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Abstract Reservoir flood control decisions are often compromised by various parties 
with conflicting benefits. In this paper, a three-person multi-objective conflict decision 
model is presented for reservoir flood control. In order to obtain the group decision, the 
ideal bargaining solution is first sought by two stages satisfying programming and then 
the decision alternative is chosen using the fuzzy pattern recognition. The advantages 
of this model are simple and more adaptable to the real problem. The model is 
demonstrated by application to Fengman Reservoir in China. 

Keywords: group decisions; three-person multi-objective decision; two stages 
satisfying programming, fuzzy pattern recognition; flood control 

1. Introduction 
  Reservoir flood control is generally complex in practical operations as it involves a 
large number of uncertain factors and multiple-objectives. These factors include the 
intrinsic uncertainty in hydrological phenomenon, uncertainty in model assumptions, 
uncertainty in data or parameter values, and uncertainty in the result interpretation. The 
objectives are different combinations of benefits from hydropower generation, water 
supply for irrigation, municipal and industrial use, flood control, navigation, water 
quality improvement, recreation and ecology, and so on. With the complexity of the 
modern social structure and ever-expanding knowledge about numerous relationships 
among various components of a system, there exists a tendency for the change from 
single-objective optimization toward multi-objective analysis, especially when the 
system analyzed is a part of the natural environment [1]. During the past decades, there 
have seen a significant increase in multi-criterion decision making (MCDA) methods to 
water resources management. The research has focused on evaluating feasible 
alternatives with the aid of strong and flexible decision support systems, and on finding 
a satisfactory solution or a group of satisfactory solutions [2]. Bender and Simonovic[3] 
describe a fuzzy compromise approach to water resources systems planning under 
uncertainty. Despic and Simonovic[1] present a general methodology for numerical 
evaluation of complex qualitative criteria based on the theory of fuzzy sets. This 
method was suitable aggregation operators for the qualitative evaluation of flood 
control. Raju and Pillai [4] employ five MCDA methods to select the best reservoir 
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configuration for the case study of Chaliyar river basin, Kerala, India. Cheng [2] 
develops a fuzzy optimal model of real time multi-reservoir operation for the flood 
system of the upper and middle reaches of the Yangtze River. Ko et al. [5] present a 
two-stage procedure combining multi-objective optimization and multi-criterion 
decision analysis techniques for reservoir system operational planning. The methods 
mentioned above put an emphasis on MCDA while there have been few studies 
considering multi-person multi-objective conflict decision to water resources 
management in group decision making problems.  

It is known that flood control decisions are usually a bargaining solution 
compromised by different parties with conflicting benefits. A bargaining situation 
occurs when two or more players have a common interest to co-operate, but have 
conflicting interests over exactly how to co-operate. Bargaining is any process through 
which the players try to reach an agreement on their own [6]. Fuzzy sets theories have 
been developed to seek for the bargaining solution,the compromise solution or the 
satisfying solution. They can be found in Leung[7], Sakawa et al.[8,9], Lee and Li[10]. 
The approaches proposed by these investigators emphasize fuzzy multi-objective 
programming and puts little focus on bargaining process. After the Nash’s 
path-breaking contributions to bargaining theory [11,12], there have been a large 
amount of literatures that contain theories and applications of the bargaining theory. In 
this paper, considering the background of the real problem, we propose a new 
bargaining model with three parties, i.e., Three-person Multi-objective Conflict 
Decision (TMCD) method by which the players get a third party to help them to 
determine the agreement. The method refers to the basic ideas of fuzzy multiple 
objective programming [7-10]. To obtain the group decision, the ideal bargaining 
solution is first sought through two stages satisfying programming and then the 
decision alternative is chosen using the fuzzy recognition model. TMCD can be used to 
solve this class of problem with conflicts and limited alternatives. The model is simple 
and effective, more adaptable to the real multi-person multi-objective decision. 

2. Description of the Problem 

The multi-person multi-objective decision problem composing of three parties A, B 
and C is considered. A and B are two conflicting parties required to recommend 
alternatives and to provide information to C. C, being the higher authority (or 
arbitrator), can make decision according to his own priority from the information 
provided by A and B. The recommended alternatives provided by the players A and B 
can be obtained by multi-criterion decision-making analysis with the aid of strong and 
flexible decision making support systems, which are only the first step in the whole 
decision process. The crucial problem is how to get the bargaining solution from these 
recommended alternatives. In fact, our problem is a TMCD problem with limited 
alternatives.  

Let the chosen objectives be denoted by x x mm1 2, , ( )  . From those methods of 
multi-objective decision such as ideal point method and weight coefficient method, a 
set of satisfying alternatives can be obtained for A and B reflecting their priority 
structure. Supposing C demands that both A and B provide n  alternatives, and the 
objective value matrixes corresponding to the above alternatives are 
A a B bn ij n m n ij n m  ( ) , ( )  respectively, where aij  and bij  are the j th objective value 

of i th alternative provided by A and B respectively. Among the m  objectives 
considered by both A and B, some are unanimous while others are in conflict. The 
alternatives sets provided by A and B constitute a multi-objective conflict decision with 
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limited alternatives (total number is 2n ). 

3. Ideal bargaining solution from two stage programming 

  According to the features of the above problem, three parties A, B and C can be 
regarded to constitute a definite arbitrated situation, which is denoted by 
M A B x x Cm ( , ; , , ; )1  . Fuzzy compromise programming [7-10] seeks the 

compromise solution among the various objectives of a multi-criteria decision making 
problem with the maximization of the membership functions for the objectives in the 
first phase and the averaging the membership functions for the objectives in the second 
phase. The arbitrating solution, which is called the ideal bargaining solution in this 
paper, is obtained by two stages satisfying programming similar to reference [7-10]. 
  The first stage programming is to obtain 
  )(max XSFB  

  s.t. 
SF X SF X
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and the second stage programming is to attain 
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where ()ASF  and ()BSF  are the satisfying functions of A and B respectively, X is 
m-dimensional vector and S is the constraint condition. Equation (1) represents 
maximizing the satisfying function of A in order to seek for an initial ideal solution 0X  

under the same satisfying function of both A and B. Equation (2) represents 
maximizing the sum of the satisfying functions of both A and B in order to obtain the 
ideal solution *X with improvement in both the satisfying functions of A and B. The 
satisfying functions SF xA j( )  and SF xB j( )  can be constructed through equations (3) 

and (4) respectively. For the objective that the larger value represents the better, 
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For the objective that the smaller value represents the better,  
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According to equations (3) and (4), the synthetically satisfying functions of A and B 
can be obtained:  

SF X SF xA j A j
j

m

( ) ( ) 



1

                                        (5) 

SF X SF xB j B j
j

m

( ) ( ) 



1

                                        (6) 

In equations (5) and (6),  j  and  j  are weight coefficients of A and B 
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respectively for objective j , which reflect priority structure of A and B in 
recommended alternatives. By substituting equations (5) and (6) into equations (1) and 
(2), the arbitrating solution X x xm

T* * *( , , ) 1  can be obtained. For the arbitrating 
problem with independent variables x xm1 , , , the arbitrating solution is undoubtedly 
the bargaining solution for the conflicting problem. However, it is rather common in the 
real problem that there exist contradictories among multi-objectives and it is difficult to 
attain alternative to exactly reflect the above state of objective value. Therefore, X *  is 
only the ideal state and it is not possible to exist in real case. Hence, in this paper, it is 
called the ideal bargaining solution.  

4 Choosing the decision alternative using the fuzzy pattern recognition 

  For the 2n  decision alternatives consisting of the alternative sets nA  and nB , and the 

ideal bargaining solution *X , TMCD becomes how to select among them a satisfying 
alternative closest to the ideal bargaining solution X * . It is a typical pattern recognition 
problem. To solve the pattern recognition problem, a new fuzzy pattern recognition 
model is proposed. 
  Let Y  denote the matrix of the recommended alternatives that is composed of 
matrixes An  and Bn , and satisfy 
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where k=1,…,2n, j=1,…,m. From equation (7), mnkjyY  2)(  is a mn2  matrix. All 

alternatives can be represented by T
nYYYY ),...,,( 221 , where kY  is the kth alternative 

and Y y yk k km
T ( , , )1  . 

  The vector of objective value kY  should be converted into the membership degree 

vector R r rk k km
T ( , , )1   by equations (8) and (9), and 

  r y xkj kj j * , for y xkj j *                                            (8) 

  r x ykj j kj * , for y xkj j *                                            (9) 

Note here that in equations (8) and (9), if the jth index is the same between kY  and  X * , 

1kjy  and it represents that there is no difference in the jth index between two 

alternatives. If the jth index of kY  is less than that of X * , it represents that there is 

negative similarity in the jth index between two alternatives. If the jth index of kY  is 

greater than that of X * , it represents that there is positive similarity in the jth index 
between two alternatives. From the definition of equations (8) and (9), we can obtain 
the membership degree vector *R  of X * , R T* ( , , ) 1 1 , which describes m  objective 

membership degree of the ideal alternative X * . According to the definition of 
complementary set in fuzzy sets, the membership degree of non-ideal alternative cX *  
should be R c T* ( , , ) 0 0 . 

 In order to acquire the cluster structure of the alternative sets, it is natural to select an 
alternative closest to X *  and farthest away from cX * . Similar to the fuzzy distance 
[14], the weighted distances are defined as 
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In equations (10) and (11), w is the weighting vector, w= ( , ,..., )w w wm
T

1 2  with 
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Take 0/)( kk duudF , the membership degree of the kth alternative belonging to X *  

is obtained as follows:  
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According to the maximum principle of membership degree, we can choose the 
decision alternative and obtain the final bargaining solution among 2n alternatives. An 
overall procedure of TMCD is shown in Figure 1.  

Insert Figure 1 Here 

5 Case study of reservoir flood control 

  Reservoir flood operation is a typical problem of the muiti-person multi-objective 
decision. Operation decision is given by synthesizing opinions of different departments. 
The higher hierarchy has the final decision right in different scopes and limits of 
authority. The flood control of Fengman Reservoir is considered as an example. 
Fengman Reservoir is located at the second Songhua River, one of the seven major 
rivers within China. It is 24 km away from Jiling City, one of the key protection areas. 
The reservoir has a watershed area of 42,500 square kilometers, with a water holding 
capacity of up to 10,800 million cubic meters. The reservoir is mainly used for 
hydropower generation, flood control, as well as irrigation purposes. Because Fengman 
reservoir is a huge reservoir, there exists a significant degree of conflict between flood 
control and hydropower generation. A special administration Bureau, Beishan and 
Fengman Reservoirs Management Department (party C) is established to deal with the 
daily conflicts between the Electrical Administrative Bureau of Northeastern (party A) 
and Committee of Songliao Basin (party B). Most decisions are made through the 
bargaining among these three parties. 
  Three objectives related to Fengman Reservoir flood control are chosen for the 
alternatives evaluation. Objective 1 is maximizing the flood control volume between 
the design level (263.5m) and the highest level of reservoir during reservoir routing. In 
general, the greater is the objective value, the safer is the dam and but it is harmful to 
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hydropower generation during flooding events. So, party B will choose the strategy of 
controlling the lower maximum water lever as far as possible, which is contrary to party 
A. Objective 2 is minimizing the storage volume between the terminal level of reservoir 
and the desired terminal level (262.5m). It implies that the desired performance level is 
known and that the deviation from the target level results in losses or damage on the 
next flood operation. However, the higher terminal level is beneficial to hydropower 
generation. Objective 3 is minimizing the spilling volume overflow discharge for 
power generation. It is obvious that there is no conflict in this objective. Party B will 
choose the safe outflow as far as possible. The outflow is often far away from the 
maximum hydropower generation desired by Party A. In order to reach an agreement, 
party B will choose those alternatives with lesser values for objective 3. From the 
above-mentioned description, party A desires that three objectives are all smaller; 
while party B wishes that the two proceeding objectives are larger and the last one is 
smaller. 
  For an actual flood in 1991, A and B can utilize the fuzzy optimal model for the flood 
control system developed by Cheng and Chau [13] to obtain a group of alternatives 
respectively. These alternatives and their weights of objective are then provided to C. 
The followings are the objective characteristics value matrixes of five alternatives from 
A and B respectively: 
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and corresponding weight vectors are   ( . , . , . )0 30 0 40 0 30 T ,   ( . , . , . )050 0 40 010 T . 
According to equations (3)~(6), the satisfying functions of A and B are   
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From equation (1), the first stage programming can be described as 
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After solving the LP of equation (14), X T
0 141700 34285 214300 ( . , . , . ) . 

Correspondingly, the second stage programming can be represented by  
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After solving the LP of equations (15), X T* ( . , . , . ) 141700 34219 214300 . If the 
objective weight of C is (0.45,0.30,0.25), then with equations (7)~(13), the membership 
degree of each alternative belonging to X *  are 

(0.7766,0.8086,0.8935,0.9667,0.9079,0.8922,0.8819,0.8636,0.8319,0.9903) 
According to the maximum principle of membership degree, C is confident to choose 
the fifth alternative recommended by B as the decision alternative. In fact, the selected 
decision alternative is reasonable because the lower maximum water level with is safer 
for dam. The smaller deviation from the target level in terminal level is beneficial to 
hydropower generation and satisfies the flood control also. Relatively, the loss of 
hydropower generation is higher for this flood control operation, but the objective 2 is 
more beneficial than objective 3 in hydropower generation because the higher level can 
generate more energy. 
6 Conclusions 

Most bargaining theories are too complex and theoretical to be understood by 
decision makers, there exists a gap between the theory and application. The paper is 
devoted to develop a feasible and simple model of the three-person multi-objective 
conflict decision based on reservoir flood control. However, the model is a general 
methodology for the problem of the multi-person multi-objective conflict decision 
involving three players and hence can be applied to other fields as well. 
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Figure 1 The overall procedure of TMCD 
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