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1 Introduction

Although, in theory, firms in various markets are supposed to operate effi-
ciently numerous empirical studies have shown the opposite. Often such ef-
ficiency studies reveal quite a large potential for performance improvements.
For example Berger & Humphrey (1997) find that the average technical ef-
ficiency score for banks is below 0.8 (i.e. suggest an average improvement
potential of around 20 %) based on a survey of 122 efficiency studies.

As part of a management strategy, benchmarking appears to be a natural
and often used technique to improve performance on all levels of organisation.
Implicitly the management uses benchmarking when they set up production
and target plans. Explicitly, some firms use a specific benchmark unit (either
internal or external) in a process where they try to learn (and copy) certain
elements of the performance of the peer. Such a benchmarking process con-
sists of several steps ranging from planning to implementation (see e.g. Camp
1989) and an important part is the identification of benchmarks.

Recently, the Xerox corporation has been particularly known for its use
of benchmarking techniques but also several other major companies (AT&T,
Ford Motor, IBM, etc.) have been involved with benchmarking in the explicit
sense: See, for example, Elmuti (1998) and Voss et al. (1997) for empirical
studies.

As one of the overall conclusions from these studies Elmuti op cit. finds
that;

“unclear and inadequately understood objectives and goals of bench-
marking projects is ranked first among all the critical factors for
benchmarking projects failure” (p. 9).

The present paper provides an approach to identify benchmarks that deals
directly with these problems in the benchmarking process by enforcing an ex-
plicit description of the production activity as well as of a set of fundamental
principles for benchmark selection. In fact, as noted by Voss et al. op cit,
one of the main advantages of benchmarking seems to be that it promotes
the performance directly through identification of practices and performance
goals.

Production economics (e.g. as in Debreu (1951), Koopmans (1951), Shep-
hard (1970) and Fare (1988)) provides a well suited framework for a theoret-
ical model of benchmark identification. Each firm (or branch, department,
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team etc.) is considered as a production plan consisting of a finite number
of inputs and outputs which will be considered as net outputs'. The firms
are operating under some specified production technology in the net output
space. The term “net output” is not to be taken too literally (in a physical
sense) since, for example, an index of customer satisfaction may enter the
model as an output category. As such most quantifiable aspects of perfor-
mance can be made to fit the model. Indeed, motivated by applications,
recent research has tried to broaden the scope of the production model by
incorporating value judgements etc., see e.g. Allen et al. (1997) and Thanas-
soulis and Allen (1998).

Based on a production economic model the present paper introduces an
axiomatic approach to benchmark identification. That is, we specify a set of
axioms where each axiom represents a fundamental principle for benchmark
selection and show that these axioms characterize one, or possibly a small
class, of selections procedures.

To specify a number of general selection principles helps to ensure a con-
sistent benchmarking procedure as well as openness in the benchmark identi-
fication process. Openness is important for the subsequent learning process
following the identification of benchmarks. If the management more or less
dictatorially perform the benchmark identification some groups of interest
within the firm may not have incentives to ease the subsequent improvement
and adaptation process. However, if the management succeed in obtaining
widespread agreement on a set of overall selection principles the specific re-
sult of the benchmark identification procedure is more likely to meet general
acceptance. In other words, consistency and openness helps to induce orga-
nizational learning.

To take this point a bit further: If benchmarking is viewed as an alter-
native to performance evaluation in the sense of efficiency (or productivity)
analysis the ability to induce organizational learning becomes a central argu-
ment in favor of the benchmark approach. Following a stream of literature
on organizational learning initiated by Chris Argyris (cf. e.g. Leibenstein
and Maital 1994) the main source of technical inefficiency in organizations
is ‘defensive behaviour’ in the sense that people are often reluctant to admit
that things can be done better than status quo. To evaluate organizations us-

IThat is, outputs are indicated by positive numbers and inputs are indicated by negative
numbers



ing, for example, productivity analysis seems to intensify defensive behaviour
rather than to ease the learning process. Using the benchmark approach on
the other hand seems in a more direct way to induce learning and adaptation
processes.

Under very weak assumptions on the production technology we show
that two simple and weak axioms; efficiency and comprehensive monotonic-
ity, characterize the benchmark selection of an intuitively natural family of
selection procedures, i.e. procedures that select benchmarks in proportion
to ideal performance in a sense to be made precise in the following. Thus,
the result of the axioms ‘efficiency’ and ‘comprehensive monotonicity’ may
be construed as a generalization of the potential improvements approach
introduced in Bogetoft and Hougaard (1999). It is argued that such a fam-
ily of selection procedures typically result in one and the same benchmark
selection. However, since multiplicity of benchmarks may be considered un-
fortunate for some purposes we add further axioms in order to focus on a
unique selection.

Benchmarking and productivity analysis are closely related fields since
both areas are concerned with the possible lack of efficiency. Hence by pro-
viding a theoretical foundation for benchmark selection our approach has
immediate application to the growing field of productivity analysis where
Data Envelopment Analysis (DEA) is a popular tool, see e.g. Charnes et al.
(1978) and Charnes et al. (1991). It is important to stress however, that the
focus is radically different: In productivity analysis the aim is to measure the
improvement potential in production whereas in benchmarking the aim is to
identify peer performance and secondly to learn from, and adapt to, these
performance standards.

Thus, basically there is a clear distinction between productivity analysis
and benchmarking with regard to their aims. Moreover, they also differ from
a technical perspective since efficiency measures do not necessarily relate to
benchmarks (neither implicitly nor explicitly). Indeed an efficiency measure
of the relative ‘size’ of the dominating set does not relates to any specific
benchmark unit. Furthermore, the Farrell index used in DEA relate, at least
implicitly, to benchmark selections — one for the input space and one for the
output space — but these selections are typically not identical.

However, if we restrict attention to either inputs or outputs it is clear that
there is some link between axioms for benchmark selection and the axiomatic
litterature on efficiency indices cf. e.g. Russell (1998) and Christensen et al.
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(1999). That is, axioms for efficiency indices may induce axioms on bench-
mark selection (and vice versa) as shown in Bogetoft and Hougaard (1999)
for the implicit Farrell selection.

There may be several advantages connected with the benchmark selec-
tion approach in efficiency analysis. First of all, the criteria for benchmark
selection become explicit (via the axioms) and are hence open for discussion
as mentioned above. In productivity analysis this is particularly important
when one has to convince the management of the inefficient firms that it
is ‘fair’ to make a comparison with the selected benchmark unit. Secondly,
relevant efficiency indices can be constructed on the basis of the selected
benchmark unit along the lines of Bogetoft & Hougaard op. cit.

To focus on benchmark selection in relation to efficiency measurement is
a relatively recent project. So far, there have only been attempts to combine
DEA with interactive decision procedures from Multiple Criteria Decision
Making theory, see fx. Golany (1988), Belton and Vickers (1993) and Post
and Spronk (1999).

The paper is organised as follows: Section 2 presents the model. Section
3 present the two fundamental axioms, efficiency and comprehensive mono-
tonicity which together characterize a natural family of benchmark selection
procedures. In Section 4 we characterize a unique benchmark selection pro-
cedure by adding two axioms: Affine invariance and Comprehensive indepen-
dence of irrelevant production plans. Moreover, we assume the existence of a
solution (with certain properties) on a small subclass S™(/,t) and show that
given the axioms there is a unique extension of this solution to entire class
S of benchmark selection problems. Section 5 provides an example. Section
6 closes with final remarks.

2 The model

Consider a firm described by a production plan a which consists of m net
outputs, i.e. negative coordinates are inputs and positive coordinates are
outputs — that is, a € R™.
Now, assume that the firm operates under a production technology Y C
R™. Let,
D(a,Y) = {y €Yy > a},



be the set of feasible production plans in Y which (weakly) dominates the
observed production plan a, i.e. the weak dominance set.

Let Y denote the class of technologies for which D(a,Y’) is compact for
all a € R™. This class of technologies is very broad and includes for example
Cobb-Douglas, Leontief and nonconvex technologies.

A pair (a,Y), where @ € Y and Y € ) is called a benchmark selection
problem. Denote by S the set of such problems.

Let amap f: S — R™ with f(a,Y) € Y be a benchmark selection for
production plan a relative to the technology Y € ) and let E(Y') be the set of
strictly efficient production plans in Y, i.e. E(Y)={y € Y|D(y,Y) = {y}}.

In order to ease the exposition a few additional concepts need to be
defined. Consider a given production plan a and its weak dominance set
D(a,Y). Let M;(a,Y) be the the maximal value of the j'th coordinate in
D(a,Y), i.e.

Mj(a,Y) = ,Bax | pr;y,
where pr; is the projection on the j'th coordinate. Denote by M(a,Y) =
(Mi(a,Y),..., My(a,Y)) the ideal production plan relative to a. Clearly, if a
is strictly efficient, a and M(a,Y’) are identical — but typically M (a,Y’) ¢ Y.

Finally, let d(a,Y’) be the line through a and M(a,Y), i.e. the diagonal
of (a,Y)

da,Y)={z e R" |z =a+t(M(a,Y) — a) for some t € R}.

Moreover, let the reference production plan s(a,Y) = E((D(a,Y) — RT) N
d(a,Y’)) be the maximal element in the intersection of the free disposal hull
of the weak dominance set, D(a,Y’), and the diagonal, d(a,Y’). Figure 1
provides an illustration of the different concepts of the production model in
case of two net outputs (one input and one output). The ideal point M (a,Y)
is found by maximizing output while keeping the amount of input fixed and
by maximizing (negative) input while keeping the amount of output fixed.
The diagonal d(a,Y’) is the line through @ and M(a,Y) and the reference
point s(a,Y’) is seen to be the intersection between the free disposal hull of
Y and the diagonal d(a,Y).

In particular, let S* C S denote the class of selection problems for which
the reference production plan s(a,Y’) is strictly efficient, i.e.

S* = {(a,Y) € S|s(a,Y) € E(Y)}.
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Figure 1. Illustration of the various concepts of the production model in
case of two net outputs.

Note that even for convex selection problems with at least three net outputs,
s(a,Y’) need not be efficient, cf. Roth (1980).

A “well behaved” subclass of S* was examined in Bogetoft & Hougaard
(1999) who characterize axiomatically a so-called potential improvements
selection for convex input correspondences.

3 A set of suitable properties for benchmark
selection.

As mentioned in the introduction there may be several advantages connected
with the axiomatic approach to benchmark selection. In this section two
simple axioms will be introduced and discussed.

Firms ought to strive toward efficient production as this makes additional
resources available compared to inefficient production by improved input
utilization. Therefore it is natural to demand that a selected benchmark
unit must be strictly efficient.



Axiom 1 (Strict efficiency)
fla,Y) e E(Y)
for all (a,Y) € S.

If for some reason inefficient benchmark units are preferred, the produc-
tion technology seems to be misspecified: Inefficient benchmark units must
have some unmodelled qualities compared to efficient units — otherwise they
should not be benchmark units — and these qualities should be included in
the description of the technology, perhaps as additional net outputs.

Moreover, there is no reason to limit strict efficiency to the comparison
between a given production plan and its benchmark, it should also be applied
to comparisons between benchmarks (given the production plan): If more
productions possibilities become known relative to a given production plan
then the new benchmark should (weakly) dominate the old benchmark. That
is, some kind of monotonicity condition seems appropriate when selecting
benchmarks.

However, some caution is necessary when choosing the specific version of
the monotonicity condition. Indeed, let for example a = (—5,4) and

Y = {yeR’lye {t(-1,1)} — R for t e R%}.

Now, let Y = YU{(—5,8)} and Y = YU{(—1,4)} implying that D(a,Y") C
D(a,Y'),D(a,Y") because Y C Y’ Y”. Comparing the three selection prob-
lems (a,Y),(a,Y’) and (a,Y”) it seems reasonable to suggest that their
solutions should satisfy fi(a,Y’) < fi(a,Y) and fa(a,Y’) > fa(a,Y) and
fi(a,Y") > fi(a,Y) and fo(a,Y") < fa(a,Y) in order to reflect the differ-
ences in improvement potential. Hence, monotonicity is problematic in this
case because in each of the pairwise comparisions one of the coordinates of the
benchmarks f(a,Y”’) and f(a,Y"”) becomes smaller than in the benchmark
fla,Y).

Now, the most striking difference between the three selection problems
above is that their diagonals differ reflecting their different relative improve-
ment potentials. One way to incorporate this aspect as well as securing a
weak axiom is to restrict monotonicity to selection problems having the same
diagonal as in comprehensive monotonicity below.



Axiom 2 (Comprehensive monotonicity)
fla,Y) < f(aY)
for all (a,Y") € S* with d(a,Y’) = d(a,Y) and D(a,Y’) C D(a,Y) — R

Comprehensive monotonicity states the following: Consider a selection
problem (a,Y’). The benchmark of this problem must weakly dominate the
benchmark of any selection problem with efficient reference point and com-
mon diagonal where the weak dominance set is included in the free disposal
hull of the weak dominance set of (a,Y").

Now, by the axioms above it is possible to prove the following result:

Theorem 1 A benchmark selection f : S — R™ satisfies strict efficiency
(Aziom 1) and comprehensive monotonicity (Aziom 2) if and only if

fa,Y) € {y€ BE(Y)ly > s(a,Y)}
for all (a,Y) € S.
Proof: Let f : S — R™ be such that

f(a,Y) e{y e EY)ly = s(a,Y)},

then Axiom 1 is satisfied by definition. Moreover, if (a,Y’) € S§* with
D(a,Y') C D(a,Y) — R} and d(a,Y’) = d(a,Y) then s(a,Y’) < s(a,Y)
and f(a,Y") = s(a,Y’) because s(a,Y’) ={y € E(Y')|ly > s(a,Y’)}. There-
fore f(a,Y) > f(a,Y”’) because f(a,Y’) = s(a,Y’) < s(a,Y) < f(a,Y), ie.
Axiom 2 is satisfied.

Now, suppose that f: S — R™ satisfies Axiom 1 and Axiom 2. Let Y' =
{a,s(a,Y)} then f(a,Y’) = s(a,Y) by Axiom 1 (efficiency) and D(a,Y’) C
D(a,Y) — R} with d(a,Y’) = d(a,Y’). Therefore f(a,Y’) < f(a,Y) by
Axiom 2 because (a,Y’) € §*. Hence, f(a,Y’) = s(a,Y) < f(a,Y). O

According to Theorem 1, the requirements for benchmark selection repre-
sented by efficiency and comprehensive monotonicity implies that benchmark
selections are efficient production plans which dominate the reference produc-
tion plan. Figure 2 illustrates a specific example involving two net outputs.
Given the inefficient production plan a and the technology Y, the benchmark
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Figure 2. The possibility of multiple benchmarks.

selections that satisfy Axiom 1 and 2 are given by the ‘corner points’ f(a,Y)
and f'(a,Y’) using Theorem 1.

An important consequence of the above axiomatic system is that if the
weak dominance sets, are identical for two benchmark selection problems,
(a,Y) and (a,Y’) (i.e. D(a,Y) = D(a,Y")), then these problems select the
same benchmark. In other words, the shape of the production set outside
the weak dominance set does not influence the benchmark selection. Note,
however, that two incomparable production plans a and b where neither
b€ D(a,Y) nor a € D(b,Y), may be compared indirectly under an assump-
tion about constant returns to scale by scaling them such that they become
comparable.

We consider the fact that benchmarks are selected from the weak domi-
nance set only as a force of the axiomatic system since it is in line with pro-
duction economics stating that without further information (such as for ex-
ample a set of prices) dominance is the only principle left to rank production
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plans in the net output space?. In the literature on efficiency measurement
such an ‘axiom’ of dominance is also well-known. For example, Hougaard and
Keiding (1998) explicitly use a dominance axiom in their axiomatic system
characterizing a large family of efficiency indices which includes the familiar
Farrell and Fare-Lovell indices.

4 Unique benchmark selection

It might be considered unfortunate that Theorem 1 characterizes a family
of benchmarks rather than a unique selection even though intuition suggests
that multiplicity of benchmarks occurs very rarely. For example, in Figure
2, it can be noted that a small pertubation moving a away from the diagonal
d(a,Y") results in uniqueness. Moreover, consider the following example:

Example Let m = 2 and consider the problem (a,Y) € S with a = (=5,7)

and Y = conv{(-5,7),(—4,8),(=1,7),(=1,10 + &)}

U conv{(=5,7), (—4,8), (—5,11), (—2,11)}

where € > 0. Then for € = 0 both (—1,10) and (-2, 11) are possible bench-
marks according to Theorem 1, while (—1, 10 + ¢) is the unique benchmark
for € > 0. O

Though multiplicity of benchmarks is a relatively rare phenomenon (as-
suming that axioms 1 and 2 are satisfied) it is nevertheless a theoretical
challenge to obtain uniquess. Thus, this section will consider additional ax-
ioms which lead to a unique benchmark selection. The general idea is to
postulate the existence of a unique selection with certain properties on a
very small class of selection problems (to be denoted S™(I,t)) and then show

2Clearly dominance does not have to be confined to the cone R’'. We may consider any
(larger) family of cones or other sets including R'?*. Such an approach is easily included
in our framework. However the notion of dominance then loses its economic relevance.
Assume that some decision maker chooses benchmarks according to a utility function u on
the set of production plans. If u is unknown (as is usually the case) then it is well-known
that if dominance is confined to the positive cone R’ each utility function « obtains its
maximum among the set of undominated production plans and each undominated plan is
optimum for some utility function .
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that, given certain axioms of consistency, this selection extends uniquely to
the entire domain of selection problems S.

To be more specific we add an axiom of affine invariance stating that the
choice of benchmark shall not depend on the units of measurement for the
net outputs. Moreover, we also add an axiom of independence of irrelevant
production plans stating that if a given plan is chosen as benchmark for some
selection problem then if this plan is also feasible in a smaller (less productive)
selection problem it must be chosen as benchmark for this ‘small” problem
too.

Formally, we impose consistency over the set of selection problems by,

Axiom 3 (Affine invariance)

f(h(a), (Y)) = h(f(a,Y)),
for any h : R™ — R™ with h(y) = (a1y1 + b1, - - -, @mYm + Bm) where a > 0.
and

Axiom 4 (Comprehensive independence of irrelevant production plans)

f<a7 Y,) = f<a7 Y)

for all selection problems with M (a,Y") = M(a,Y’), D(a,Y’) C D(a,Y)—RT
and f(a,Y) € D(a,Y’).

Note that independence is only required for the class of selection prob-
lems having the same ideal production plan and the difference between the
‘small’ and the ‘large’ problem is made w.r.t. the comprehensive hull of the
dominance set.

However, axioms of consistency are not enough. There will be selection
problems where we are forced to rank the net output dimensions according
to their importance in order to obtain uniqueness. If, for example, we end up
in a symmetric situation as in the example above (for ¢ = 0) we are forced
to prefer improvements in one net output to improvements in the other.
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Clearly, such a choice cannot be founded on any overall theoretical argument
but must be ad hoc.?

As a consequence we are forced to assume the existence of a solution on
some class of selection problems and clearly, this class ought to be as small
as possible. Moreover, such a selection must be compatible with the other
axioms and hence some properties need to be imposed. Imagine, for exam-
ple, that a decision maker is confronted with a series of particularly simple
selection problems (which are normalized by affine invariance and consists of
the production plan, the unit vectors and two additional production plans
with identical minimal coordinate) and then is asked to choose a benchmark
for each problem. This selection cannot be made at random since at least
it has to comply with axioms 1 and 2. Moreover, we shall assume that the
preference induced by the selection satifies weak transitivity and continuity
requirements in order to enable extension of the selection to the entire do-
main. Note that the lexicographic selection procedure is a straightforward
example of a selection which satisfies axiom 1 and 2 and secures a unique
selection of benchmark. However, the induced preference is not continuous
so a weaker form of continuity is required. Lemma 1 in the appendix estab-
lishes such weak conditions under which a preference relation has maximal
elements.

Formally, let S"(I) C S be defined by
S"(I) ={(a,Y) € Sla=(0,...,0) and > e; = M(a,Y)},

icl
where I C {1,...,m} and e; is the ¢’th unit vector. Next, let L"(I,t) C
[0, 1]™ be defined by

L™(1,t) ={y € [0,1]™| mel}lyz =tand y; =0forall j &I},
where ¢ € [0,1]. Finally, let S™(1,¢) C S"(I) be defined by
Sn(I7t) - {(a,Y) S Sn(I)El yay/ € L(I7t) Y = {(1, (ei)ZE’?y’y,}}'

3Suppose, for example, that the model consists of one input producing one output and
we end up in a symmetric situation like above. In this case one can either select the bench-
mark which minimizes the use of input or the benchmark which maximizes the production
of output. If the overall aim of the benchmarking process is the improve the firms input
utilization (cost minization) it seems natural to choose a benchmark guided by the result
of an input minimization. On the other hand, if the overall aim is to increase production
(revenue maximization) the benchmark ought to be chosen using output maximization.
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Now, the following result can be obtained.

Theorem 2 Suppose that there exists a family of selections, g(a,Y;1,t) :
S"(I,t) — R™, which satisfy efficiency and dominate the reference produc-
tion plan s(a,Y’) such that the induced preferences on the L(I,t)’s,

V(r;I,t) = {ye L t)|3aY)e St :

satisfies the assumptions of Lemma 1 (in the appendiz). Then there ezists a
unique benchmark selection, f : S — R™, which satisfy axioms 1-4 such that
fla,Y)=g(a,Y;1,t) for all (a,Y) € 8*(1,1).

Proof: Firstly, we propose a selection, secondly we note that it satisfies
axioms 1-4 and thirdly, we show that no other selection satisfies axioms 1-4.
Due to Axiom 3 we restrict attention to the S™(I)’s.

Fix I C {1,...,m}. Consider the correspondence f : S"(I) — 2R"
defined by

f@Y)={yeYnLUV(yIt)n (Y NLI,t) =0},
where s(a,Y) =tM(a,Y). For a problem (a,Y’) € S™(I) let
Y'= (Y NL(It) U{a,(€)ier}

By Lemma 1 there exists y € Y’ such that V(y; I,t)N(Y'NL(I,t)) = () there-
fore V(y; I,t)N(YNL(I,t)) = 0 because V (y; I,t) C L(I,t). Thus, f(a,Y) is
non-empty for all (a,Y") € S"(I). Now, suppose that V(y'; I,t) = V(y; I,t) =
0 fory,y € YNL(I,t), and consider Y’ = {a,ey,...,em,y,y'}, then (a,Y”’) €
S§"(1,t). By assumption (a,Y’) has a unique selection, g(a,Y’;I,t). There-
fore v = y = g(a,Y’;1,t) is the unique selection from Y. Thus, f(a,Y)
contains at most one element. Consequently, f : S*(I) — 2R" is a bench-
mark selection.

Clearly, by construction axioms 1,2 and 4 are satisfied by the selection
defined above.

Now, suppose that a selection h : S"(I) — R™ satisfies axioms 1-4 such
that h(a,Y) = g(a,Y;1,t) for all (a,Y) € S"(I,t). Consider (a,Y’) where
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Y' = {a,er,....em, f(a,Y),h(a,Y)} then (a,Y’) € 8*(I,t) for s(a,Y) =
tM(a,Y). Therefore, f(a,Y’) = h(a,Y’) = g(a,Y”’;I,t) by construction and

f(a7 Y) = f<a7 Y,) = h<a7 Y,) = h(aa Y)7

by Axiom 4. Hence, f: S™(I) — 2®" is unique. O

5 An example

This section will provide a short illustration of how the result of Theorem 1
can be used.

Imagine a set of n observed production plans, {a',...,a’, ... a"}, where
each dominated plan has to find its benchmark within a technology estimated
on the basis of the data points themselves. Assume, for example, that the
production technology is estimated as the comprehensive hull of the data
points (the FDH-technology) or the convex cone of the data points (the
CRS-technology)*.

Fix the production plan to be benchmarked, a”. To find the ideal pro-
duction plan M (a®,Y) one has to solve m LP-problems (one for each net
output) of the form:

max 0;

"W

NE
<
sgg
v

0;
=
. > Nap > a)forallk#i
st o
A > 0(CRS)

SN Land M € {0,1} for all j (FDH)
j=1
yielding M (a®,Y) = (6,...,0n).
Secondly, in order to find the reference production plan s(a®, Y) one has
to solve the following LP-problem:

4FDH and CRS is short for Free Disposal Hull and Constant Returns to Scale respec-
tively, see e.g. Fére et al. (1994).
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max
A76 ﬁ

Y Ndd > "+ B(M(©a,Y)—d)
=1

s.t. - A

v

0 (CRS)
>N = land M € {0,1} for all j (FDH)
J=1

If 5(a®,Y) = a"+ 3(M(a®,Y) — a) is efficient we have a unique benchmark.
Otherwise, all efficient points which dominate s(a’,Y) are benchmarks. This
can easily be checked given the technological assumptions.

6 Final remarks

In the present paper the choice of benchmark has been axiomatized. The pro-
posed axiomatization was carried out in two steps: First two natural axioms
were imposed and it was shown that these axioms restricted the set of fea-
sible benchmarks considerably: Only efficient production plans dominating
the reference production plan are feasible. Secondly two additional axioms
were imposed and the existence of a solution with certain properties on a very
small domain of selection problems was assumed. It was then shown that
such a solution uniquely extends to the entire domain given the additional
axioms. Lexicographic maxmin (on the set of normalized selection problems)
is an example of a selection procedure which complies with all axioms.

As mentioned in the introduction there is a link between the axiomatic
approach to benchmarking and the axiomatic approach to (some) efficiency
indices although the two approaches are in no way dual. For example, it is
clear that the axiom of efficiency (Axiom 1) of the present approach in some
sense resembles the axiom of ‘indication’ from the axiomatic literature on
efficiency indices (see e.g. Russell 1998). Moreover, to consider monotonic-
ity properties w.r.t. the technology has also been used to characterize both
the Farrell and the Fare-Lovell efficiency index in Christensen et al. (1999).
However, the precise relation between the axiomatic approach to benchmark
selection and the axiomatic approach to efficiency indices is left for future
research.
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Appendix
In order to establish Theorem 2 the following lemma is needed.

Lemma 1 Suppose that X is a compact set and that U : X — 2% where
z ¢ U(z) and U(x) = UpenGn(z) (N being the set of natural numbers) for
all v € X satisfies

o ifry € Gp(x1),...,Tm € Gu(xm—1) thenxy & G, (xy,) forallzy, ..., zy
o Gni(z) CH{ylGnly) C Gulz)}
o Gi'(x) is open and G, |, (x) is open in {y|Gn(y) = Gn(x)}

Then {x € X|U(z) = 0} is nonempty and compact.

Proof: Let
M, = {z € X| U?:1 Gj(x) = 0}

for all n € N then M,y C M, for all n € N. Moreover, M; is nonempty
and compact according to Bergstrom (1975) and Walker (1977) and M, is
nonempty and compact provided that M, is nonempty and compact because
M, has the same properties as X and G, has the same properties on M,
as GGy has on X. Therefore

{reX|U@) =0} = [ M,

neN

is nonempty and compact because M,, is nonempty and compact and M, C
M, for all n € N and X has the finite intersection property. O

The first assumption of Lemma 1 ensures that the preference relation
is acyclic while the two subsequent assumptions ensure some weak form of
continuity. Indeed, the usual continuity assumption, V~'(z) is open, is too
strong to ensure that there exists exactly one point such that V(z) N X" = ()
for all X’ C X where X’ is compact. Note that the lexicographic preference
satisfies the assumptions of Lemma 1: The lexicographic preference is defined
as y € V(z) if and only if y1 > 21, y1 = 21 and ya > x2, ... or Y1 = 21, ...,
Yn—1 = Tpn—1 and y, > z,. Hence, let V(z) = U,enGp(z) where

Gn(x) = {yeR™y1 =21,...,Yn1 =Tyt and y, > 2, }

17



for all n < m and G,(z) = 0 for all n > m+1, then V(-) is the lexicographic
preference on R™. Hence, it is clear that the lexicographic preference relation
is acyclic and

Gnii(z) C {y € R™GL(y) C Gu(2)}
= {yeR™y =21,...,Yn—1 = Ty and y, > z,,}

for n < m. Also, G7'(%) is open and G}, () is open in {y € X|G,(y) =
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