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In this paper we address the issue of locating hierarchical facilities in the presence
of congestion. Two hierarchical models are presented, where lower level servers
attend requests first, and then, some of the served customers are referred to
higher level servers. In the first model, the objective is to find the minimum number
of servers and their locations that will cover a given region with a distance or time
standard. The second model is cast as a Maximal Covering Location formulation.
A heuristic procedure is then presented together with computational experience
Finally, some extensions of these models that address other types of spatial
configurations are offered.
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1.  Introduction

Systems with a hierarchical structure are common both in public and private

sectors. Examples of hierarchical structures can be found in the public health

services, where hospitals correspond to the higher level facilities, and primary

health care centers are the lower level. For example, U.S. school systems are

hierarchical in nature, being composed by primary schools (kindergarten to fifth

grade), middle schools (sixth through eight) and high schools (ninth through

twelfth grade). In the telecommunications area, there are many examples of

hierarchical networks; particularly, the star - star concentrator network is a system

with different levels of servers, being the concentrators the lower hierarchy servers

and the central node (or nodes), the higher level servers. Bank branches and

automatic teller machines are yet another example of such hierarchical structures.

In all these cases, the hierarchy can be generalized to more than two levels.

In hierarchical systems, facilities at different levels provide different types of

services. However, there is often a linkage between the different levels, which

makes impossible to solve the location problem for each level separately. For

example, in a health service, all the customers of a particular primary health center

are usually referred to the same hospital for high-level service. Especially if there

are capacity constraints, this form of providing the services establishes a link

between levels. When a high-level server provides also low-level services (as is

often the case), the problem is obviously non-separable.

Hierarchical services can be classified according to their general structure

(Narula, 1985). In a nested hierarchy, a high-level server provides also low-level

service. In a non-nested hierarchy, servers of each level offer a different service.

A coherent hierarchical system is one in which all customers of the same low-level

server are also customers of the same high-level server. A referral system, as

opposed to a non-referral system, is one in which users can not go to the higher

level server unless a low-level server refers them to it. There have been several

models for design (facility location and/or customer allocation to facilities) of

hierarchical systems. A good review of the early models is given in Church and

Eaton, (1987) and Gerrard and Church (1994). Later models include the PQ-

median model, by Serra and ReVelle (1993, 1994), which combines hierarchical

location and coherent districting, a hierarchical maximum capture model for
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location in a competitive environment, by Serra, Marianov and ReVelle (1992) and

the Coherent Covering Location Problem, by Serra (1996).

In a different context, congestion is an issue that has attracted much attention.

The reader can find the previous work in papers by Batta et al, 1988 and 1989,

Batta et al, 1985, Berman et al, 1985, Berman et al, 1987, Berman and

Mandowsky, 1986, Daskin, 1983, Batta et al, 1989, Larson and Odoni, 1981,

Marianov and ReVelle, 1994 and 1996, Marianov and Serra, 1998. However, it

has scarcely been addressed in the context of hierarchical models. A model by

Mandell (1996) considers a hierarchical (two-tiered) emergency medical service in

which two types of ambulances cover a population. Congestion happens when a

service center is not capable to serve all the simultaneous requests for service

that are made to it. Often, in order to avoid the effects of congestion, a capacity

constraint is added to the design model, reflecting the fact that each server is

capable of serving up to a certain number of requests before getting congested.

This is a deterministic approach to the problem and, depending on how this

capacity constraint is developed, the solution to the model is either a system with

an unnecessarily large number of servers, or a system that is just not capable to

attend all the demand. In other words, usual capacity constraints do not reflect the

dynamic nature of congestion, in which time has a paramount role. This dynamic

characteristic is explicitly taken into account in the two-level hierarchical models

we propose, in which the capacity-like constraints are developed from an explicit

probabilistic description of the system. Congestion is assumed to happen at both

levels of the system, and as a consequence of it, requests for service are put in a

queue, having to wait for some time before being served. In a public health

system, for example, this would mean that people traveling to the primary health

care center location, have to stand in line with more people, and when they are

referred to the hospital, they have to wait again. In a star - star concentrator

location problem (telecommunications network design problem), it means that at

every concentrator there is a queue of messages, waiting for the access to the

connection to central nodes, in which there are in turn other queues of messages

waiting to be processed. In the models we present, we develop a constraint that

sets a lower bound of α on the probability of a request being on a queue with at

most b other requests, where the value of b can be different for each level. Quality

of service could be enforced not only through constraints on the queue length, but

also through constraints on the waiting time. We chose queue length because it is
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simpler, and because perceived quality of service depends mainly on the number

of people that an arriving customer finds in line, at her/his arrival to the center.

Furthermore, queue length is an acceptable proxy for waiting time, since there is a

strong relation between both indicators.

Note that, although it could be argued that in certain cases travel time should be

added to waiting time, in this work, we do not consider travel time. Adding both

times would be appropriate in competitive environments, in which attractiveness of

the centers is the goal of the planner. In this case, the different travel modalities to

the centers should be also taken into consideration. The use of travel time would

also be appropriate in emergency contexts, in which the sum of travel plus waiting

time is a very important indicator of the effectiveness of the service. In this last

case, the server travels to the place where a call appears. In our model, the

customer travels to the center, and the formulation applies to what is called a

dictatorial environment, in which assignments are made by an authority just having

in mind to assure the best possible quality of service once the customers arrive to

the centers. This is also the reason for not considering assignment to closest

centers. Finally, considering travel time would complicate unnecessarily the

models, since we chose to use queue length instead of waiting time.

Two types of models are presented in the remainder of the paper. We first present

a Hierarchical Queuing Location Set Covering formulation, which seeks complete

coverage of the population while minimizing the number of servers. Next, we

formulate models that maximize the population covered when a limited number of

servers is sited (Hierarchical Queuing Maximal Covering Location Models).

Although the models we present in the following sections were developed for

referral systems, they can easily be applied to non-referral systems. Also, the

models can be applied to nested and to non-nested systems. In the case of nested

systems, a server providing both high-level and low-level services is modeled as a

low-level server co-located with a high-level server. In our formulations, allocation

of each demand point to a server is unique; that is, a customer does not have the

possibility of going to a different server when the queue at the assigned server is

too long, for example (“dictatorial” environment).
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After presenting the models, we offer some extensions related to the spatial

organization of the services to be located. Finally, we propose a heuristic to solve

the models, together with some computational experience.

2.  HiQ-LSCP: Hierarchical Queuing Location Set Covering Problem

The Hierarchical Queuing Location Set Covering Problem can be stated as

follows:

“Minimize the cost of locating low-level and high-level service centers in such a

way that, while all demand for both levels of service must be served by centers

located within a specified distance of its origin, the probability of a customer

standing in a line with b other customers is at most α.”

In other words, in the HiQ-LSCP model, full coverage of population is mandatory,

while the number of servers at both levels is minimized. Complete coverage of all

population in a demand node is attained when two conditions are met: First, the

demand node is allocated to servers of both levels, located within specified

standard distances from demand to low-level server, demand to high-level server

and low-level server to its high-level server. We will call this the allocation

condition. Secondly, a user, at his/her arrival to the facility, will find a line of at

most b users, with a probability of at least α, where both b and α could be possibly

different for each level and for each server. This is the quality of service condition.

Since we need allocation variables, instead of formulating the model using the

Location Set Covering Problem equations, we use the traditional set of constraints

for the plant location problem, rewritten for a two-level hierarchy. These

constraints are a mandatory allocation constraint, and constraints forcing a

demand to be served only at those places where there are servers, for both levels.

Additionally, and also for both levels of service, we add constraints for the quality

of service. With these constraints, the model is the following:

Min Z = C w K zj j
j

k k
k

∑ ∑+ (1)

,,,  with,      1
,

j
h
i

l
i

kj
ijk MkNkNjix ∈∈∈∀=∑ (2)
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xijk ≤ wj kji ,,  ∀ (3)

xijk ≤ zk kji ,,  ∀ (4)

 P[low-level server j has ≤ b people on queue] ≥ α    ∀j (5)

P[high-level server k has ≤ b people on queue] ≥ α   ∀k (6)

xijk, wj, zk = 0, 1 ∀ i,j,k (7)

where:

xijk = allocation variable that takes value 1 if population at demand node i is

allocated to a low-level server located at the low-level candidate node j,

and to a high-level server located at the high-level candidate node k, and

zero otherwise.

wj = location variable which takes value 1 if a low-level server is located at node

j, and zero otherwise,

zk = location variable that takes value 1 if a high-level server is located at node

k, and zero otherwise,
Cj = cost of opening and operating a low-level service center at node j,
Kk = cost of opening and operating a high-level service center at node k,

}|{ dlij
l
i SdjN ≤= , the set of low-level candidate nodes located within Sdl of node i,

}|{ dhik
h
i SdkN ≤= , set of high-level candidate nodes located within Sdh of node i,

}|{ lhjkj SdkM ≤= , set of high-level candidate nodes located within Slh of low-level

candidate node j.

dij = shortest network distance between nodes i and j,

Sdl = standard distance from demand to low-level server,

Sdh = standard distance from demand to high-level server,

Slh = standard distance from low-level server to its high-level server,

b = length of queue that is not to be exceeded with a predefined probability,

α = predefined probability of not exceeding the queue length b,

The objective (1) minimizes the cost of opening and operating the centers.

Constraint (2) enforces mandatory allocation of each demand node to both low

and high-level centers. Note that, in order to fulfill distance requirements and

reduce the number of variables and constraints, variable xijk needs only be
defined for j

h
i

l
i MkNkNj ∈∈∈ ,, . From now on, we assume that this is the case, so

we do not need to repeat that the subscripts belong to these sets in the remainder

of the paper. Constraints (3) and (4) assure that a demand node can not be
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allocated to a low or to a high-level candidate node unless there is a server

located at it. Constraints (5) and (6) state that the queue length must be at most b,

with probability α.

If the system is non-nested, the distance requirements establish linkages between

the locations of the servers of different levels. Hence, locations of servers of both

levels must be found jointly. In fact, in a non-nested system, if there were no

distance restrictions relating the user (or demand) to the low-level servers and to

the high-level servers, the problem could be cast as separated problems, one for

each level. In the coherent case, there is the requirement that all the demands

served by a particular low-level server must be served by the same high-level

server. In a nested system, high-level servers provide also low-level services.

These additional conditions, together with the distance requirements, make the

problem non-separable.

3. Development of the Constraints for Quality of Service

The quality of service condition is enforced through constraints (5) and (6). These

constraints must be written in an analytical form, preferentially as linear equations.

This rewriting requires knowledge of the underlying probabilistic process. We

model the system as a spatial queuing system, in which requests for service at

each demand node appear according to a Poisson process. We also assume that

service time distributes exponentially in servers at both levels.

Note that for both levels, each service center can have one or more servers. The

equations describing queuing systems are different for the cases of one server

and several servers, and so are the resulting constraints. We develop constraints

for both situations, and, as an example, write a full model for the case in which the

low-level centers have one server each and high-level centers have several

servers. Models representing other configurations can be easily formulated using

the same equations in a different order.

In this section, we use the following notation:

fi = rate of appearance of requests for service at node i,
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L
jλ = arrival rate of requests to low-level server j,
L
jµ = service rate at low-level server j,

L
j

L
j

L
j µλρ /=

H
kλ = arrival rate of requests to high-level server k,
H
kµ = service rate at high-level server k,

H
k

H
k

H
k µλρ /=

jβ = percentage of requests to low-level node j that request high-level service

ps = probability of the queuing system being in state s (s users in the system),

For the low-level M/M/1 system, requests for service at each demand node i

appear according to a Poisson process with intensity fi. Since each low-level

server is assigned to several demand nodes, the requests for service arriving at

that low-level server are the union of all the requests for service of the demand

nodes in its assignment set. Hence, they can be described as a second stochastic

process, equal to the sum of several Poisson processes. This stochastic process

can be easily shown to be also a Poisson process, with intensity λL
j equal to the

sum of the intensities of the processes at the nodes served by that server. This set

of nodes is not known before the solution of the mathematical programming

problem is obtained. However, we can use variables xijk in order to rewrite the

parameter λL
j as

∑=
ki

ijki
L
j xf

,

λ (8)

Using this definition, if a particular variable xijk is one, meaning that node i is

allocated to server j, the corresponding intensity fi will be included in the

computation of λL
j.

At server j, the exponentially distributed service time has an average service rate

of µL
j (with µL

j ≥ λL
j, otherwise the system does not reach an equilibrium). If we

assume steady state, we can use the well-known results for a M/M/1 queuing

system for each low-level server and its allocated population.

We define the state s of the system as s users in the system (either being

attended or in queue). That is, state zero corresponds to the server being idle and

state k to one user being attended by the server and k - 1 in queue. We want the

probability of a user being on a line with no more than b other people, being at

least equal to α. This requirement is equivalent to saying that the probability of no
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people at the server's place, plus the probability of one person there, plus the

probability of two persons, and so on, up to b+1 people at the server's place, must

be at most α. If we represent as ps the steady state probability of being in state s,

this is written as:

α≥+++ +110 bppp ...             (9)

Writing and solving the steady state balance equations of the M/M/1 system, we

get the following expression for the steady state probabilities [Wolff, 1989]:

sL
j

L
jsp ))(( ρρ−= 1 ,

where L
j

L
j

L
j µλρ /= . After replacing the values of ps in equation (9) and some

algebraic manipulation, we get

.2 1+ −≤ bL
j αρ

Since L
j

L
j

L
j µλρ /= ,

.2 1+ −≤ bL
j

L
j αµλ (10)

Equation (10) is equivalent to constraint (5). Using equation (8), constraint (5) is

rewritten as
 2 1+ −≤∑ bL

j
ki

ijki xf αµ
,

     ∀j, (11)

which is a linear, deterministic equivalent of constraint (5), that forces the

probability of people waiting in lines longer than b, to be of at most (1 - α). In this

constraint, α could be different for each server.

In order to find the constraints for high-level servers, we find the intensities of the

input processes, and show that these intensities follow the same kind of

distribution as the input processes to the low-level servers.

The queuing diagram of the hierarchical system is the following:
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Figure 1: Queuing diagram of the hierarchical system

In the figure, f1 to fn are the intensities of the requests for service coming from

nodes served by the low-level server j, and their sum is λL
j. The service rate of this

server is µL
j. We assume that, at each low-level server j, a percentage βj of the

requests are referred to high-level servers. This percentage is either known or

measurable. Thus, intensities β1λL
1 to βmλL

m are the rates at which particular low

- level servers pass requests to the high - level server, and their sum is λH
k. The

high - level server serves them at a rate of µH
k.

In order to determine the input intensity of the high-level server, we first recall the

equivalence property for M/M/1 and M/M/m queuing systems (Larson, Odoni,

1981).  By this property, if the system has an infinite (or large enough) queue

capacity, and an input arrival process of intensity λL
j, under steady-state

conditions (that is λL
j  < m µL

j) the departure process is also Poisson, with the

same intensity λL
j. Furthermore, the input process to high-level servers is the sum

of several departure processes for low-level servers, with only some of the events

being counted, where this selection is made at random (only requests that are

referred to the higher level are counted). By virtue of these conditions, we can

conclude that the input process to the high - level server k, λH
k, is also a Poisson

process. The service rate of high-level servers is µH
k.

Without loss of generality, and as opposed to the low - level server case, where

we assumed a M/M/1 queuing system, for the high - level server we will assume a

M/M/m server system. Thus, instead of the system having individual high - level

servers, it has service centers, each with several servers. We do it so, in order to

show how the probabilistic constraints are developed for such systems. As it will

become clear, it is possible to use any combination of one - server / multiple -

server systems for low - level / high - level facilities.
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We use the results for a M/M/m queuing system for each center and its allocated

users. Again, we define the state n of the system as n users in the system (either

being attended or in queue). In the m servers case, if the system is in state j, with j

≤ m, all j users in the system are getting attention. In state m + s, however, m

users are being attended and s in queue. We want to make the probability of a

user finding a line with no more than b other people, at least equal to α. If we

represent as pn the steady state probability of being in state n, this requirement is

written as:

α++ bmpp ...10

b users at the arrival of the next

α. Conversely, since 0 p  +.... + ∞ = 1,

α−≤+++ ∞++++ 121 ppp bmbm ...  (12)

which means that the probability of the queue being longer than b is smaller than

(1 - α). Note that the special case b = 0 does not mean that the user necessarily

finds one server available, because it may happen that all m servers at the center

are busy, but there are no users in queue. In this case, the arriving customer must

wait until one of the servers becomes idle. If free server availability is desired, that

is, at least one server free with probability α, then expression p0 + p1 +.... + pm-1

must be forced to be greater or equal to α.

By solving the steady state balance equations of the M/M/m system, we get the

following expression for the steady state probabilities [Wolff, 1989]:

mnpp nH
n ≤=       /n!0 )(ρ

mnmmpp mnnH
n >= −    ) 0 !/()(ρ

1

1

0
0

1

−

−

=



















+
−

= ∑
m

n

nH

H

mH

n
m

m

p
!

)(

!)(

)( ρ
ρ

ρ
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Where ρH = λH/µH. Although these parameters are specific to each server center k,

and for high-level servers, for the sake of simplicity we will not use any subscript

(denoting node) or superscript (denoting server level) for the time being. With

these expressions for the steady state probabilities, equation (12) becomes:

α
ρ

−≤





∑

∞=

++=

1
1

0

nn

bmn

m

mm
mp

!
,

or

α
ρρ

−≤















−






∑ ∑

∞

=

+

=

1
0 0

0

n

bm

n

nnm

mmm
mp

!
.

Since ρ/m ≤ 1, the summations in parentheses converge. Recalling that these

summations can be written in a well known, simpler form, we get

α
ρ

ρ
ρ

ρ
ρ

−≤



















−

























+
−

++−

−

=
∑ 1

11

11

1

0

m

m
nm

m
m
m

bm

m

n

nmm

!!)(!
.

After some algebraic manipulation, this equation becomes

αρ −
≥

−
−++

−

=
∑ 1

11
1

1

0
nbm

m

n

b

n
mmnm

!

!)(
(13)

Since ρ = λ/µ, and since λ is a function of the variables xijk, equation (13) can be

also written as a function of variables xijk, becoming the deterministic equivalent of

equation (6).

It is intuitively easy to see that, for any fixed value of α, the value of the left hand

side of equation (13) can be made large enough to make the equation hold, by

making ρ small enough, because its exponent is always positive. Manipulating

variables xijk, (making as many of them equal to zero as needed) decreases the

value of variable ρ. Furthermore, for any value of α there must exist a value ρα of ρ
which makes equation (13) hold as equality, as well as a range of values of ρ such

that equation (13) holds as a strict inequality.

Although it is the deterministic equivalent of equation (6), equation (13) can not be

used in a linear model, because of its non-linearity.  However, it is easy to see

(and easy to show, by differentiating the left-hand side with respect to ρ) that its

left-hand side (LHS) is strictly decreasing with increasing ρ, so we use this

characteristic to find a linear equivalent to it.
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Since the left-hand side is decreasing, there must exist a value ρα of ρ that makes

equation (13) hold as equality for a given value of α. Since the LHS strictly

increases when ρ decreases, for any value of ρ ≤ ρα, equation (13) also holds.

Once the value of α is given, the value of ρα can be found by using any numeric

root - finding technique (Newton methods, for example) on equation (13), written

as an equality, and equation

 αρρ ≤ (14)

becomes the new deterministic, linear equivalent of equation (13). This procedure

is repeated for each service center k, and a value ραk found for each one,

obtaining the set of equations (where we now use also superscripts to mean that

the equation applies to high-level servers)

 kH
k

H
k ∀≤           αρρ

Since ρH
k = λH

k/µH
k,

kH
k

H
k

H
k ∀≤           αρµλ

Since λH
k is the intensity of a sum of several, selectively counted processes, it

may be rewritten as a function of the intensities of these processes:

∑
=

=
M

j

L
jj

H
k

1

λβλ ,

where the sum is over all the M low - level servers assigned to the high - level

server k. As before, this sum can be written as

∑=
ji

ijkij
H
k xf

,

βλ . (15)

Finally, the constraint is written as

H
k

H
k

ji
ijkij xf αρµβ   ≤∑

,

       ∀k. (16)
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The complete model with the constraints for quality of service is the following:

Min Z = C w K zj j
j

k k
k

∑ ∑+ (1)

kjix
kj

ijk ,,
,

       1 ∀=∑  (2)

xijk ≤ wj kji ,,  ∀  (3)

xijk ≤ zk kji ,,∀  (4)

 2 1+ −≤∑ bL
j

ki
ijki xf αµ

,

 , ∀j (11)

H
k

H
k

ji
ijkij xf αρµβ   ≤∑

,

∀ k, (16)

xijk, wj, zk = 0, 1 ∀ i,j,k (7)

4. HiQ-MCLP: Hierarchical Queuing Maximum Covering Location Models

For the case in which serving all the population is not mandatory, we formulate the

HiQ-MCLP model, that can be stated as follows:

“Maximize population covered by a two-level service, where a customer is

considered as covered if she/he obtains low-level and high-level service within a

pre-specified distance of her/his origin, not having to wait in a line with more than

b other customers”

The difference between HiQ-LSCP and HiQ-MCLP is that in the later there is no

mandatory coverage of all demands, but maximization of demand coverage is

sought, when a predetermined number of servers is sited. The models for HiQ-

LSCP and HiQ-MCLP differ in three constraints and the objective. In the first

place, the mandatory allocation constraint (2) is substituted by a constraint that

states that a demand node can not be allocated to more than one low-level and

one high-level server. Secondly, the HiQ-MCLP includes constraints on the

number of centers of both levels that can be located. Finally, the objective

maximizes the coverage.

The Hierarchical Queuing Maximum Covering Location Model is the following:
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Max Z = ∑∑∑
i j k

ijki xa (17)

1
,

≤∑
kj

ijkx kji ,,       ∀ (18)

xijk ≤ wj kji ,,       ∀  (3)

xijk ≤ zk kji ,,∀      (4)
2 1+ −≤∑ bL

j
ki

ijki xf αµ
,

 , ∀ j (11)

H
k

H
k

ji
ijkij xf αρµβ   ≤∑

,

∀ k, (16)

l
j

j Pw =∑ (19)

h
k

k Pz =∑ (20)

xijk, wj, zk = 0, 1 ∀ i,j,k (7)

where the new parameters are:

ai = the population at demand node i.,

Pl = the number of low-level centers to be located

Ph = the number of high-level servers to be located

In this model, the objective (17) maximizes the population (or customers) at node i

receiving both low and high-level service. The new constraints are (18), (19) and

(20). As stated above, constraint (18), which forces each demand to be assigned

to at most one server at each level, replaces the mandatory coverage constraint

(2), while constraints (19) and (20) set the number of centers of each level to be

sited.

Constraints for Nested Systems

The formulations presented in preceding sections can be applied directly to nested

systems, when modeled as co-located high-level and low-level servers. However,

it is convenient to formulate the models in a form that makes explicit the low-level

service provided by the high-level servers. This is achieved by modifying

constraint (3) respectively to

xijk ≤ wj + zj ∀ i,j,k (3’)
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Furthermore, in nested systems there is often an additional requirement:

customers attending a high-level site must receive both types of services there. An

additional constraint must be added to reflect this requirement. This additional

constraint is:
jizx jijj ,∀=             (21)

Note that, in this case, high-level centers count also as low-level centers.

5. Extensions

Separate coverage for each level

Note that models could be written for separate coverage by both levels. This is

done by replacing variables xijk with new variables xij, relating demand and low-

level servers, and vik, relating demand and high-level servers. In this case,

separate objectives could be written for coverage at each level. If the system is

nested and If coverage is defined separately for each level, there is no need to

force coverage of both levels at the same server. The model is the following:

Max Z = ∑∑∑∑ +
j k

ikiH
i j

ijiL vaxa ωω (22)

1≤∑
j

ijx ∀ i (23)

1≤∑
k

ikv ∀ i (24)

xij ≤ wj +zj ∀ i,j (25)

vik ≤ zk ∀ i,k (26)
 2 1+ −≤∑ bL

j
i

iji xf αµ  , ∀j (27)

∑ ≤
i

k
H
kikii vf αρµγ ∀k (28)

l
j

j Pw =∑ (29)

h
k

k Pz =∑ (30)

xij, vik, wj, zk = 0, 1 ∀ i,j,k (31)
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Note that we need to define a new parameter γi, the percentage of the customers

from node i that request high-level service. A reasonable estimator for this

parameter is βj, when node i is allocated to low-level server j. Note that the

problem is still non-separable because of constraint (25). Parameters ωl and ωh are

weights on each objective. Therefore, the formulation is cast as a multiobjective

problem.

Coherent Systems

So far it has been assumed that the hierarchical organization is not coherent, as

defined in Serra and ReVelle (1991). In a coherent hierarchical system, all

demands allocated to a particular low-lever server are also assigned to the same

high-level server (coherent). In order to enforce the coherence requirement, we

define a new variable yjk, as being equal to 1 if demands assigned to low - level

server j, are also assigned to high - level server k. In other words, it relates a low -

level server to a high - level server. Also, for nested systems, we need the new

constraint:

jzy jjj ∀=          (32)

forcing customers to receive both levels of service at the high-level server. The

new formulation is the following:

Min Z = C w K zj j
j

k k
k

∑ ∑+ (1)

x ijk
j k,
∑ = 1 ∀ i (2)

xijk ≤ yjk ∀ i,j,k (33)

yjk ≤ zk ∀ j,k (34)

yjk ≤ wj ∀ j,k (35)
y jk

k
∑ = 1 ∀ j (36)

2 1+ −≤∑ bL
j

ki
ijki xf αµ

,

 , ∀j (11)

H
k

H
k

ji
ijkij xf αρµβ   ≤∑

,

∀ k, (16)

xijk, wj, zk, yjk = 0, 1 ∀ i,j,k (37)
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Objective (1) and constraint (2) are the same as before. Constraint (33) states that

it is not possible for a demand to be assigned both to low - level server j and high -

level server k, unless they are related by a variable yj. The meaning of constraints

(34) and (35) is that candidate nodes of both levels can not be related unless

there are servers at both of them. Constraint (36) forces all low - level servers to

relate to one and only one high - level server. By virtue of this constraint, together

with constraint (33), all demands assigned to a low - level server are assigned to

the same high - level server. All remaining constraints are the same as before.

In order to reduce the number of constraints, constraint (33) might be replaced by

x I yijk
i

jk∑ ≤| | ∀ j, k. (38)

where I is the total number of demand nodes. However, this constraint is less tight,

and if solved as a relaxed linear programming problem, it could lead to the

occurrence of more fractional integer-defined variables in the solution.

For coherent systems, the maximal covering model is:

Max Z = ∑∑∑
i j k

ijki xa (17)

1
,

≤∑
kj

ijkx ∀ i (18)

xijk ≤ yjk ∀ i,j,k (33)

yjk ≤ zk ∀ j,k (34)

yjk ≤ wj ∀ j,k (35)

yjj = zj ∀ j (32)
1≤∑

k
jky ∀ j (39)

2 1+ −≤∑ bL
j

ki
ijki xf αµ

,

 , ∀j (11)

H
k

H
k

ji
ijkij xf αρµβ   ≤∑

,

∀ k, (16)

l
j

j Pw =∑ (19)

h
k

k Pz =∑ (20)

xijk, wj, zk, yjk = 0, 1 ∀ i,j,k (37)
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Minimum distances

Finally, a secondary objective could be added to these models, which minimizes

the distances from the demand to both levels of servers, and the distances

between the two levels of servers for each demand. This objective has the form:

min( )
, , , , , ,

a d x a d x a d xi ij ijk
i j k

i ik ijk
i j k

i jk ijk
i j k

∑ ∑ ∑+ + ,

where ai is the population at demand node i.

6. A Heuristic Procedure to Solve the Models

The models presented in the previous section have the common characteristic of

having thousands of variables and constraints for relatively small networks.

Therefore, the use of traditional optimal solution methods such as linear

programming plus branch and bound can become very burdensome in terms of

computing times and for relatively large networks these methods cannot be

applied. On the other hand, the deterministic constraints create an additional

problem in finding integer solutions since the specified parameters are not equal

to 0 or 1. This implies that the number of branches is likely to increase

dramatically (see ReVelle, 1993, on Integer Friendly Programming).

Therefore, it is necessary to develop some alternative solution procedures to solve

these problems.  In this section we offer a bi-level heuristic for the Nested

Hierarchical Queuing Maximal Covering Location Model (HiQ-MCLP) that has two

phases: a construction phase and an improvement phase.

In the first phase (construction phase), a greedy adding procedure with random

substitution (GRASP) is used to find the facilities of the first hierarchical level,

where in each iteration the vertex with the best objective value for the first level is

added to the set of locations. Once these locations are found, complete

enumeration is used to find the optimal locations of the second level. This

procedure is feasible even for large networks, since the model is nested and

therefore candidate nodes for the second level facilities are restricted to the actual
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first level facilities. In each instance of the enumeration procedure, the overall

objective is computed and the best solution is stored.

In the second phase, the heuristic will try to find a better solution.  For each one-

opt exchange of facilities at the first level, complete enumeration is used again to

find the locations at the second level and in each instance of the enumeration the

objective is computed and the best solution for both levels is stored.  Observe that

for each exchange of the first level facilities, the locations of the second level are

completely recalculated. In other words, there is no “memory” concerning the

locations of second level facilities.

If the relocation of one first level facility and the new locations of the second level

facilities has provided a set of positions that is better than before the one-opt

trade, it will keep the new set of locations as the best so far. Otherwise, the

procedure will ignore the relocation and will restore the previous solution.  The

one-opt trade will be done for all nodes and first level facilities and repeated until

no cycle results in an improvement.

Since the VS phase only considers vertices that improve the objective, the

heuristic may end in a local optimum. In order to avoid being trapped in a local

optimum, a tabu search procedure is developed, similar to the one presented by

Benati and Laporte (1994) (TABU phase).  In essence, this tabu search explores a

part of the solution space by repeatedly examining all neighbors of the current

solution, and moving to the best neighbor even if this causes the objective function

to deteriorate. To avoid cycling, recently examined solutions are inserted in a

constantly updated tabu list.  At each iteration, a first level facility is selected, the

m vertices that are closest to it are considered candidate nodes for it.  For each of

the candidates the objective is computed (using the same procedure as in the VS

procedure, that is, finding the best second-level facilities with complete

enumeration) and the one that is not declared tabu with the highest objective is

chosen.  If the value of the new solution improves the objective, the new solution is

stored as the best one, and the vertex where the facility has moved to is declared

tabu for t iterations.  Otherwise, the new solution is still implemented but it is not

considered as the best solution so far. If all neighbor vertices are declared tabu,

then the one with the lowest tabu tag is chosen as the new solution. The number

of one-opt trades needs to be fixed a priori.
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Once the number of one-opt trades is reached, the tabu procedure is restarted

using as initial solution the pl nodes that were least visited in the previous tabu

phase. This is now as the diversification step.

As mentioned before, this heuristic is useful when locating nested hierarchical

facilities using a maximal covering approach.  If services are non-nested, the use

of complete enumeration to find the locations for the second level facilities can be

very burdensome in terms of computing time, since number of candidate nodes

becomes much larger. In this case, we can also use the vertex substitution

heuristic in the second level together with the tabu phase.

If we are solving a Hierarchical Queuing Location Set Covering Problem (HiQ-

LSCP), we do not know how many facilities we are going to locate. Therefore, the

heuristic has to be modified in the following way: Solve a standard Location Set

Covering Problem (LSCP) in each level separately. This will set a lower bound on

the number of facilities needed to cover the population at the first level and at the

second level, pl
* and ph

* respectively.  Then the heuristic can be used to find a

solution with this values of pl
* and ph.  If a feasible solution is not found for the first

level, meaning that it is not possible to serve all the demand with adequate quality

of service, pl
* is increased in one unit (pl

* = pl
* +1) and the model is solved again.

In a similar matter, if no feasible solution for the second level is found, the value of

ph
* is increased in one unit. This procedure is applied until a feasible solution is

found for both levels.

7. Computational Experience

In this section the heuristic described above is used to solve the nested HiQ-

MCLP.  First, in order to test the performance of the heuristic, 1000 randomly

generated networks were used with different values in some of the parameters.

The networks were generated following the method described by Cordeau et al

(1997) to obtain networks with the anisotropic characteristics that normally exist in

real geographical spaces.  Here, φ is a constant equal to 0.05, and n and t are

given as input data (n is the number of nodes and t represents a small number

between 4 and 8, depending on the number of nodes):



22

1. Randomly generate t centers in the [-50,50]2 square according to a continuous

uniform distribution.

2. Set i := 1.

3. While i ≤ n, do:

• Randomly generate a vertex vi in the [-100,100]2 square according to a

continuous uniform distribution and compute its nearest distance d to the

nearest center.

• Let u be a number randomly chosen in the [0,1] interval according to a

continuous uniform distribution.  If u ≤ e-φd , set  i:= i + 1.  Otherwise, delete vi.

Each vertex is as the same time a demand node and a potential facility site.  First

level facilities have only one server, while second level facilities have m servers

As for the demand at each node, this one was computed using a random uniform

distribution within the range [90,110].  For each level the coverage distance Sd
was computed as follows:

Sd =DISTMAX/(2*np)

where  DISTMAX is the maximum distance between any 2 nodes of the network,

and np is the number of facilities to locate.

For the Tabu phase, the number of iterations was arbitrarily set to the number of

nodes multiplied by the number of first level facilities to locate.  The tabu tag was

set to a random value within the [4,8] interval.  For each potential facility, the

neighbors were chosen as the s closest vertices, s randomly chosen between 4

and 8.

For each run, both the heuristic presented and complete enumeration were used

to obtain solutions and test the heuristic.

Results are presented in Table 1.  The first column, labeled as ND, corresponds to

the number of nodes in the network.  The number of facilities to locate in each

level is presented in the second column (np1, np2).  Then, the third column sets

the value of α.  The rest of the parameters was set as follows:
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Parameter Value

Intensity factor

Max number of people waiting in the first level

Max number of people waiting in the second level

Service rate at the first level

Service rate at the second level

Number of centers in the second level

Proportion of referral

0,00162

2

2

4

2

2

45%

For each ND, np1, np2 and α 100 networks were generated.  In the fourth, fifth

and sixth columns the number of optimal solution that were found in each of the

phases of the algorithm is presented.  The next column shows the total number of

non-optimal solutions.  Next, the average and maximum deviations from optimality

are presented. Finally, computer times for both the complete enumeration

procedure and the heuristic are shown.

The heuristic achieved relatively good results in obtaining optimal solutions, since

only 6% of the total runs were non-optimal.  The largest deviation from optimality

was equal to 9.9% and the average deviation ranged between 0.3% and 3.3%.

An example

The heuristic was also used in the well-known Swain’s 55-node test network

(Swain, 1974, see Appendix).  The parameters used were set as follows:

Parameter Value

Number of centers in the first level

Number of centers in the second level

Intensity factor

Service rate at the first level

Service rate at the second level

Proportion of referral

4

2

0,00166

4

2

45%

Results are presented in Table 2.  In the first column the maximum number of

customers waiting in line for each level is presented.  The second column sets the

α reliability level.  The final population covered is shown in the third column.
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Then, for each level, the final locations are presented together with the total

frequency in parenthesis (left hand side of the deterministic constraint) and the

right hand side of this equation.  As expected, as the desired maximum number of

customers waiting in line is reduced, and as the α reliability level is increased, the

total population covered decreases, since the deterministic constraints become

tighter.
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Table 1:  Computational Results.

# of opt solutions found Comp. Time

ND

np1,

np2 αα Grasp T&B Tabu

# of
non opt

Avg.

Dev

Max.

Dev Enum Heur

30 3,2 85%

95%

20

4

45

44

34

52

1

0

0.3%

0.0%

0.3 %

0.0%

0.006

0.006

0.011

0.012

4,2 85%

95%

10

20

70

50

19

30

0

0

2.1%

0%

2,1%

0%

0.033

0.035

0.039

0.038

40 4,2 85%

95%

12

11

38

42

42

37

8

10

2.6%

3.0%

9.9%

7.8%

1.13

1.16

0.19

0.18

5,3 85%

95%

23

17

33

31

33

43

11

9

1.2%

3.3%

4.9%

9.8%

16.01

17.02

0.57

0.58

50 4,2 85%

95%

15

14

38

38

38

36

9

12

2.2%

2.4%

8.1%

9.8%

3.40

3.56

0.27

0.25
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Table 2: Example on a 55-node network

Level 1 Level 2

NB1,NB2 αα
Pop

Cov Locations (cap) RHS Locations RHS

3,3

3,3

3,3

2,2

3,3

1,1

85%

90%

95%

95%

99%

95%

2750

2744

2703

2671

2504

1768

8(2.20) 10(0.93) 17(0.81) 36(0,84)

4(2.09) 19(0.94) 36(0.91) 38(0.62)

1(1.85) 18(0.94) 33(0.82) 41(0.82)

29(1.15) 32(0.68) 41(1.12) 44(1.42)

18(0.94) 41(1.04) 44(1.20) 45(0.92)

11(0.98) 13(0.93) 25(0.64) 55(0.39)

2,73

2.52

2.20

1.89

1.59

1.47

10(1.47) 17(0.90)

36(1.37) 38(1.01)

33(1.00) 41(1.48)

32(0.97) 41(1.53)

41(1.21) 45(1.19)

25(1.38) 55(0.86)

2.84

2.64

2.33

2.08

1.76

1.74


