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Abstract

We consider multiserver retrial queues in which the time between two successive repeated attempts is independent of
the number of customers applying for service. We study a Markovian model where each arriving customer finding any
free server either enters service or leaves the service area and joins a pool of unsatisfied customers called ‘orbit’. This
system is analyzed as a quasi-birth-and-death (QBD) process and its main performance characteristics are efficiently

computed. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a multiserver queueing system in
which primary customers arrive according to a
Poisson stream of rate 4 > 0. The service facility
consists of ¢ identical servers and customer service
times are independent and exponentially distrib-
uted with mean 1/u. An arriving customer finding
one or more servers idle either obtains service
immediately (with probability p) or joins the orbit
(with probability ¢ = 1 — p). Customers who find
all servers busy go directly to the orbit. The re-
covery probability p allows us to consider simul-
taneously two possibilities described in the existing
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literature. Most papers [2,9,13,14,24,25] consider
the case p = 1 where customers have direct access
to the idle servers. On the other hand, Neuts and
Ramalhoto [20] and Neuts and Rao [21] introduce
retrial queues where p = 0, i.e., arriving customers
always enter the orbit and start generating requests
for service. Pearce [22] treats both models in a
unified way by introducing the recovery proba-
bility p.

The pioneering studies of retrial queues
[9,13,25] present the concept of ‘retrial time’ as an
alternative to the classical models of telephone
systems, queues with losses, that do not take re-
peated calls into account. In this context each
blocked call generates a stream of repeated re-
quests independently of the rest of customers in
the retrial group. Thus, in the classical retrial
policy the intervals between successive repeated
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attempts are exponentially distributed with rate
o; = io, when the orbit size is i. However, recent
applications to communication protocols and local
area networks show that there are queueing situ-
ations in which the retrial rate is independent of
the number of customers (if any) in orbit, i.e., the
retrial rate is o; = a(1 — dy;), where 0, denotes
Kronecker delta. This constant retrial policy was
introduced by Fayolle [14], who modeled a tele-
phone exchange system. Later it was used for the
stability of the ALOHA protocol [7] and unslotted
CSMA/CD (Carrier Sense Multiple Access with
Collision Detection) protocol [5] in communica-
tion systems. Artalejo and Goémez-Corral [3]
combined both policies by defining a linear retrial
policy with retrial rate o; = a(1 — dp;) + ia.
Multiserver retrial queues have been analyzed
under the classical retrial policy. The equilibrium
distribution of the system state is expressed in
contour integrals [9] or as limits of extended con-
tinued fractions [22]. From an analytical point of
view, both solutions are significant attempts but
practical implementation requires a variety of ap-
proximations and truncated methods. The multi-
server retrial queue with retrial rate o; = io can be
viewed as an LDQBD process [4]. The main fea-
ture of its infinitesimal generator is the spatial
heterogeneity caused by the transitions due to
successful retrials. That lack of homogeneity ex-
plains the analytical difficulty of retrial queues.
Several interesting papers are devoted to the ap-
proximation of the initial system. Wilkinson [25]
truncates the capacity of the orbit at some value K.
The resulting finite system can be solved to get the
equilibrium distribution and the main perfor-
mance measures. However, a direct truncation
implies a large choice for K, when the level of
congestion is high. This drawback can be avoided
by using more sophisticated methods of truncation
[24] or by imposing a simplifying assumption that
yields an auxiliary queueing model with an infinite
system state and a more appropriate infinitesimal
generator [13,21]. For instance, Neuts and Rao
[21] proposed an algorithmic solution based on an
approximating multiserver queue with retrial rate
o; = min(i,N)o for any sufficiently large number
N. This approximation leads to an infinitesimal
generator which is homogeneous from the level N

up. Then the queueing process is a level-indepen-
dent quasi-birth-and-death (QBD) process with a
large number of boundary states which the general
theory of Neuts [18] can be applied.

Now we turn to multiserver retrial queues op-
erating under the constant retrial policy. Since
Fayolle [14], there has been a rapid growth in the
literature [1,5-7,16]. This retrial policy is a useful
device for modelling the retrial phenomenon in
communication and computer networks where
repeated attempts are made by processor units
independently of the number of messages stored in
each node of the network. An examination of the
literature shows that only the case c<3 and p =1
has been studied. In the present paper, we use
matrix-geometric methods for the M /M /c retrial
queue with retrial rate o; = (1 — dy;) and service
option upon arrival with probability p.

Some recent papers discuss related work. Falin
and Artalejo [12] study a different multiserver re-
trial queue in which customers join a classical
waiting line or the orbit depending on the number
of customers in the queue. Choi et al. [6] exploit a
retrial policy independent of the orbit size to
consider an M/M/1 queue with general retrial
times. Finally, there are a number of papers
[8,10,11] devoted to algorithmic methods for re-
trial queues including the analysis of models with
general interarrival and interrepetition times of the
types BMAP, PH, etc.

The remainder of the paper is organized as
follows. We summarize the main results for the
case ¢ <3 and p = 1 in Section 2. In Section 3, we
use results from the classical theory for QBD
processes as a starting point for the performance
analysis of the M /M /c retrial queue with constant
retrial discipline. The optimization of the retrial
rate is investigated in Section 4. Section 5 deals
with the case of direct access to the service facility
in which some algorithmic simplifications are
present. Finally, conclusions are given in Section 6.

2. Thecase c<3and p =1

We briefly review the main results for Marko-
vian retrial queues with direct access to the server
facility and a small number of servers ¢ < 3. We
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focus on the existence and computation of the
stationary distribution.

The system state at time ¢ can be described by
means of a bivariate process X () = (N(¢), C(z)),
where N (¢) is the number of customers in orbit and
C(¢) is the number of busy servers. Note that
{X(¢); t = 0} is an irreducible Markovian process
with the lattice semi-strip S =7, x {0,...,c} as
the state space. The state space and transitions are
shown in Fig. 1 for the case ¢ = 3.

We define the limiting distribution

Py = lim P{(N(1),C(1)) = (i,./)},  (i.)) €5,
(2.1)

which for a standard Markov chain always exists.
First, we consider the case ¢ = 1. Following
Fayolle [14] we easily find that

A

= (1 — ! =0 2.2
i—‘rU(l _501‘)( pl)p17 1 ) ( )

A )
Rl :;(1 _pl)plla

Py

i>0, (2.3)

where p, = A(A+ ¢)(uo)”". The system is stable if
and only if p, < 1.

For the case ¢ = 2, Artalejo [1] gives the fol-
lowing formulas:
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Fig. 1. State space and transitions.
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Now the necessary and sufficient condition for
stability is p, <1, where p, = A(1+0)’(2uo
(A+ pu+0))"". Note that when ¢ <2 the limiting
probabilities are formulas of ‘geometric’ type.
Thus, explicit expressions for the factorial mo-
ments of the number of customers in orbit can be
easily given (see [1]).

If we compare these formulas with the corre-
sponding expressions for the classical retrial pol-
icy, we observe that the constant retrial policy
yields simpler analytical solutions. In fact, the so-
lution for the classical case is given in terms of
hypergeometric functions [13] instead of geometric
progressions. However, the stability condition for
the M /M /c queue with ¢; = io is A < cp, i.e., the
stability condition does not depend on the retrial
parameter and agrees with the model without re-
peated attempts. That result is intuitive as the
lengths of the idle server intervals tend to zero as
i — oco. The stability conditions for models with
constant retrial discipline are more interesting. All
system parameters A, u, ¢ and ¢ appear in the
stability condition. In Section 3, we prove that the
system with ¢ channels is stable if and only if

J+a 1 /i+a\ <1 [/i+a)\"
- - . 28
UC!(N)<Zk!<ﬂ> 28)

k=0

For ¢<2 the stationary distribution {Py;
(i,7/) € S} is such that the partial sequences
{P;; i = 0} satisfy a system of equations of ‘birth-
and-death’ type. When ¢ > 2, that birth-and-death
structure is not preserved. Gomez-Corral and
Ramalhoto [16] develop a recursive procedure for
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the case ¢ = 3. Under the stability condition (2.8),
the stationary distribution is reduced to finding the
probabilities Py and Py, satisfying

Py = llifll)lc Eipoo/fn (2.9)

Py = &Py — &P, 022, (2.10)

where the coefficients (@,E,.) can be numerically
computed.

3. The M /M /c queue with constant retrial rate and
recovery factor p

We study the stationary characteristics of the
retrial queue of type M/M/c with retrial rate
a; = o(1 — J¢;) and recovery factor p, described in
Section 1. This model is a QBD process on the state
space S = Z, x {0,...,c}. The system state at time
t consists of the number of customers in orbit and
the number of busy servers as we defined in Section
2. Its infinitesimal generator Q is of the form

By 49 0 0 0
Az Al A() 0 0
0 0 A4, A A4

where all blocks are square matrices of order ¢ + 1.
In the case ¢ = 3, the matrices 4y, A, and 4, are
given by

Jg 0 0 0
{0 2 0 0
=109 0 4 0
0O 0 0 1
0 ¢ 0 O
0 0 ¢ O
L=10 00 o)
0 0 0 O
A=
—(A+0) p 0 0
u  —(At+p+o) Ap 0
0 2u —(A+2u+0) Ap
0 0 3u —(A+3p)

(3.2)

The matrix By is similar to 4; but with the re-
trial rate o omitted. Note that the matrix
A = Ay + A, + A, is the generator of the M /M /c/c
loss system with arrival rate Ap + ¢ and service rate
u. The stationary probability vector of 4 is given
by

-1
<1 (ip+ao\

RZ<ZE< § ))
k=0 (3.3)
lxlp—i—o 1 (ip+a\*
PR p :

The general theory in [18, Theorem 3.1.1, pp.
82], states that:

(1) mn4,e > mApe is the necessary and sufficient
condition for stability. e denotes a column vector
with all its elements equal to 1.

(i1) the stationary probability vector x, parti-
tioned as x = (X, Xj,...), of Q is given by

XO(BO + RA2) = 0,
X, =Xk, i>1, (3.4)
xo(I —R) 'e=1,

where R is the minimal non-negative solution to
the matrix equation R?4, + RA; + A4y = 0 and x;,
i = 0, are row vectors of dimension ¢ + 1.

In practice, we would like to understand the
influence of the system parameters on the main
performance characteristics. For example, to plot
any system descriptor versus ¢ we need to know
the range of ¢ which satisfies the stability condi-
tion. This basic question cannot be solved from the
general inequality nd,e > nAdpe. Alternatively, af-
ter some algebra, we reexpress the stability con-
dition as

p+o [(Ip+a\©
c! u

(3.5)

c (/lp+0_>k
k=0 " H

We may always normalize by setting cu = 1.
A is then the traffic intensity of the classical
M/M/ec.

< (0 —1q)

| —
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We now fix A. Then, as intuition tells us, there
should be a stability abscissa ¢*(4, ¢, p) such that
the stability condition is fulfilled if and only if
o> o*(4,¢,p).

After some elementary algebra Eq. (3.5) re-
duces to finding the unique root u*(4,¢,p) of the
polynomial f(u) = ;_ ("' /k!)(k — Ac)u* in the
interval (/p, 00). The coefficients of f(u) have only
one variation of sign so the uniqueness of
u*(4,¢,p) follows trivially. Finally, the critical o
value is given by o*(4,¢,p) = u*(4,¢,p) — Ap.

On the other hand, by fixing ¢ we expect to find
a value A*(o,c,p) such that condition (3.5) is
equivalent to A < A*(a, ¢, p). By similar arguments
we may show that

— ¢ [ B
z(a,c,O):ZEw Zﬁa (3.6)
k=0 ° k=0 "

when p = 0. If p # 0, we first compute the unique
root u*(a, ¢, p) in the interval (o, 00) of the polyno-
mial g(u) = >";_, (k) (co — kq)u* — (¢ /e yu.
Then we have A*(g,¢,p) = (u*(0,c,p) —a)/p.

The stability abscissa ¢*(4,c,p) (respectively,
/*(o,¢,p)) determines the domain of ¢ (respec-
tively, 1) when the rest of parameters are fixed.
Thus, the computation of the stability abscissa is
the first step of any numerical investigation.

Figs. 2-7 illustrate the effect on ¢*(4,¢,p) and
2*(o,c,p) of varying system parameters. In Figs. 2,
4 and 6 the value ¢*(4,¢,p) is plotted versus the
arrival rate 2. We have presented three curves in
each figure which correspond to ¢=5, 15 and 30.
In addition, the three figures correspond to the
recovery probabilities p=0, 0.5 and 1, respec-

20

c=25
15
10
5 J c=15
c =30
0
0.2 0.4 0.6 0.8 1 )

Fig. 2. 6*(/,¢,p) versus A. Case p=0, ¢ =5, 15, 30.

r c =30
0.8 c =15
c=35
0.6
0.4
0.2
0

2.5 5 7.5 10 12.5 15 17.5 20 o©

Fig. 3. A*(o,¢,p) versus 0. Case p =0, ¢ =5, 15, 30.
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Fig. 4. 6*(4,¢,p) versus 4. Case p = 0.5, ¢ = 5, 15, 30.
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0.6
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0.2

0 ]

2.5 5 7.5 10 12.5 15 17.5 20 ¢

Fig. 5. A*(o,¢,p) versus a. Case p=0.5, ¢ =5, 15, 30.

tively. We notice that, 1 < cu is a necessary con-
dition for the stability and cu=1, so the
parameter A lies in (0,1). The curves, which in
decreasing order correspond to higher number of
servers, show that, as is to be expected, o*(4, ¢, p)
increases with increasing arrival rate 4 and de-
creases with increasing ¢. A comparison among the
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Fig. 6. 6*(4,¢,p) versus A. Case p=1, ¢ =5, 15, 30.
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Fig. 7. 1*(o,¢,p) versus a. Case p =1, ¢ = 5, 15, 30.

three figures also shows that ¢*(4, ¢, p) is decreas-
ing as a function of p.

On the other hand, Figs. 3, 5 and 7 show the
influence of o, ¢ and p on 1*(o,c,p). Now the
lowest curve of each figure corresponds to the case
¢ =15. We observe that 1"(o,c,p) increases with
increasing parameters o, ¢ and p.

We are now ready to compute the probability
vector x. There is extensive research on algorithms
for computing the equilibrium distribution x. In
particular, Latouche and Ramaswani [17] devel-
oped an iterative algorithm with a logarithmic re-
duction over the number of iterations of earlier
algorithms. These authors mainly focused on dis-
crete time but they also showed how the algorithm
can be adapted for continuous time. Recently
Bright and Taylor [4] extended the algorithm to
cover the case of level-dependent QBD processes.
For the sake of completeness, we next adapt the
algorithm given in [4] to calculate the matrix R
corresponding to a QBD of form (3.1).

Algorithm.
i:=0;
U:=do(—4,)";
D := Az(—Al)_l;
S:=U,;
1 :.=1

repeat
i=i+1;
11 := DII;
Qo :=U%
0, :=UD+ DU,
0, = D%
U= QI - 01);
D=0 -Q) "
S =8S+UI

until (UIT)
R :=S.

< &

max

That algorithm provides a stable recursive
method for computing the matrix R. Once R is
known, the stationary distribution x is readily
obtained from (3.4).

It should be pointed out that the case of direct
access to the service facility leads to a special
matrix structure which will be exploited in detail in
Section 5 to get an alternative way for the com-
putation of R.

Once the vector x is computed, a variety of
other performance characteristics may be routinely
obtained. Some of these are:

1. The overall rate of retrials

ot :JZ > Py =o(1 - xpe). (3.7)

=o0] — a(xoR(I - R)fl)c
:)q+,1p(x0(1—R) 1)( (3.8)

3. The fraction of retrials that are successful
.0
f=—=.

- *
0]
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4. The blocking probability

P :ip,c = (xo (I—R) ) (3.10)

c
=l

5. The mean number of busy servers

Y = ZZ] ' =xo(I —R)”'

where a = (0,1,...,¢)".
6. The factorial moments of the number of custom-
ers in orbit

. (3.11)

:\»

N* = k!, xoRF(I —R) ", k>1. (3.12)
7. The mean busy period

=" ((xo);1 - 1). (3.13)

The point is that all main performance mea-
sures can be directly expressed in terms of x, and
R. Since the stationary analysis of our queueing
system with constant retrial policy does not re-
quire the truncation of the orbit, the above for-
mulas can be considered as closed form
expressions.

performance measures. To that end, we show in
Table 1 the influence of A and p on the mean
number of customers in orbit N, and the expected
amount of time in a cycle during which C(¢) = ¢,
E[T.]. From the theory of regenerative processes,
E[T.] is related to the other system parameters by

P,

El.]=P.(A "' +T) = (3.14)
For (u,0,¢) = (1/¢,1,5) and various choices of p,
we give the values of N and E[T.]. Note that the
stability abscissa A*(a, ¢, p) determines the domain
of the arrival rate 4. We can observe that both
measures increase for increasing values of A and
the increase is more apparent as A tends to
A(a,¢,p). It is also clear that N and E[T,] are
strongly affected by the recovery factor p. For in-
stance, to take p = | implies a fast reduction of N
and E[T,].

The effect of the retrial rate ¢ and the recovery
probability p on N is shown in Table 2. The nu-
merical results show that, as is to be expected, N
decreases, as o — oo, to the mean number of
waiting customers in the classical M /M /c queue

> ¢ c+1
Next, we present some numerical results that lim N = ZiQm = P ———= 0o, (3.15)

illustrate the effect of the parameters on the gee i=1 ch(1-p,)

Table 1

N and E[T.] versus A and p, (n,0,¢) = (1/¢,1.0,5)
A p=0.0 p=05 p=10

N E7)] N E[7)] N E7)]

0.05 0.0526 0.0001 0.0256 0.0001 0.68x107° 0.0001
0.10 0.1111 0.0030 0.0526 0.0029 0.37x107* 0.0027
0.15 0.1768 0.0169 0.0814 0.0156 0.0003 0.0145
0.20 0.2521 0.0590 0.1130 0.0528 0.0017 0.0478
0.25 0.3409 0.1597 0.1495 0.1385 0.0060 0.1224
0.30 0.4499 0.3710 0.1944 0.3107 0.0158 0.2677
0.35 0.5902 0.7805 0.2537 0.6279 0.0360 0.5270
0.40 0.7803 1.5386 0.3365 1.1819 0.0732 0.9644
0.45 1.0533 2.9183 0.4575 2.1192 0.1379 1.6766
0.50 1.4726 5.4560 0.6409 3.6860 0.2460 2.8154
0.55 2.1782 10.349 0.9294 6.3240 0.4236 4.6307
0.60 3.5529 20.892 1.4073 10.907 0.7162 7.5645
0.65 7.1530 50.521 2.2655 19.434 1.2123 12.478
0.70 35.095 290.36 4.0551 37.685 2.1092 21.305
0.75 - - 9.2976 92.128 3.9596 39.467
0.80 - - 106.44 1111.6 9.1348 90.244
0.85 - - 64.201 630.88
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Table 2
N versus ¢ and p, (4, p,¢) = (0.5,1/¢,5)
G p=0.0 p=05 p=10
0.05 - - 71.514
0.1 - - 2.1822
0.2 - - 0.8332
0.3 - 262.19 0.5568
0.4 - 3.6364 0.4372
0.5 - 1.8981 0.3704
0.6 11.906 1.3132 0.3277
0.7 4.1268 1.0197 0.2979
0.8 2.5379 0.8431 0.2761
0.9 1.8536 0.7252 0.2593
1 1.4726 0.6409 0.2460
2 0.5495 0.3420 0.1875
3 0.3791 0.2640 0.1683
4 0.3072 0.2280 0.1588
5 0.2676 0.2073 0.1531
10 0.1951 0.1677 0.1417
50 0.1427 0.1376 0.1326
100 0.1365 0.1340 0.1315
500 0.1316 0.1310 0.1305
1000 0.1309 0.1307 0.1304
where

c—1 i . -1
A ¢ ¢ A
QO = ( /'IU) +c_' Pe ) Pe= )
— ! cl'l—p, cu
(3.16)

and the sequence {Q;; i >0} is the stationary
distribution of the M /M /c queue with parameters
A and p.

Finally, Fig. 8 shows the influence of ¢ and p on
E[T,). The curves, which in decreasing order cor-
respond to lower recovery probability, are consis-
tent with the following limiting result:

6
5.5

5
4.5

4 p = 0.0
3.5 p =05

3 p=1.0
2.5

2

10 20 30 40 50 O

Fig. 8. E[T.] versus ¢ and p, (4, pu,c) = (0.5,1/c,5).

p;
l_pc

. = ¢

lim PC:ZQ,«:E 0,. (3.17)

It should be noted that the highest curve, where

p =0, is monotone; but the cases p = 0.5 and 1

start decreasing to a minimum and then EI[T]
converges to its asymptotic value.

4. Optimization of the retrial rate

We now turn our attention to the optimization
of the retrial rate o.

Our numerical experience indicates that a naive
optimization of the classical performance charac-
teristics, such as those given in Eqgs. (3.7)—(3.13),
leads to improper solutions, i.e., the retrial pa-
rameter optima g,y equals ¢*(4,¢,p) or co. We
could specify a cost structure on the retrials and
completed jobs and find the value of ¢ that opti-
mizes the resulting objective function. However,
we prefer to concentrate probabilistic criteria that
are independent of costs.

The following are some specific probabilistic
descriptors of the system that attain their optima
at proper values ooy € (0%(4,¢,p), 0).

Ideal retrials: We would like to choose the re-
trial rate so that many retrials result in rendering
all ¢ servers busy. We shall call a retrial ideal if it
results in a transfer of a job from the orbit to a
unique free server. Following an ideal retrial, all
servers are busy.

After an ideal retrial all servers are rendering
work and, in addition, we avoid the possibility of
an unsuccessful repeated attempt. Thus, from a
social point of view, the ideal retrial represents the
best possible choice for a repeated attempt.

We define P as the steady-state fraction of
ideal retrials. Alternatively, PY) is the steady-state
conditional probability that a retrial is ideal given
that a retrial occurs. We have that

—1
o S5 Py (MRU-R)
St 0Py

In Fig. 9, we plot PY versus ¢ and several
values of p. We consider that 1 =0.5, ¢ =5 and

c—1
T .4
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0.25
0.2
p = 0.0
0.15 p = 0.25
0.1 p = 0.5
0.05 p = 0.75
p=1.0
0
10 20 30 40 50 O

Fig. 9. P% versus ¢ and p.

ci=1. PY decreases to 0, as ¢ — oo. Note that a
proper value of ¢ maximizing the probability P
always exists.

Successive ideal retrials: A more stringent, yet
still tractable criterion is to maximize the steady-
state fraction of retrials that are ideal and that are
followed by another ideal retrial. Let P%) denote
that fraction.

If p = 0, we can easily find that

Py ciuo
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+(e—Du cuto
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i (xOR(l - R)”)
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For the case of a general recovery probability p,
P is given by

P
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201 -1
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where the constants {(4;, B;); 0<j<c} satisfy the
following recursion:

A c
c =5 Ac+ a c—1y
At+cu+oao Atcu+ao
Bcza . c nc’u c—1y
A+cu A+tcu
Ap Aq
= Aj + -
I I+ ju+o J It ju+ao’
] 00
+].7'u14;—1+«{7’17
A+ju+ao A+ju+ao
0<j<e—1,
p q J
= A; B;_
J A+ ju ]+1+/1—|—j,u‘/ A+ Jj—1
0<j<c—1. (4.4)

Eqgs. (4.2)—(4.4) are proved from the first prin-
ciples. A sketch of the proof is as follows. First, we
condition on the system state just before the first
ideal retrial occurs. Then we need to distinguish
several cases but the general objective is to guar-
antee that the minimum between the next service
completion and the next retrial ends in completion
of any service time. After this service completion
time, we consider a first step analysis so we con-
dition on the system state just after the next event
(primary arrival, service completion, retrial) oc-
curs. Now A; (respectively, B;) is the probability
that the next retrial is ideal given that the number
of busy servers is j and the orbit is non-empty
(respectively, empty).

In Fig. 10, we again consider that 1 = 0.5,¢ =5
and cup = 1. The influence of ¢ and p is now es-
sentially different but PU9 still has its optima at a
proper value of ¢. Figs. 9 and 10 also show that
oopt decreases with increasing values of p.

0.25 p = 0.0

0.2 p = 0.25

p = 0.5

0.15 p = 0.75

0.1 p=1.0
0.05
0

1 2 3 4 5 0

Fig. 10. PU) versus ¢ and p.
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Vain retrials: Non-ideal retrials either transfer a
customer from the orbit to one of several idle
servers or they accomplish nothing at all because
when the retrial occurs, all servers are occupied.
Let us call these last retrials vain.

The steady-state fraction of vain retrials is given
by

(XOR(I —R)*l)

P(b) Zil PZC
1-— Xp€

DYDY

<, (4.5)

and we can choose ¢ so as to minimize that
quantity.

5. The model with direct access to the server facility

We now take advantage of the special matrix
structure associated with the case p = 1. We note
that 4, can be written as

Ay = Jee, (5.1)

where e, is a column vector of dimension c¢ + 1
such that all its elements are equal to 0 except for
the last one which is equal to 1.

Since A4, is of form (5.1), the matrix R can be
explicitly determined, once its spectral radius 7 is
known (see [23, Theorem 4]). To be precise, R is of
the form

0
R=1:1, (5.2)

and the problem reduces to determine the row
vector u. A simple proof follows taking into ac-
count that the matrix R is given by lim,_ . R,,
where {R,; n > 0} is a sequence of matrices de-
fined by

R0:07

(5.3)
R, = —(doA;' + R AA4]"), n>1.

Thus, we note that a zero row in 4, produces a
zero row in R; and, consequently, in all successive
iterates.

From (5.2) we find that
uR = u.u, (5.4)

n=u, (55)

where u, denotes the last element of u and # is the
spectral radius of R. Then multiplying the funda-
mental equation R?4, +RA; +4, =0 by u and
using (5.4) and (5.5), we obtain that

det (7’42 + nA, + 40) = 0. (5.6)

In fact, the general theory [15] establishes that 5
is the unique root in (0,1) of Eq. (5.6). The
equation u(n’*4, + nd, + 4y) = 0 is useful to de-
termine the vector u up to a constant. Further-
more, the general equation R4,e = Aye reduces the
computation of u, to the solution of the system

ll(i’]zAz + 1’]A1 —|—A0> = 0,
(5.7)
ue = —+1.
g

Together, Egs. (5.6), (5.7) and (5.2) give an al-
ternate method for computing R.

One procedure for computing the spectral ra-
dius n uses Elsner’s algorithm and a bisection
method, see [18]. An alternative scheme, appro-
priate to the present example, is to solve directly
Eq. (5.6) which leads to the computation of the
unique root in (0,1) of a polynomial equation.
When ¢ = 2k, for k > 1, the polynomial has degree
k+1.1f ¢ =2k + 1, for k = 0, the degree is k + 2.
The polynomial can be recursively obtained from
the following equations:

det (1*Az + nAi + o) = 1 (2 — (2 + cpyn)Zea (1)

—cun(A+on)Z.>(n)), (5.8)
Zo(n) = —(2+0),
Zi(n) = (2+0)* + po(1 — 1), (5.9)
Z,(n) = =(A+npu+0)Z,1(n)

—nu(A+on)Z,2(n), 2<n<c—1. (5.10)

Finally, we present some numerical results to
understand how 5 varies with A, and ¢. First, in
Fig. 11, we plot 5 versus / for various values of c.
We consider that cu =1 and ¢ = 1, then A takes
values on the interval (0,1"(o,c,1)). The highest
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c=3c=9c=15

0.2 0.4 0.6 0.8 1A

Fig. 11. yy versus L. (o, ) = (1,1/c), c € {3,9,15}.

curve in the figure corresponds to the lowest value
of ¢. The calculus involved in the recursive solu-
tion of Eqgs. (5.8)—(5.10) is easily done by using
MATHEMATICA (see [26]). Observe that, as it
must, # converges to 1, as 4 tends to 1*(a,c, 1).
The influence of the retrial parameter ¢ on 7, is
shown in Fig. 12. We again assume the normal-
ization cu = 1 and consider ¢ = 3, 9 and 15, and
A =0.5. The highest curve again corresponds to
the case ¢ = 3. The spectral radius converges to

0.8
0.6

L c=3

c=9

0.4 c=15
0.2
0

2 4 6 8 10 O

Fig. 12. 5y versus a. (4, 1) = (0.5,1/c), ¢ € {3,9, 15}.

. = A, as one expects because p, = A(cp)”" is the
spectral radius for the classical M /M /c queue.

6. Concluding remarks

This paper deals with the numerical investiga-
tion of the M/M/c retrial queue operating under
the so-called constant retrial policy. Although our
approach proceeds along the matrix-geometric
formalism, the study is significant due to the in-
terest of the system itself and its specific analysis.
First, it is showed that the queueing model under
consideration may be presented within the simpler
framework of QBD processes [17,18,23]. The ad-
vantage of working with QBD processes is that
one may present the basic features of the M/M/c
queue with constant retrial rate by thinking in
terms of block states and transition submatrices.
Second, our study provides a new insight showing
that the queue under the constant retrial policy is
well suited for numerical purposes in comparison
with the difficulties presented by the queue with
classical retrial policy. Third, we obtain a suc-
cessful solution to the problem of finding specific
descriptors of the queue that attain their optima at
proper values of the retrial parameter. Fourth, we
show what analytical simplifications occur for the
case of direct access to the service facility.

The current study enriches the existing litera-
ture on queueing systems with constant retrial rate
which, until now, deals either with Markovian
models with fewer than three servers or with sim-
ple variants of the M/G/1 retrial queue.

Our work can be generalized in several direc-
tions. A first possibility is to introduce a dynamical
control of the number of active servers depending
on the number of customers in orbit. Suppose that
at time ¢ =0 the system is empty and only one
server is active. We assume that the system evolves
as an M /M /1 queue with constant retrial rate and
p =1 until the first epoch at which a primary ar-
rival finds the server busy and a critical number,
we say M, of customers in orbit. Then a second
server is switched on and the last arrival auto-
matically enters service. This dynamic control is
iterated by switching on the servers when
the number of customers in orbit crosses up the
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critical levels (M,2M,...,(c — 1)M). For fixed
(2, u, o), the number of servers should be chosen as
the first non-negative integer for which the stabil-
ity condition holds. From a mathematical point of
view this model can be thought as a QBD process
with a large number of boundary states.

A second generalization consists in assuming
the following full access rule: when there are i > 1
customers in orbit, a signal is sent out in accor-
dance with an exponential law of rate ¢ and the
number k of idle servers is reported back; then a
number min(i, k) of customers in orbit are taken
into service. It is clear that the interest of this new
retrial rule is connected with a better use of the
system resources. The analysis is now based on the
general theory for Markov processes of GI/M/1
type [18].

As a last generalization, we mention a multi-
server queue with general retrial times, i.e., every
time that the orbit is non-empty, we start a renewal
process of repeated attempts. This description
generalizes the single server model investigated in
[6]. Now the approach is based on the theory for
Markov chains of M/G/1 type [19].

The above generalizations suggest natural ways
to continue working on the applicability of matrix-
geometric methods to multiserver queues with
homogeneous repeated attempts. It is our hope to
develop some of these models in any future work.
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