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Abstract

Facility location problems in the plane play an important role in mathematical
programming. When looking for new locations in modeling real-world problems, we
are often confronted with forbidden regions, that are not feasible for the placement
of new locations. Furthermore these forbidden regions may have complicated shapes.
It may be more useful or even necessary to use approximations of such forbidden
regions when trying to solve location problems.

In this paper we develop error bounds for the approximative solution of restricted
planar location problems using the so called sandwich algorithm. The number of
approximation steps required to achieve a specified error bound is analyzed. As
examples of these approximation schemes, we discuss round norms and polyhedral
norms. Also computational tests are included.
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1 Introduction

In the field of location theory, planar location problems have always played an important
role. A large body of literature (see [DD84] and [Dre95]) is witness to the history of
development of location theory and its various successful applications.

Since planar location problems have to deal with a geometrical model of real world prob-
lems the consideration of restrictions caused by nature reserves or unfavorable geographic
conditions such as for example lakes is essential. As an extension to the basic model
we introduce forbidden regions, in which the placement of new facilities is not allowed
(see [HN94], [AM94], [HN95] and [Nic95]). These problems are called restricted location
problems.

As one can easily imagine, forbidden regions may have very complicated shapes. Therefore
it is sometimes impracticable or even not possible to solve a restricted location problem
with the original forbidden region. Instead we will develop algorithms using a polyhedral
approximation of the forbidden region, with which we can easily solve the restricted location
problem, while guaranteeing a given error bound. For this aim we construct inner and
outer polygonal approximations of the forbidden region. We then know that the solution
of the original problem is bounded by the solutions we get by solving the problem on the
approximating polygons.

More formally:

We are given a set of existing facilities Ex = {Ex1,..., Exy} represented by points in the
plane with coordinates Ex,, = (4, by) for m € M :={1,..., M}. Every existing facility
is assigned a positive weight w,, for m € M. In some extensions we will discuss negative
weights, too. We look for a new facility X that fulfills X ¢ int(R), where R C IR? is a
connected set, that represents a forbidden region. To measure the quality of the solution
we use the following criterion

z Wi d(Exy, X) =: f(X),

meM

where d(R, S) means the distance between two points R and S in the plane, measured by
some metric d.
The corresponding optimization problem with the objective function f(X) is

min f(X),
which is called in the literature Weber- or Median- or Minisum-Problem.
The set F over which we minimize is called the feasible region, defined by F := IR*\int(R).
Since the naming conventions in location theory are not unique, to avoid ambiguity and to
get an overview over the manifold area of location problems we want to use a classification
scheme developed for location problems in [Ham95], [HN96] and [HNS96].
We have the following five position classification

posl/pos2/pos3/posd/posh,



where the meaning of each position is explained in the following table:

| Position | Meaning | Usage (Examples)

1 number of new facilities
P planar location problem

2 type of problem D discrete location problem
G location problem on a network

3 special assumptions and restrictions | w,, =1 all weights are equal

. . Manh i

4 type of distance function b anhattan metric

v a general gauge
.. . Medi 1
5 type of objective function 2 edian problem

max Center problem

If we do not make any special assumptions in a position, we indicate this by a e. For
example, a e in position 4 means that we are talking about any distance function.

In the classical case, where F = IR? we denote the set of optimal solutions of 1/P/e /e /Y
by X*.

The set of optimal locations of 1/P/R/ e /3 is denoted X%.

The rest of the paper is organized as follows. In the second section we state some basic
properties for restricted location problems and define the class of distance functions we
will investigate in this paper. Further we will discuss some principal solution techniques
and introduce the sandwich algorithm. The third section is concerned with the deduction
of the error bounds for approximating solutions of restricted location problems.

It should be noted, that although we restrict ourselves in this paper to the case of one for-
bidden region, all algorithms can be modified to handle also the case of multiple forbidden
regions (see [HN95] and [Nic95]).



2 Basic principles and tools

2.1 Solution of restricted location problems

We assume in the following that X* C int(R), to avoid trivial solutions. The weights w,,
are without loss of generality always assumed to be normalized. This means }°,,c pq Wi = 1
in the case of all weights being positive. If negative weights are involved we assume for
wh =3, soWm and W™ = — Y, <o Wn, that max{w™*,w™} = 1. By default all weights
wy, are positive and extensions to negative weights are mentioned explicitly. After these
technical remarks we can state a fundamental property of restricted location problems:

Theorem 2.1 (see [HN95]) Let h be a convex objective function for 1/P/R/ e /e and
OR the boundary of R. If X* C int(R), then

X5 COR .

If we allow negative weights w,,, the objective function need not to be convex anymore.
Therefore we have to deal with several local minima and the fact that an optimal location
for 1/P/R /e /3 can be either a local optimum outside of R or on the boundary of R (for
details see [ND96]). In this case the approximation tool we develop in the following does
not only serve to locate a best location on OR. It also helps to decide if a search on OR
is necessary or if we are done with the smallest of the local minima outside of R and can
forget about the boundary of the forbidden region.

In general we assume non-negative weights to make the paper easier to read. However, we
describe at the appropriate places in the text how the extension to the case with negative
weights can be done.

To find an optimal solution of the considered restricted location problems we have to find
the maximal level curve contained in the set R, where we will denote by level curve the set

L_(z,h) :={X € R*: h(X) = 2}

The real number z is called level of L_(z, h). For the sake of simplicity, we denote by L_(z)
the level curve L_(z, f). For a more detailed discussion of restricted location problems see
[HN95] and [Ham95].

The complexity of the determination of the optimal level curve heavily depends on the
structure of the forbidden region R, which leads to the consideration of an approximation
approach, as explained in the introduction. We construct inner and outer approximations P
and P, and solve the problems 1/P/R = P/e/ Y and 1/P/R = P/e/ ¥, respectively. That
is, we calculate two level curves enclosing the optimal level curve for the original forbidden
region. The difference of the objective values of an outer and an inner approximation gives
us an error bound for the optimal objective value.

Since these approximations are calculated with respect to the objective value of the optimal
solution and the approximative solutions, the shape and location of the level curves have
to be analyzed in detail.



In the considered objective function f(X) with

f(X)= > wndn(X,Ezy,) and > wy =1
meM meM

the profit of a new facility for any existing facility is measured by a concept of distance
d(R,S) between points R and S in the plane. There are different possibilities of distance
functions, that have different effects on the shape of the level curves and the solution
algorithm.

In this paper we want to discuss first a problem with circles as level curves (I2) to give the
reader some insight in the proving techniques needed for establishing error bounds. After
that, results for a subclass of the polyhedral norms as distance functions are presented.
This is interesting since the set of polyhedral norms is dense in the set of all norms (see
[Mic87], [WW85] and [Nic95]). We give the definitions of these two types of distance
functions in the remaining parts of this section, which are concerned with specific location
problems. The last part of this section contains an introduction to the sandwich algorithm.

2.2 The location problem 1/P/R/i3/ 5
The [2- function is defined by

B(X) = 2t + a3,

with X = (21, z).

In Section 2.1 we have seen that the boundary of R for any location problem with convex
objective function contains Xj. An interesting particularity for the [3-distance function is,
that the convexity of the objective function is guaranteed even for some negative weights
as long as the optimal solution is finite. (see [DWO1]).

In [FLMW92] it is shown that the level curves are circles. If the boundary of the forbidden
region R is polygonal, we know how to calculate the maximal circle contained in R.
The next result (see [HN95]), implies an approximation procedure as explained in the
introduction for forbidden regions with complicated shapes, where we do not know how to
calculate the maximal contained circle.

Lemma 2.1 (see [HN95]) Let R ={X € R*: ;X < b;,a0; €ER* b, e R,i=1,...,I}
be a conver polytope. Fori=1,... 1 let P, := (p;,,pi,) be the orthogonal projection point
of X* on {X : a; X = b;}.

Then

Xp =argmin{f(P):i=1....,1}

is the set of optimal solutions.



2.3 The location problem 1/P/R/vyg/ %

Definition 2.1 Let B be a compact convex subset of IR?, with 0 € int(B). The function
v :IR? = IR defined by

(X) :=inf{\A > 0: X € AB} with X € IR?
is called the gauge of X with respect to B.

As one can easily see, a gauge becomes a norm if B is symmetric (see [DM85]). In the
following we will consider a special type of symmetric gauges that are called block norms.
The unit ball of a block norm is a convex polytope with extreme points ey, ..., eqg, where
G is even and e; = €t G5 fori=1,... % . Therefore we can write

q q
v(X) =min{d Ay : X =D Ageg, Ay >0forg=1..... G}

g=1 g=1
Let dy,...,dg be the halflines defined by the endpoints 0 and the points eq,...,eq. We
call di,...,dqg fundamental directions.
To be sure that we consider extreme points ey, ..., eg, where no point ¢;, t = 1,...,G is
contained in the line connecting adjacent extreme points we define non-degenerated unit
balls as follows.

Definition 2.2 A unit ball B = conv{es,...,eg} of a block norm with G fundamental
directions is called non-degenerated if for all fundamental directions d, with g =1,..., G

eg ¢ B :=conv({ey,...,ec} \ {eg})
holds.

Let the cone generated by two consecutive fundamental directions dg, dy1 be denoted T'y,
where we set dgi1 = d;. If the origin of the cone T’y is shifted to a point X € IR? we
denote this cone I'j(X).

We call H; and Hg+ the halfspaces, bounded by the hyperplane generated by an halfline d,,
g=1,...,G. In the following we write H, for a fixed one chosen from the two halfspaces
H, or H ; . The halfspace of an hyperplane in an existing facility Ez,, is denoted H".
For every existing facility we get % lines, called construction lines and % halfspaces. This
is a consequence of the symmetry of the block norms. Since we consider for all existing
facilities the same norm, we can assume the halfspaces to be ordered in the way that we
have for all g =1,...,G/2: H; gHj C... gHé‘/l.

We add H gM +1 .= IR? as the halfspace containing all halfspaces HJ" and get a decomposition
of IR? into cells < S1,...,8q/2 > with s; € {1,..., M 41}, for all i = 1,...,% defined as

a2
(51, > 8a2) = {(x1,22) : (21, 22) € [ (H*\ H ")},

=1



where H? := () Vi. With (IR?) we denote the set of all cells. Note that this definition is a
special case of the definition of elementary convex sets for general gauges by [DM85].
The objective function is linear in each cell < s1,...,5g/2 >€ (IR?) (see, for example
[Nic95]), which also holds for negative weights.

Moreover, for non-degenerated unit balls we get from the definition of polyhedral gauges.

Lemma 2.2 Let vg be the polyhedral gauge of a mnon-degenerated unit ball B =
conv{ey,...,eqg}. Let T, be the cone generated by d, and d,.1 where dgy1 = di and
eg+1 =e1. Let X € I',. There are uniquely defined Ay and Ay € IR, with:

X = /\16,, + )\26,,4.1 and ’)/(X) = )\1 + )\2.

Using Lemma 2.2 and the fact that for every X € IR? there exists a cell < sq, ..., 5q/2 >€
(IR?) with X €< s1,..., sg/2 >, We can write

F(X) =Vi({s1,-..,8a/2)) 21+ Va((51, .- -, 8a/2)) - w2 + V ({51, .-, 5a/2))

with G e )
‘/1(<817"'J$G/2>):Z Z Wy * 2 lg g+
g=1 meM with 6_qeg—|—1 - 6 €g+1
X —Eem€ely
G (€L, — e}
‘/2(<817"'78G/2>) = Z Z Wy * 2 19+1 g
g=1 meM with egeg—|—1 - 6 €g+1
X —Exm€elg
where G+ 1 = 1 as above and V ((s1, ..., 5q/2)) is constant for a fixed cell (s1,...,55/2) €
(IR?).
For axial symmetric block norms we have —1—_?—;2— < 1land —1—% < 1 (see [K96]).
€9€9+1 696511 969+17 ¢

By scaling the weights as explained at the beginning of this section the same is true for
negative weights, too.
In the general polyhedral gauge case we denote by m; the maximum of the terms

62;—_’:;—3 and by ms the maximum of the terms —e(“l_e—ez and get V7 and V5 bounded
9-g+1 “g-g+1 g-g+1 g-g+1

by M -m; and M - m,. This is also a bound for the case with negative weights.
Remark: We know that the objective function is piece-wise linear and therefore the
level curves have be polygons. The linear pieces of the level curves can change their
slopes only at the intersection points with the construction lines. We then know that an
optimum X3 € X needs to be on a construction line and by Theorem 2.1 X; C OR.
The resulting solution algorithm is then straightforward and consists of intersecting OR
with the construction lines and choosing the best of the intersection points ( for details
see [Nic95)).



Therefore we obviously do not always need the approximation approach explained in the
introduction for solving just one single location problem. A solution algorithm simply con-
sists of calculating the intersection points and choosing the one with the smallest objective
function value.

There are two reasons, why we consider it important to analyze the behavior of location
problems with block norms and solving them with the approximation algorithm.

Once an approximation is established, we are able to analyze the behavior of different
types of objective functions and give approximate estimates, without explicitly solving the
location problem.

The second application is even more important. Round norms are often hard to handle,
while for block norms algorithms are available. It is also known, that polyhedral norms
are dense in the set of all norms (see [Val64] and [WW85]). Therefore it is interesting to
approximate the unit ball of a round norm by the one of a polyhedral norm and estimate
the resulting error in the new objective function.

2.4 The Sandwich Algorithm

For convex sets there exists an efficient approximation algorithm which is called the sand-
wich algorithm (see [Rot92]). We will use an extension of the original sandwich algorithm,
developed for convex functions in [BHR91] to convex sets (see [Rot92]).

The original sandwich algorithm provides piecewise linear approximations for a convex
function f that is bounded on an interval [a, b] and that has finite right and left derivatives
f*(a) and f~(b) at the endpoints a and b of the interval.

For a finite partition a =ty < t; < ... < t, = b of the interval [a, b] we denote by f;" and
fi the right and left derivatives for a point ;.

We construct an upper approximation u(t) and a lower approximation /(¢) for the function
f where

f(tia) = f(t:)
tiy1 — U
It) = max {f(t;) + fi"(t = t:), f(tixa) + fii1(t = tisa)}

and t € [ti, tz’—|—1]-
The error ¢ for this approximation is defined as maxg<;<,—1{u(t;) — I(¢])}, where in an
interval [t;, t;+1] the point ¢}, where the maximal error is attained is defined by

f(tipr) = f(t) + fiTti = fitin
f’i+ - Z:|—1 .

u(t) = f(t)+ (t—t)

=

2

This error therefore is the maximal vertical error. Starting with the interval [a,b], we
construct u(t) and I(t) for t; = a and t;;; = b. If the maximal error in [a,b] or any
following interval [¢;,¢;11] exceeds the given tolerance we divide the interval according to
a dissection rule.



By continuing like that we get approximations u,, [, with:
lh<f<u, forn=01,...

See [Rot92] for further details, the formulation of the algorithm and possible dissection
rules.

The dissection rule that is of most interest also for convex sets is the chord rule. Considering
the part of the boundary between two existing dissection points, following this rule, we
choose the point whose slope is equal to the slope of the line connecting the two existing
points.

In the following picture the way the chord rule proceeds is illustrated.

Figure 1: chord rule

We use this rule because it is the only rule that is insensitive to transformations of the
coordinate system. For convex sets we need this property to ensure that the dissection
points are the same even if we rotate the set.

In the following we apply this rule and refer to [Rot92] for some other dissection rules and
the corresponding error bounds.

We do not discuss the error bounds developed for convex functions in detail (see [Rot92]).
They easy carry over to convex sets R by dividing the boundary OR of R in four pieces
and by applying the approximation on every piece. This four pieces are bounded from the
tangent points of the smallest rectangle parallel to the x- and y-axis containing R. If we
approximate convex sets we have no canonical way of measuring the error like it is the case
with convex functions. Therefore we use the Hausdorff distance, which is defined for an
inner approximation P and an outer approximation P as:

§H(P,P) = sup inf 1,(X,Y),
XePYEP
where l5(X,Y") denotes the Euclidean distance between X and Y. The normal distance
between two sets is always meant in the following as the minimal distance between any
two points of these sets.



Using that the Hausdorff distance is bounded by the maximal vertical distance, in [Rot92]
the following result is proved:

Theorem 2.2 Using the chord rule, to approximate a conver planar figure P of circum-
ference D by two n-gones with an error of at most € we need at most

m(D,€) == max {4, {\/?—i— 2 } . (1)

additional dissection points.




3 Error bounds

Approximating the forbidden region by an outer and an inner polyhedron provides an
approximate solution of the original problem and its objective function value and allows
us to give upper and lower bounds for the objective value of the exact optimal solution.
The set of optimal points on the outer approximation 1/P/P/e /% is denoted by X}, the
set of optimal points on the inner approximation 1/P/P/e /" is denoted by Xz, We will
use the error bounds developed in the last section to get error bounds for the objective
value of location problems. The difference between the optimal objective values f(X}) of
the outer and f(X%) of the inner approximation is denoted by e. Assuming a specified
approximation procedure we are able to state error bounds in advance. In the following
we will consider the chord rule. Further we denote by P, the smallest rectangle parallel
to the z- and y- axis containing R. According to Section 2.4 this is always the first outer
approximation and all other outer approximations P are contained in Pj.

3.1 Error bounds for 1/P/R/I3/ %

In Section 2.2 the structure of the level curves for 1/P/R/I2/ 3" was described. Further
we introduced the necessary steps to find the solution. We will now give some more details
on how the approximation approach works and some more additional properties. The
objective function of 1/P/R/I5/ Y possesses the following property.

Lemma 3.1 Let f be the objective function of 1/P/R/12/ Y and P and P two points in
IR?. Then

f(P) = f(P) = 3(P,X") = (P, X").

Proof:
f(P) = f(P)
= > wul3(P,Ezn) — Y. wnls(P, Exy,)
meM meM
= z U)m((p% - 2pla'm + a?n +p§ - Qprm + b72n) —
meM

(B1® — 2P1am + a2, + Po” — 2D2bm — b2,)

= (pl - Z wmam)2 + (pZ - Z wmbm)2 - ((pAl - Z wmam)2 + (pAZ - Z wmbm)Q)

meM meM meM meM
= lg(PaX*) - lg(pa‘){*)

The last equation holds, since X* = (X ,.cam Winlms >omer Wmbm) is the unique optimal
solution of 1/P/ e /I3 ¥.

10



Lemma 3.2 Let R be a conver set with X* € int(R), P and P inner and outer ap-
prozimations of R respectively. Further let [Ty, Ty11] be an edge of the inner polygon P,
containing Xp € Xp. For the outer polygon P let X% € X% on the edge [Sk, Sk+1]. Then
the following holds:

lo(Xp, X*) — Ip(X5, &%) < 6" (P, P).

Figure 2: Tlustration to the proof of Lemma 3.2

Proof: First note that by Lemma 2.1 X} is the projection of X* onto [Sk, Sk+1], denoted
by g[Sk, Sk+1] and X% is the projection of X* onto [T}, T41], denoted by ¢[Th, Thi1]. Let
K(X*, d(X*, Xp)) be the circle with center X* and radius lo(X*, Xp)) and let B be the
point in the triangle T}, T} 1, S, that fulfills:

B e K(X*,d(X*, X%)) and [B, Xp| L [Ty, Th1]-
Furthermore let S; be the edge where the Hausdorff distance is attained. Then:

(Xp, X*) = L(X5, &%) = L(B,&X7) - L(X5 A7)
l2(B, Xp)
= 12(B,[Th, Th+1])

< 19(Sh, [Th, Th41]
< (S, [T, Ti41))
= (P, P).

|

Lemma 3.3 The assumptions are the same as in Lemma 3.2. Further denote by D the
circumference of R. Then the following holds:

o Ir(Xp, ") < iD.

11



o (X5, &%) < 2.
Proof: Let [ be the length of the longest side of P,. Since the level curves are circles we

have .
lz(XE,X*) < §l .

By the definition of P, we have further that | < %D. So we get in total
1
lr(Xp, &™) < ZD :
By Dy, we denote the circumference of the level curve passing through X%. Then we get
DL == QWZQ(X%, X*) S D
resulting in
* * D
L(X%, &) < o
O

We are now able to relate the approximative solutions to the Hausdorff distance of P and
P.

Lemma 3.4 The assumptions are again the same as in Lemma 3.2. Let D be the cir-
cumference of R and let f be the objective function of an 1/P/R/13/ Y location problem.
Then:

F(Xp) = f(X5) < 6"(B, P)pD ,

where p 1= % + %
Proof: Using Lemma 3.2 and Lemma 3.3 we get:
F(Xp) = F(Xp) = L(Xp,X") — (X5, X7)
= L(Xp, X*)? = (X5, X*)?
= (L(Xp, X7) = (X5, X7)) -+ (L(Xp, X™) + L(XFX))
— 1 D
s*(P,P)-(~D+ —).
O

Using these lemmas we are able to apply the sandwich algorithm error bounds to

1/P[R/15] 5.

Theorem 3.1 Let R be a convex restriction set of circumference D inIR?. To approzimate
the optimal objective value of 1/P/R/I13/ Y with an mazimal error of at most &, we need
(assuming the choice of the chord rule) at most

mlg(D, £) := max {4, {D1/8—p +2
£

12

dissection points.



Proof: Theorem 2.2 tells us, that after

m(D,e) = max {4, [\/@ + 2-‘ }

iterations 67 (P, P) < ¢ holds.
From Lemma 3.2 and Lemma 3.4 it follows:

PR < 5 = f(Xp) - () <e,

and therefore after

m(D, piD) = maz{4, {\/ (822/)) +2

8

9

}

S

= max{4, [D +2|} =mbB(D,¢)

iterations f(Xp) — f(X%) < € holds.

3.2 Error bounds for 1/P/R/vp/ %

In Section 2 we have showed the linearity of the objective function in the cells generated by
the construction lines of 1/P/R/vyp/ Y. We will use this linearity to derive error bounds.
The bounds will be given for axial symmetric block norms «g under no assumption for
the weights (see Section 2.3 and remember, that the bounds for the linear factors of the
objective functions are the same for positive or negative weights). We replace v/2 by

\/(M -my)? + (M - m2)? (see Section 2.3) in the general polyhedral gauge case.

Lemma 3.5 Let f be the objective function of 1/P/R/vg/ >, where vp is a block norm
that is axial symmetric.

a) For points X,Y € (s1,...,5q/2) with f(X) =2z and f(Y) = 2z

f(X) - f(Y) S \/§ : d(sl,...,sG/z) (Lzla LZZ)

holds, where ds, SG/Q)(Lzl,Lzz) denotes the ly-distance of the level curves L,, through

.....

X and L,, throughY in (s1,...,5q/2)-
b) For points X,Y € R? with f(X) = 2 and f(Y) = 2
fX)—f(Y) V2. min  L(X,Y)

Xe€L,,YeL,,

holds.

13



Proof: a) In Section 2 we showed that f can be written in a cell as follows:
f(X) = 2z = Vi(s1,...,8q/2)71 + Va(s1,-..,5q/2)T2 + V(s1,...,56/2) and
fY) = 2 = Vl(Sla---aSG/2)y1+V2(81,---,SG/2)Z/2+V(81,---,SG/2)-

Therefore:

d(sl,...,SG/2> (L:(zl)a L:(ZQ)) =

21 — 22

\} Vi(st, .-, 8G/2)i+}/2(81, ces 5G/2)21

~~ ~~

<1 <1

Figure 3: Tllustration to the proof of Lemma 3.5 for the [;-norm (four fundamental directions)

b) Let X' € L217 Y! c L22 with ZQ(X,_YI) = ianELzl,YEL22 lQ(X—Y) Further let X' be in
(51,.--,8a/2), Y' bein (s; +t1,...,5q/2 +tg/2)- The line connecting X' and Y” intersects

ZZG:/f |t;| construction lines. Let C; denote for i = 1,...,p the intersection points ordered
from C) := X' to C, := Y. Intersection points where several construction lines coincide
are counted for every construction line. If there are k construction lines to coincide at the

same point, we have k points Cj11,...,Ciig with Cjpq = Clyo = ... = Cpu.
From Lemma 3.5 a) we know:

f(XI)—f(Cl) = \/%(81,...,8@/2)2+‘/2(81,...,8g/2)2'lQ(XI,Cl),

f(Cp) = fY') = \/Vl(sl+t1;--->5G/2+tG/2)2+V2(31+t1a---;8G/2+tG/2)2
-lg(Cp,Y'),
f(Ci) = f(Cin) VVilcell(Cy, Ciy1))2 + Va(cell(C, Cii1))? - (Ci, Ciga),
if C, 7é Ci+1 and
f(Ci) = f(Cixa) = 0,
if Cz Ci+la
Vi=1,...,p,

14



where cell(C;, Ci41) denotes the cell which contains the whole line segment [C;, C;1].
Summing up, we get

fX)=fy) = fX)-f)
MY VB XL C) 4 Gy )+ 5 1 Cor)
= V2 L(X" Y :
= V2. min (X —-Y).

X€L,,,Y€eL,,

|

Lemma 3.6 Let f be the objective function of 1/P/R/vg/ Y. with an azial symmetric unit
circle B. Let P be an inner approzimation of R, let P be an outer approrimation of R.
Additionally let X5 € X% and Xp € Xp with f(X%) = 21 and f(Xp) = 2.

Then: B B B

f(X}) - f(X5) <V2-6"(P,P).
Proof: From Lemma 3.5 we know that

f(X5) — f(X}) < V2 min min L(X,Y)

X€L:) YEL:,

V2 min lp(X, Xp)

IA

IN

ﬁg(nelglz(X, Xp)
V2 (sup inf lo(X, Y))

XePYEP

= V26" (P,P) .

IN

From the preceding lemmas we have
€
V2

and we get analogous to Theorem 3.1

5 (P.P) < = = [(Xp) — f(Xp) <.

Theorem 3.2 Let R be a forbidden region of circumference D in IR?, let vp be an axial
symmetric block norm. To approzimate the objective value of 1/P/R/vs/ > with an error
of at most € we need at most

m? (D, €) := max {4, { 8v2D + 2} }

9

additional dissection points.
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4 Computational results

For computational results of the general sandwich algorithm the reader is referred to
[Rot92], where computational experiments for the different partition rules and for sev-
eral convex functions have been made. Due to the fact, that we are interested in a priori
error bounds, the construction of an approximation of a forbidden region is independent
of particular data of a location problem.

Therefore the bounds we derived in Section 3 might not always be tight.

If we additionally take into account information we have for a particular problem instance
and incorporate this information in the approximation algorithm we may get better bounds.
In the following we discuss as an example an improved approximation algorithm for
1/P/R/I2/ Y location problems to get more insight on how the previous results can be
used for concrete solution algorithms.

By using exclusion rules we reduce the necessary number of approximation steps. Fur-
thermore the next edge to be dissected is chosen with respect to the current optimum. In
the following we present an algorithm and its exclusion rules. We assume the unrestricted
unique optimum X* to be given.

Algorithm 4.1 Solving 1/P/R/I2/5.

Input: existing facilities Fx,,, weights w,,, convex forbidden region R and unrestricted
optimum X*
Output: approzimate solution Xp.

1. Choose an value for the precision € and get from Theorem 3.1 an upper bound for
the number of needed iterations. Here we may stop if this bound is much to high.

2. The first outer approrimation is the rectangle parallel to the azxes. The first inner
approzimation is the connection of the tangent points of the rectangle to R.

3. We project X* on the new generated edges of P and P. (This is in the first iteration
equivalent to solve the problems 1/P/P/12] Y and 1/P/P/I3] ).

4. If the difference with respect to the objective function between the best projection on
P and the best projection on P is less than ¢ — GOTO Step 7.

5. Delete all edges of P, where

a) the objective value at the projection point is bigger than any objective value on
P, or where

b) the projection line intersects the boundary of R before hitting P.

6. Take an edge of P with the smallest projection value, delete this edge from the list,
execute the dissection with respect to this edge and GOTO Step 3.
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Figure 4: starting situation for a forbidden region C

7. Output: All best projections on the actual P.

As one can easily see the efficiency of the exclusion rules depends on the location of A'* in
the forbidden region. The closer X'* is to the boundary, the more obvious is the location
of the restricted optimum and we can exclude intervals.

T,

d@F  Ts

Figure 5: approximation polygons after one approximation step

In Figure 4 for edges [T1,T5] and [Ty, Ti] we observe two cases where the exclusion rules
can be applied. The choice of edge [T3, T3] to be the interval partitioned next is obvious.
See Figure 5 for the illustration of such a partitioning.
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With a C++ implementation of this algorithm on an RS6000 workstation we tested circles
and ellipses as forbidden regions and generated location data by selecting points randomly
in the plane.

For checking the error we took a circle as forbidden region since we are able to calculate
the exact optimum in this case.

For our test we did 1000 runs, where in every run we generated 10 locations uniformly
distributed in the plane with exponentially distributed weights. For the described forbidden
regions the implementation delivered the following average results.

g-precision | average average re- | average
error lative error | number of

with respect | iterations

to the real

optimum
le-01 0.00833093 0.000200003 | 4.19923
le-02 0.000802458 | 1.84018e-05 | 6.52572
1e-03 6.57987e-05 | 1.50866e-06 | 9.35724
le-04 7.60535e-06 | 1.80115e-07 | 11.6279
le-05 7.6569e-07 1.72459e-08 | 14.2415
1e-06 6.1844e-08 1.45573e-09 | 16.7942
1le-07 7.13416e-09 | 1.63229e-10 | 19.234
1e-08 7.99617e-10 | 1.87537e-11 | 21.4575
1e-09 7.06953e-11 | 1.67641e-12 | 23.6035
le-10 8.02235e-12 | 1.86363e-13 | 25.4161

Table 1: Forbidden region is a circle with radius 4.

An average problem for e-value of 1e-05 needed 0.029 seconds of user time for the problems
discussed in Table 1.
An average problem for e-value of 1e-05 needed 0.023 seconds of user time for the problems
discussed in Table 2.
It should be noted that since the developed error bounds are worst-case bounds it is clear
that the average performance is much better. In addition, also made use of exclusion rules.
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Table 2: Forbidden region is an ellipsoid of the form a(z; — m;)? + b(za —m2)? =72, witha=1,b=2

and r = 2.

g-precision | average average

error number of

iterations
le-01 0.0500437 2.83121
le-02 0.00547363 | 4.94994
1le-03 0.000547272 | 7.01163
le-04 5.21326e-05 | 9.22261
le-05 5.63873e-06 | 11.0504
1le-06 5.45206e-07 | 13.1568
1le-07 5.17894e-08 | 15.6852
1le-08 5.63141e-09 | 17.3576
1le-09 5.46529e-10 | 19.6127
le-10 5.06091e-11 | 21.4583
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5 Conclusions

In this paper error bounds for the approximative solution of restricted planar location
problems have been developed.

Using the sandwich algorithm to approximate forbidden regions, the number of approx-
imation steps required to achieve a specified error bound for the solution is analysed. A
great advantage of the methods used, is, that the number of approximation steps required
to reach a certain quality can be given in advance. Computational results showed the
practical efficiency of the approximation method.

There are further topics under research resulting from this general solution approach. A
first interest is the consideration of mixed gauges. Obviously we arrive at very similar types
of error bounds for different block norms. Objective functions that consist of combinations
of block norms therefore should be easy to handle in terms of error bounds.

A second very fundamental research project is based on the polyhedral norm approach for
round norms. The property of polyhedral norms to be dense in the set of all norms leads to
the attempt of solving location problems with general norms by problems using polyhedral
norms.
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