by MCF,. Additionally, the lower bounds obtained by HMCF, are not as good
as the lower bounds obtained by HMCF. However, the CPU times of the LP relaxation are bigger than
the CPU times produced by both Lagrangean relaxations.

For instances with n = 40 (see Table 3), the lower bounds obtained by HMCEF, are better than the lower
bounds obtained by MCF;, and the subgradient optimization method associated to relaxation HMCF, uses
fewer iterations than the subgradient optimization method associated to relaxation MCF;. Again, the lower
bounds obtained by HMCF| are better than the lower bounds obtained by both Lagrangean relaxations
after the limit of 2000 iterations. However, for most of the cases the LP relaxation takes huge CPU times to
obtain those values (the LP optimal value was not obtained after a couple of days of computations for most
of the instances).

In all the instances tested, the CPU times produced by HMCEF, are bigger than the CPU times produced
by MCEF;. Thus, we have increased the number of iterations to 5000 in MCF; in order to compare the
bounds produced by MCF;, after 5000 iterations with the bounds produced by HMCEF, after 2000 itera-
tions. These results refer only to some of the 20 and 40 node instances and are presented in Table 4. The
results show that the new relaxation still produces better lower bounds than the older relaxation. Rea-
sonable improvements with respect to the new relaxation HMCF, are also obtained when the number of
iterations was also increased to 5000. See, again Table 4.

With respect to the instances with » = 60 (see Table 5), it is interesting to point out that for most of
the instances TE with A = 3 the CPU time used by the Lagrangean relaxation HMCF, is smaller than
the CPU time used by the older Lagrangean relaxation. A similar situation happens in some of the
instances TR. Again, notice that the lower bounds produced by the new Lagrangean relaxation are in
general much better than the lower bounds given by the older Lagrangean relaxation. The LP relaxation
was not tested for the n = 60 instances. The reason for this was the huge CPU times obtained for the
n = 40 instances.

5. Conclusions

In this paper, we have presented a new Lagrangean relaxation for the hop-constrained minimum
spanning tree problem. Our computational experience shows that for instances with a large number of
edges, the new Lagrangean relaxation is superior to a different Lagrangean relaxation previously presented
in the literature. The results also show that for the same class of instances the new Lagrangean relaxation is
a sound alternative to solving directly the LP relaxation of the same model.
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