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Abstract

In this paper we first show how the Extended Linear Complementarity Problem, which is
a mathematical programming problem, can be used to design optimal switching schemes
for a class of switched systems with linear dynamics subject to saturation. More specifi-
cally, we consider the determination of the optimal switching time instants (the switching
sequences are acyclic, but the phase sequence is pre-fixed). Although this method yields
globally optimal switching time sequences, it is not feasible in practice due to its computa-
tional complexity. Therefore, we also discuss some approximations that lead to suboptimal
switching time sequences that can be computed very efficiently and for which the value
of the objective function is close to the global optimum. Finally we use these results to
design optimal switching time sequences for a traffic signal controlled intersection so as to
minimize criteria such as average queue length, worst case queue length, average waiting
time, and so on.

1 Introduction

1.1 Overview

As the number of vehicles grows and the need for mobility increases, the frequency and
duration of traffic jams in and around major cities increase. In the short term the most
effective measures in the battle against traffic congestion seem to be a selective construction
of new roads — an option which is often not viable due to lack of space and/or budgetary
means — and a more efficient use of the existing infrastructure through traffic management.
One of the strategies that is used in traffic management is traffic signal control to regulate
access to highways or main roads (ramp metering) or to obtain a smoother or better circulation
of traffic in urban areas (using, e.g., “green waves”).
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In this paper we study the design of optimal acyclic traffic signal switching time sequences
for a traffic signal controlled intersection of several streets. We start from a model that de-
scribes the evolution of the queue lengths in the different lanes as a function of the switching
time instants and the average arrival and departure rates of the cars, which can be measured,
approximated or predicted using induction loop detectors, ultrasonic sensors or cameras, pos-
sibly in combination with historical data. In general, when we make a model of a system, an
important issue to consider is the trade-off between accuracy of the model and the (computa-
tional) complexity of the analysis of the given model. In this paper we opt for an approximate
model that can be analyzed easily and that allows us to efficiently design (sub)optimal traffic
signal switching time sequences. The method proposed here is to be used for on-line optimiza-
tion of switching time sequences. Therefore, we only consider a finite number of switchings in
the optimization procedure and we combine this with a moving horizon approach. The latter
also allows us to take changes in the average arrival and departure rates into account.

This paper is organized as follows. After introducing some notation in Section 1.2, we
present the Extended Linear Complementarity Problem (ELCP) — which is a mathematical
programming problem — in Section 2. In Section 3 we consider a general class of switched
systems with linear dynamics subject to saturation and we show that the ELCP can be used
to design optimal switching time sequences for this class of systems. Since in general the
ELCP is an NP-hard problem, we consider a special subclass of switched systems with linear
dynamics subject to lower saturation only and we show that for this class of systems we
can derive very efficient methods to compute (sub)optimal switching time sequences. These
results will then be used in Section 4 to efficiently design (sub)optimal traffic signal switching
time sequences for traffic signal controlled intersections. We also illustrate our approach with
a worked example. Finally we present some conclusions and topics for future research.

1.2 Notation

In this paper we use vector as a synonym for “column vector” or “matrix with one column”.
Let a and b vectors with n components. We use ai or (a)i to denote the ith component

of a. We use a > b to indicate that ai > bi for all i. The maximum operator on vectors is
defined as follows:

(

max(a, b)
)

i
= max(ai, bi) for all i. The minimum operator on vectors

is defined analogously. The zero vector with n components is denoted by 0n, or by 0 if the
dimension is clear from the context.

The set of the real numbers is denoted by R, the set of the integers by N, and the set of
the positive integers by N0 (so N0 = {1, 2, 3, . . . }).

2 The Extended Linear Complementarity Problem

The Linear Complementarity Problem (LCP) is defined as follows [1]:

Given M ∈ R
n×n and q ∈ R

n, find w, z ∈ R
n such that w > 0, z > 0, w = q+Mz

and zTw = 0.

The LCP has numerous applications such as quadratic programming problems, the determi-
nation of the Nash equilibrium of a bimatrix game problem, the market equilibrium problem,
the optimal invariant capital stock problem, the optimal stopping problem, etc. [1]. This
makes the LCP one of the fundamental problems of mathematical programming.
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The Extended Linear Complementarity Problem (ELCP) is an extension of the LCP and
is defined as follows:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φ1, φ2, . . . , φm of
{1, 2, . . . , p}, find x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c and Bx = d, or show that no such x exists.

The formulation of the ELCP arose from our work in the study of discrete event systems,
typical examples of which are flexible manufacturing systems, subway traffic networks, parallel
processing systems, telecommunication networks and logistic systems. Many fundamental
problems in the system theory of a subclass of discrete event systems — the max-plus-linear
discrete event systems — can be recast as an ELCP [3, 4].

The ELCP can be considered as a system of linear equations and inequalities (Ax > c,
Bx = d), where there are m groups of linear inequalities (one group for each index set φj)
such that in each group at least one inequality should hold with equality. In [2] we have
developed an algorithm to compute the complete solution set of an ELCP. Our algorithm
yields a compact representation of the solution set of an ELCP by vertices, extreme rays
and a basis of the linear subspace corresponding to the largest affine subspace of the solution
set. In that way it provides a geometrical insight in the entire solution set of the ELCP and
related problems. In [2] we have also shown that the general ELCP is NP-hard.

In the next section we shall show that the ELCP can be used to determine optimal
switching time instants for a class of switched linear systems with saturation.

3 Optimal switching time sequences for a class of switched

linear systems with saturation

3.1 Switched systems with linear dynamics subject to saturation

Consider a system consisting of several queues. The evolution of the system is characterized
by consecutive phases. In each phase each queue length exhibits a linear growth or decrease
until a certain upper or lower level is reached; then the queue length stays constant until the
end of the phase. A system the behavior of which satisfies this description will be called a
switched system with linear dynamics subject to saturation — or switched linear system with

saturation for short.
A typical example of a switched linear system with saturation is a traffic signal controlled

intersection provided that we use a continuous approximation for the queue lengths (see
Section 4) and that we assume that the arrival and departure rates of cars at the intersection
is constant during the time period under consideration (see Remark 3.2 and Section 4). For
a traffic signal controlled intersection the lower bound for the queue length is equal to 0. The
upper bound could correspond to the maximal available storage space due to the distance
to the preceding junction or to the layout of the intersection. We could assume that if this
upper bound is reached then newly arriving cars take another route to get to their destination.
Another example of a switched linear system with saturation is a system consisting of several
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fluid containers that are connected by tubes with valves and that have an opening at the top
(so that the fluid level in the containers can never exceed a given level) provided that we
assume that the increase or decrease of the fluid levels is linear if the system is not saturated.

Now we derive the equations that describe the evolution of the queue lengths in a switched
linear system with saturation. Let M be the number of queues. The length of queue i at time
t is denoted by qi(t). Let α

a
i,k, α

d
i,k, li,k and ui,k be respectively the arrival rate for queue i in

phase k, the departure rate for queue i in phase k, the lower bound for the queue length qi in
phase k and the upper bound for the queue length qi in phase k. The queue length growth
rate αi,k for queue i in phase k is given by αi,k = αa

i,k − αd
i,k. The evolution of the system

begins at time t0. Let t1, t2, . . . be the switching time instants, i.e., the time instants at
which the system switches from one phase to another. The length of the kth phase is equal to

δk
def
= tk+1 − tk. Note that δk > 0 for all k. We assume that 0 6 li,k+1 6 qi(tk+1) 6 ui,k+1 for

all i, k such that the queue lengths are always nonnegative and such that there are no sudden
jumps in the queue lengths due a change in the saturation level at one of the switching time
instants.

For queue i we have

dqi(t)

dt
=

{

αi,k if li,k < qi(t) < ui,k

0 otherwise,
(1)

for t ∈ (tk, tk+1) with k ∈ N. This implies that the evolution of the queue lengths at the
switching time instants is given by

qi(tk+1) = max
(

min(qi(tk) + αi,kδk, ui,k), li,k
)

for k = 0, 1, 2, . . . So if we define qi,k = qi(tk) and if we introduce the dummy variables zi,k,
we obtain

zi,k+1 = min(qi,k + αi,kδk, ui,k)

qi,k+1 = max(zi,k+1, li,k) .

If we define

zk =











z1,k
z2,k
...

zM,k











, qk =











q1,k
q2,k
...

qM,k











, αk =











α1,k

α2,k

...
αM,k











, lk =











l1,k
l2,k
...

lM,k











, uk =











u1,k
u2,k
...

uM,k











,

then this results in

zk+1 = min(qk + αkδk, uk) (2)

qk+1 = max(zk+1, lk) (3)

for k = 0, 1, 2, . . .

3.2 Optimal switching time sequences

Now we consider the problem of determining optimal switching time instants. Since our
approach is to be used for on-line optimization of switching time sequences, we only consider
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a finite number of switchings in the optimization procedure, say N , in combination with a
moving horizon approach (i.e., for a giving starting time t0 we compute an optimal switching
time sequence t1, t2, . . . , tN ; then we fix the time instant at the first phase switching will occur
at t1; next we compute an optimal switching time sequence t2, t3, . . . , tN+1; we fix the time
instant at the second phase switching will occur at t2; and so on). Note that by using a
moving horizon approach we can also take changes in the average arrival and departure rates
into account. Note that in general the optimal switching time sequence will be acyclic, i.e.,
the optimal phase lengths will not be equal.

So now we consider the following problem: for a given integer N and a given starting time
t0 we want to compute an optimal sequence t1, t2, . . . , tN of switching time instants that
minimizes a criterion such as:

• (weighted) average queue length over all queues:

J1 =
M
∑

i=1

wi
1

tN − t0

∫ tN

t0

qi(t) dt , (4)

• (weighted) average queue length over the worst queue:

J2 = max
i

(

wi
1

tN − t0

∫ tN

t0

qi(t) dt

)

, (5)

• (weighted) worst case queue length:

J3 = max
i, t

(

wi qi(t)
)

, (6)

• (weighted) average “waiting” time over all queues:

J4 =
M
∑

i=1

wi

∫ tN

t0

qi(t) dt

N−1
∑

k=0

αa
i,kδk

, (7)

• (weighted) average “waiting” time over the worst queue:

J5 = max
i















wi

∫ tN

t0

qi(t) dt

N−1
∑

k=0

αa
i,kδk















, (8)

where wi > 0 for all i.

Remark 3.1 The reason for introducing the factor tN−t0 in J1 and J2 is that in our approach
the time horizon is not fixed in advance. Using criteria based on time averaged values has
the advantage that we maintain finite values for the objective functions even if N or tN go to
∞ (provided that the queue lengths remain finite).
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We can impose extra conditions such as minimum and maximum durations for the switching
time intervals, minimum or maximum queue lengths (which could be useful in order to prevent
saturation at the lower or upper level for some queues), and so on. This leads to the following
problem:

minimize
δ0,δ1,...,δN−1

J (9)

subject to

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , N − 1, (10)

qmin,k 6 qk+1 6 qmax,k for k = 0, 1, . . . , N − 1 (11)

zk+1 = min(qk + αkδk, uk) for k = 0, 1, . . . , N − 1, (12)

qk+1 = max(zk+1, lk) for k = 0, 1, . . . , N − 1. (13)

where δmin,k and δmax,k are respectively the minimum and the maximum length of the kth
switching time interval (tk, tk+1) for queue i, and (qmin,k)i and (qmax,k)i are respectively the
minimum and the maximum queue length for queue i at time instant tk+1. Since the entries
of qk correspond to queue lengths, we may assume without loss of generality that qmin,k > 0
for all k.

If the lower and upper bounds for the queue lengths are finite, then the feasible set
(10)–(13) of the optimization problem is not convex since the evolution equations (12)–(13)
contain both minimization and maximization operations. Furthermore, this also implies that
the queue lengths are not a convex function of the phase lengths. Hence, the objective
functions J1 up to J5 are not convex. As a consequence, the optimization problem (9)–(13) is
a nonlinear non-convex optimization problem. In general such a problem can have many local
minima and is considered to be hard to solve. In the next section we discuss some methods
to solve the optimization problem (9)–(13).

3.3 The Extended Linear Complementarity Problem and optimal switch-

ing time sequences

Now we show that the system (10) – (13) can be reformulated as an ELCP. First consider (12)
for an arbitrary index k. This equation can be rewritten as follows:

zk+1 6 qk + αkδk

zk+1 6 uk

zi,k+1 = qi,k + αi,kδk or zi,k+1 = ui,k for i = 1, 2, . . . ,M ,

or equivalently

qk + αkδk − zk+1 > 0 (14)

uk − zk+1 > 0 (15)

(qk + αkδk − zk+1)i (uk − zk+1)i = 0 for i = 1, 2, . . . ,M (16)

Since a sum of nonnegative numbers is equal to 0 if and only if all the numbers are equal to
0, (16) is equivalent to:

M
∑

i=1

(qk + αkδk − zk+1)i (uk − zk+1)i = 0
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or
(qk + αkδk − zk+1)

T (uk − zk+1) = 0 . (17)

We can repeat this reasoning for (13) and for each index k. So if we define

xq =











q1
q2
...
qN











, xz =











−z1
−z2
...

−zN











, xδ =











δ0
δ1
...

δN−1











,

it is easy to verify that we finally get a problem of the form

minimize
xδ

J (18)

subject to

Axq +Bxz + Cxδ + d > 0 (19)

Exq + Fxz + g > 0 (20)

Hxq +Kxδ + l > 0 (21)

(Axq +Bxz + Cxδ + d)T (Exq + Fxz + g) = 0 , (22)

with appropriately defined matrices A, B, C, E, F , H, K, and vectors d, g, l. Equations
(19), (20) and (22) correspond to (14), (15) and (17) respectively, and the system of linear
inequalities (21) contains the conditions (10) and (11). It is easy to verify that the system
(19) – (22) is (a special case of) an ELCP. It is easy to verify that additional constraints
such as, e.g., a (maximum) total duration for the N phases (δ0 + δ1 + · · · + δN = Ttot

or (δ0 + δ1 + · · · + δN 6 Tmax) or (maximum) total durations for two consecutive phases
(δ2k + δ2k+1 = Tk or δ2k + δ2k+1 = Tmax,k), will still lead to an ELCP.

In order to determine the optimal switching time sequence we could minimize the objective
function J over the solution set of the ELCP (19) – (22) as follows. If we assume that xq and
xδ are bounded — note that a sufficient condition for this is that δmax,k is defined and finite
for all k, — then the solution set of the system (19) – (22) consists of a union of faces of
the polyhedron defined by (19) – (21). Each face of the polyhedron can be represented by its
vertices, and the points of the face can be written as convex combinations of these vertices.
We could for each face determine for which convex combination of the vertices the objective
function J reaches a global minimum over the face and afterwards select the overall minimum.
Our computational experiments have shown that in most cases the determination of the
minimum value of the objective functions given above is a well-behaved problem in the sense
that using a local minimization routine (that uses, e.g., sequential quadratic programming)
starting from different initial points almost always yields the same numerical result (within a
certain tolerance).

The algorithm of [2] to compute the solution set of a general ELCP requires exponential
execution times. This implies that the full-ELCP approach sketched above is not feasible if
the number of phases N is large. Therefore, we shall now discuss two approaches to compute
suboptimal solutions in a reasonable amount of time. In the next section we shall discuss
some other approaches to compute approximate solutions if there is no saturation at the
upper level.

The following approaches can be used to compute suboptimal switching time sequences
for cases where the full-ELCP approach is not tractable:

7



• multi-start local optimization:
The objective functions defined in Section 3.2 do not explicitly depend on xq and xz
since for given q0, αi,k’s, li,k’s and ui,k’s, the components of xq and xz are uniquely
determined by xδ.
So if there are no extra constraining bounds on the qk’s (i.e., if (qmin,k)i 6 li,k and
(qmax,k)i > ui,k for all i, k), then problem (9) – (13) reduces to a constrained optimization
problem in xδ, which could be solved using a constrained local minimization algorithm.
Note that the constraints on xδ are simple upper and lower bound constraints on the
components of xδ.
If (qmin,k)i > li,k or (qmax,k)i < ui,k for some pairs of indices (i, k), we can still use
this constrained local minimization approach by adding an extra penalty term to J if
qi,k < (qmin,k)i or qi,k > (qmax,k)i.
The major disadvantage of this approach is that in general the minimization routine
will only return a local minimum. Our computational experiments have shown that it
is necessary to run the constrained local minimization algorithm several times — each
time with a different initial starting point —in order to obtain the global minimum.

• multi-ELCP approach:
If N is large, we could consider a smaller number Ns of phases, compute the optimal
switching strategy for the first Ns phases using the full-ELCP method, implement the
first step(s) of this strategy, afterwards compute the optimal switching strategy for
the next Ns phases, implement the first step(s) of this strategy, and so on. We call
this approach the multi-ELCP approach. Since the ELCPs for a horizon of Ns phases
will be much smaller than the ELCP for N phases, the multi-ELCP approach will be
tractable in practice even if N is large. Note that in general this approach will only
give a suboptimal solution. This suboptimal solution can be used as the starting point
for a local minimization routine applied to the original full problem.

In practice there is always some uncertainty and variation in time of the queue length growth
rates, which makes that in general computing the exact optimal switching time sequence is
utopian. Moreover, in practice we are more interested in quickly obtaining a good approxi-
mation of the optimal switching time sequence than in spending a large amount of time to
obtain the exact optimal switching time sequence. In the next section we shall consider a
subclass of switched linear systems that only have saturation at a lower bound. In that case
it is possible to make some extra approximations that lead to very efficient algorithms to
compute suboptimal switching time sequences.

Remark 3.2 Note that we can also use a switched linear system with saturation as an
approximate model if we have a switched system subject to saturation in which the queue
length growth or decrease rates are slowly time-varying: we can approximate time-varying
rate functions by piecewise constant functions. Although in general we do not know the
exact behavior of these functions in advance the behavior can often be predicted on the basis
of historical data and measurements. Also note that we do not know the lengths of the
phases in advance. In order to determine the average rates for each phase, we could therefore
first assume that all phases have equal length. Then we compute an optimal or suboptimal
switching time sequence and use the result to get better estimates of the lengths of the phases
and thus also of the average queue length growth rates in each phase, which can then be
used as the input for another optimization run. If necessary we could repeat this process in

8



an iterative way. Note that this iterative procedure is an heuristic approach, which is not
guaranteed to converge.

3.4 Suboptimal switching time sequences for systems with saturation at a

lower level only

In this section we consider switched linear systems with saturation at the lower level only.
So ui,k is equal to ∞ for all i, k, or equivalently (qmax,k)i 6 ui,k for all i, k, i.e., the switching
times will be selected such that the upper saturation level will never be reached. Furthermore,
we assume that qmin,k 6 lk for all k, i.e., we do not impose extra lower bound conditions on
the queue lengths.

If there is no upper saturation and if there are no extra lower bound conditions on the
queue lengths, the optimal switching problem (9) – (13) reduces to

minimize
xδ

J (23)

subject to

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , N − 1, (24)

qk+1 6 qmax,k for k = 0, 1, . . . , N − 1 (25)

qk+1 = max(qk + αkδk, lk) for k = 0, 1, . . . , N − 1. (26)

We call this problem P.
Recall that the objective functions J1, J2, J3, J4 and J5 defined in Section 3.2 do not

explicitly depend on xq since for given q0, αi,k’s and li,k’s the components of xq are uniquely
determined by xδ. The approximate objective functions that we will introduce next will
depend explicitly on xq and xδ.

For a given q0 and t0, we define the function q̃i(·, xq, xδ) — or q̃i(·) for short — as the
piecewise-linear function that interpolates in the points (tk, qi,k) for k = 0, 1, . . . , N . The
approximate objective functions J̃1, J̃2, J̃3, J̃4 and J̃5 are defined as in Section 3.2 but with qi
replaced by q̃i. It is easy to verify that the values of J3 and J̃3 coincide. Now let l ∈ {1, 2, 4, 5}.
Note that the value of the objective functions Jl and J̃l depends on the surface under the
functions qi and q̃i respectively. In a situation such as the one represented in Figure 1 where
the queue lengths alternatively decrease and increase the surface under the function q̃i will be
a reasonable approximation of the surface under the function qi. Note that this will certainly
be the case for a traffic signal controlled intersection where the traffic signals alternate between
green and red (with a short amber phase in between) since an optimal traffic signal switching
time sequence implies the absence of long periods in which no cars wait in one lane while in
the other lanes the queue lengths increase. So if we have an optimal traffic signal switching
time sequence, then the periods during which the queue length in some lane is equal to 0 are
in general short and then the optimal value of J̃l will be a good approximation of the optimal
value of Jl.

Now we show that the use of the approximate objective functions J̃1 or J̃4 leads to an
optimization problem that can be solved more efficiently than the original problem in which
J1 or J4 is used. We define the “relaxed” problem P̃ corresponding to the problem P as:

minimize
xq ,xδ

J (27)
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+1i,k

i,k

+2i,k

q
i

q
i

~

tk tk+1 tk+2

q

q

q

Figure 1: The functions qi (full line) and q̃i (dashed line) for a queue with a decrease phase
and a subsequent positive growth phase and without saturation at an upper level. Note that
in the growth phase the functions qi and q̃i coincide.

subject to

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , N − 1, (28)

qk+1 6 qmax,k for k = 0, 1, . . . , N − 1 (29)

qk+1 > qk + αkδk for k = 0, 1, . . . , N − 1, (30)

qk+1 > lk for k = 0, 1, . . . , N − 1. (31)

So compared to the original problem we have replaced (26) by relaxed equations of the form
(14) – (15) without taking (16) or (17) into account. As a consequence, xq and xδ are not
directly coupled any more.
Note that in general it is easier to solve the relaxed problem P̃ than the problem P since
the set of feasible solutions of P̃ is a convex set, whereas the set of feasible solutions of P is
in general not convex since it consists of a union of faces of the polyhedron defined by the
system of inequalities (28) – (31).
The following propositions show that for the objective functions J̃1 and J̃4 any optimal so-
lution of the relaxed problem P̃ is also an optimal solution of the problem P. Another
advantage of J̃1 and J̃4 is that using formula (32) given below we can compute the gradient of
these objective functions analytically which in general speeds up the minimization algorithm
significantly.

Proposition 3.3 If J is a strictly monotonous function of xq — i.e., if for any xδ with

positive components and for all x̃q, x̂q with x̃q 6 x̂q and with (x̃q)j < (x̂q)j for at least one

index j, we have J(x̃q, xδ) < J(x̂q, xδ) — then any optimal solution of the relaxed problem P̃
is also an optimal solution of the problem P.

Proof : Let (x∗q , x
∗

δ) be an optimal solution of P̃. Now we show by contradiction that if J
depends strictly monotonously on xq, then (x∗q , x

∗

δ) also satisfies (26), i.e., (x∗q , x
∗

δ) is a feasible
solution of P.
Assume that (x∗q , x

∗

δ) does not satisfy (26). Let p be the smallest index such that

q∗p+1 > max(q∗p + αpδ
∗

p, lp) and (q∗p+1)i = q∗i,p+1 6= max
(

q∗i,p + αi,pδ
∗

p, li,p)
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for some index i.
Now define x

♯
δ = x∗δ and x

♯
q such that

q
♯
k = q∗k for k = 0, 1, . . . , p,

q
♯
k+1 = max(q♯k + αkδ

♯
k, lk) for k = p, p+ 1, . . . , N − 1.

Note that q
♯
p+1 6 q∗p+1. Since δ

♯
k = δ∗k for all k, this implies that q

♯
k 6 q∗k for k = p + 2, p +

3, . . . , N . Hence, x♯q 6 x∗q . Since q
♯
k 6 q∗k 6 qmax,k for all k, this implies that (x♯q, x

♯
δ) is also a

feasible solution of P̃.
Since x♯q 6 x∗q and (x♯q)j < (x∗q)j for at least one index j = Mp+ i and since x♯δ = x∗δ , we have

J(x♯q, x
♯
δ) < J(x∗q , x

∗

δ) which implies that (x∗q , x
∗

δ) is not an optimal solution of P̃. Since this
is a contradiction, our initial assumption that (x∗q , x

∗

δ) does not satisfy (26) is wrong. Hence,
(x∗q , x

∗

δ) also is a feasible solution of the problem P and since the set of feasible solutions of

P is a subset of the set of feasible solutions of P̃ this implies that (x∗q , x
∗

δ) is also an optimal
solution of P. ✷

Proposition 3.4 For given q0, αi,k’s, li,k’s and a given xδ the functions J̃1 and J̃4 are strictly

monotonous functions of xq.

Proof : Let xδ ∈ R
N with xδ > 0 and let x∗q , x

♯
q ∈ R

MN with x∗q , x
♯
q > 0. If x

♯
q 6 x∗q

and (x♯q)j < (x∗q)j for at least one index j = M(k − 1) + i with i, k ∈ N0 then we have

q̃i(t, x
♯
q, x

♯
δ) 6 q̃i(t, x

∗

q , x
∗

δ) for all t ∈ [t0, tN ], and q̃i(t, x
♯
q, x

♯
δ) < q̃i(t, x

∗

q , x
∗

δ) in some non-empty
interval (tk − η, tk + η) ∩ [t0, tN ] with η > 0. Hence,

∫ tN

t0

q̃i(t, x
♯
q, x

♯
δ) dt <

∫ tN

t0

q̃i(t, x
∗

q , x
∗

δ) dt ,

which implies that J̃1(x
♯
q, x

♯
δ) < J̃1(x

∗

q , x
∗

δ) and J̃4(x
♯
q, x

♯
δ) < J̃4(x

∗

q , x
∗

δ). ✷

It is easy to verify that J̃2, J̃3 and J̃5 are in general not strictly monotonous functions of xq
for a given xδ. Although in general J̃1 and J̃4 are not convex functions of xq and xδ, our
computational experiments have shown that the objective functions J̃1 and J̃4 are smooth
enough, so that selecting different starting points for the optimization routine almost always
leads to more or less the same numerical result (see also [5]).

We shall now discuss a further approximation of J̃1 and J̃4 that will lead to a problem
that can be solved very efficiently. Since

∫ tk+1

tk

q̃i(t, xq, xδ)dt =
δk

2
(qi,k + qi,k+1) , (32)

we have

J̃1(xq, xδ) =
M
∑

i=1

wi

N−1
∑

k=0

δk(qi,k + qi,k+1)

2(δ0 + δ1 + . . .+ δN−1)
. (33)

If we assume that δk ≈ tN−t0
N

for all k then (33) leads to:
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J̃1(xq, xδ) ≈

M
∑

i=1

wi

(

1

2N
qi,0 +

N−1
∑

k=1

1

N
qi,k +

1

2N
qi,N

)

def
= Ĵ1(xq) .

Note that Ĵ1 is an affine function of xq. Since scaling of an affine objective function and

subtracting a constant term

(

M
∑

i=1

wi

2N
qi,0

)

does not change the location of the minimum,

this implies that we can minimize Jlin = ωTxq with

ω =
[

w1 w2 . . . wM w1 w2 . . . wM w1 w2 . . . wM
w1

2

w2

2
. . .

wM

2

]T

in order to find a minimum of Ĵ1. We can use a similar reasoning to obtain a linear approxima-
tion of the objective function J̃4. Since wi > 0 for all i, Jlin is a strictly monotonous function
of xq. As a consequence, Proposition 3.3 implies that for J = Jlin problem P reduces to a
linear programming problem, which can be solved efficiently using (variants of) the simplex
method or using an interior point method (see, e.g., [10]).

It is easy to verify that the reduction to a linear objective function is still possible if instead
of assuming all δk’s to be equal, we impose relative durations for the lengths of the phases,
i.e., we select coefficients ρk such that δk = ρkδ̄ for some, yet unknown, δ̄. The assumption
considered above that all δk’s are equal would correspond to ρk = 1 for all k. Note that the
assumption on the relative lengths is only used to simplify the objective function; it will not be
included explicitly in the linear programming problem. As a consequence, the optimal δk’s do
not necessarily have to satisfy the assumption on the relative lengths (see, e.g., Example 4.2).

Remark 3.5 Note that the approximate solutions obtained using the methods presented in
this section can be used as starting points for a local minimization routine applied to the
problem P̃ (with the objective functions J̃1 or J̃4) or to the original problem P (with the
objective functions J1 or J4).

4 Optimal traffic signal control

In this section we show that the models and methods presented in this paper can be used to
compute optimal traffic signal switching time sequences. We shall first illustrate this for a
simple set-up consisting of an intersection of two two-way streets (see Figure 2). There are
four lanes L1, L2, L3 and L4, and on each corner of the intersection there is a traffic signal
(T1, T2, T3 and T4). For each traffic signal there are three subsequent phases: green, amber,
and red. The switching scheme for the intersection is given in Table 1. Since all the cars will
leave the queue in lane Li provided that we make the length of the green phase in lane Li

large enough, we have lk = qmin,k = 0 for all k. We assume that there is no saturation at the
upper level, either due to the fact that there is enough buffer space before the traffic signal
in each lane or due to the fact that we impose additional maximal queue length conditions
such that qmax,k 6 uk.

In order to obtain a model that is amenable to mathematical analysis, we shall make two
extra assumptions that will result in a simple model that can be analyzed very easily and for
which we can efficiently compute (sub)optimal traffic signal switching time sequences using
the methods presented in Section 3.4. From now on we make the following assumptions:
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Figure 2: A traffic signal controlled intersection of two two-way streets.

Period T1 T2 T3 T4

t0–t1 red green red green

t1–t2 red amber red amber

t2–t3 green red green red

t3–t4 amber red amber red

t4–t5 red green red green

t5–t6 red amber red amber
...

...
...

...
...

Table 1: The traffic signal switching scheme.

• the queue lengths are continuous variables,

• the average arrival and departure rates of the cars are constant (or slowly time-varying).

These assumptions deserve a few remarks:

• Recall that the main purpose is to compute optimal traffic signal control schemes.
Designing optimal traffic signal switching schemes is only useful if the arrival and de-
parture rates of vehicles at the intersection are high. In that case, approximating the
queue lengths by continuous variables only introduces small errors. Furthermore, there
is also some uncertainty and variation in time of the arrival and departure rates, which
makes that in general computing the exact optimal traffic signal switching time sequence
is utopian. Moreover, in practice we are more interested in quickly obtaining a good
approximation of the optimal traffic signal switching time sequence than in spending a
large amount of time to obtain the exact optimal traffic signal switching time sequence.

13



• If we keep in mind that one of the main purposes of the model that we shall derive,
is the design of optimal traffic signal switching time sequences, then assuming that the
average arrival and departure rates are constant is not a serious restriction, provided
that we use a moving horizon strategy : we compute the optimal traffic signal switching
time sequence for, say, the next N = 10 phases, based on a prediction of the average
arrival and departure rates (using data measured during the previous phases) and we
apply this scheme during the first of the 10 phases, meanwhile we update our estimates
of the arrival and departure rates and compute a new optimal switching time sequence
for the next 10 phases, and so on.
We can also combine this approach with the iterative procedure discussed in Remark 3.2.

Let λi be the average arrival rate of cars in lane Li, and let µ
green
i and µamber

i be the
departure rates of cars in lane Li when the traffic signal Ti is green respectively amber. If we
define

αa
i,k = λi

αd
i,k =











0 if Ti is red in (tk, tk+1)

µ
green
i if Ti is green in (tk, tk+1)

µamber
i if Ti is amber in (tk, tk+1)

for all i, k, then the relation between the switching time instants and the queue lengths is
described by a system of equations of the form (26) and then we can use the techniques
presented in Sections 3.2 and 3.4 to compute optimal and suboptimal traffic signal switching
time sequences.

Remark 4.1 Note that the model derived above can accommodate varying amber durations.
However, in many countries the amber time is fixed by regulation (e.g., to 3 s in France). If
we assume that the duration of the amber phase is fixed, then we can adapt our model and
reduce the number of variables (see also [5]).

In the simple traffic signal set-up discussed above we did not make a distinction between cars
that turn left, right or that go straight ahead. However, the approach presented in this paper
can also be applied to more complex set-ups or more complex traffic signal switching schemes
such as, e.g., the one depicted in Figure 3 which consists of four main phases with amber
phases in between where in the first main phase cars on the north-south axis can go straight
ahead or turn right, in the next main phase they can turn left, and in the next two main
phases the same process is repeated for the traffic on the east-west axis. As a consequence,
the method of this paper can also be used to efficiently compute suboptimal traffic signal
switching schemes for a more complex intersection and/or switching scheme than the one
presented above.

The following traffic signal control example illustrates that using the approximations for
the objective function J1 that have been introduced in Section 3.4 leads to good suboptimal
solutions that can be computed very efficiently. All times will be expressed in seconds and
all rates in vehicles per second. The numerical results will be given up to 3 decimal places
unless explicitly stated otherwise.
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Figure 3: The four main phases of a more complex traffic signal switching scheme. The arrows
indicate possible directions for the cars that receive a green signal.

Example 4.2 Consider the intersection of Figure 2 with the switching scheme of Table 1 and
with the following data: λ1 = 0.22, λ2 = 0.11, λ3 = 0.19, λ4 = 0.13, µgreen

1 = µ
green
3 = 0.51,

µ
green
2 = µ

green
4 = 0.42, µamber

1 = µamber
3 = 0.05, µamber

2 = µamber
4 = 0.03, t0 = 0, q0 =

[ 21 16 9 7 ]T and qmax,k = [ 25 20 25 20 ]T for all k. The minimum and maximum length
of the green phases are respectively 6 and 60, and the minimum and maximum length of the
amber phases are respectively 2 and 5. Let w = [ 2 1 2 1 ]T .

Suppose that we want to compute a traffic signal switching sequence t1, t2, . . . , t10 that
minimizes J1 — the weighted average queue length over all queues.
We have computed an optimal solution x∗δ,ELCP using the full-ELCP method, a suboptimal
solution x∗δ,penalty using constrained optimization with a penalty function for queue lengths
that exceed qmax,k, a multi-ELCP suboptimal solution x∗δ,multi with Ns = 5, a solution x∗δ,approx
that minimizes the approximate objective function J̃1 (using the relaxed problem P̃), and a
linear programming solution x∗δ,linear (also using the relaxed problem P̃ and with the linear
objective function obtained by assuming that the length of the green phases is 10 times the
length of the amber phases). This results in

x∗δ,elcp = [ 10.226 3.000 60.000 3.000 43.188 3.000 60.000 3.000 52.496 3.000 ]T

x∗δ,penalty = [ 10.354 3.000 60.000 3.000 43.063 3.000 60.000 3.000 51.846 3.000 ]T

x∗δ,multi = [ 10.226 3.000 60.000 3.000 43.188 3.000 60.000 3.000 31.818 3.000 ]T

x∗δ,approx = [ 10.226 3.000 60.000 3.000 43.188 3.000 59.245 3.000 44.189 5.000 ]T

x∗δ,linear = [ 15.182 3.000 60.000 3.000 38.232 3.000 59.245 3.000 6.000 3.000 ]T

Note that for the optimal linear solution x∗δ,linear the 10 to 1 ratio for the lengths of the green
versus the amber phases does not hold. The reason for this is that the assumption on the
relative lengths of the green and amber phases was only used to simplify the objective function
and was not included explicitly in the linear programming problem.

In Table 2 we have listed the values of the objective functions J1, J̃1 and Ĵ1 for the
various switching interval vectors x∗δ and the CPU time needed to compute the switching
interval vectors on a Sun Ultra 10 300 MHz workstation with 640 MB RAM and with the
optimization routines called from MATLAB and implemented in C or Fortran. The CPU time
values listed in the table are average values over 10 experiments. For x∗δ,penalty we have listed
the best solution over 20 runs with random initial points (The mean of the objective values of
the local minima returned by the minimization routine was 50.123 with a standard deviation
of 3.275); the indicated CPU time is the time needed for the 20 runs. For x∗δ,approx different
starting points always lead to more or less the same numerical value of the optimal objective
function (In an experiment with 20 random starting points the first 12 decimal places of the
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Figure 4: The queue lengths in the various lanes as a function of time for the traffic signal
switching sequence that corresponds to the switching interval vector x∗δ,ELCP of Example 4.2.
The * signs on the time axis correspond to the switching time instants.
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Figure 5: The queue lengths in the various lanes as a function of time for an integer queue
length simulation for the traffic signal switching sequence that corresponds to the switching
interval vector x∗δ,ELCP. The integer queue length functions are plotted in full lines and their
continuous approximations in dotted lines.
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final objective function always had the same value). Therefore, we have only performed one
run with an arbitrary random initial point here.

In this example the ELCP solution is only given as a reference since the CPU time needed
to compute the optimal switching interval vector using the ELCP algorithm of [2] increases
exponentially as the number of phases N increases. This implies that the full-ELCP approach
should never be used in practice, but one of the suboptimal methods given in Sections 3.3
and 3.4 should be used instead. If we look at Table 2 then we see that if we take the trade-off
between optimality and efficiency into account, then the x∗δ,approx solution is clearly the most
interesting.

The evolution of the queue lengths for the optimal control strategy that corresponds to
x∗δ,ELCP is represented in Figure 4. In Figure 5 we have plotted the results of an integer
queue length simulation for the traffic signal switching strategy that corresponds to optimal
switching interval vector x∗δ,ELCP. The effective average queue length over all lanes for this
simulation is 50.642.

The main purpose of the computational simulations of this example is to illustrate the
effectiveness of using Propositions 3.3 and 3.4 to transform the original, hard optimization
problem into a relaxed, easy optimization problem. Simulation results for the objective func-
tion J4 lead to similar results as for J1. Note that we have not considered the objective
functions J2, J3 and J5 since for these objective functions we cannot apply Proposition 3.3. ✷

For more information on other models for the evolution of the queue lengths at a traffic signal
controlled intersection and on optimal traffic signal control the interested reader is referred
to [6, 7, 8, 9, 11, 12] and to the references given therein. The main difference between the
traffic model presented in this paper and the models used by most other researchers is that
in our approach the green-amber-red cycles lengths may vary from cycle to cycle, which —
in contrast to a fixed cycle length — adds an extra degree of freedom to obtain an optimal
switching time sequence.

x∗δ J1(x
∗

δ) J̃1(x
∗

δ) Ĵ1(x
∗

δ) CPU time

x∗δ,ELCP 47.367 50.402 55.294 58601.61

x∗δ,penalty 47.376 50.385 55.229 57.76

x∗δ,multi 48.105 50.774 53.871 240.19

x∗δ,approx 47.497 50.153 54.533 2.87

x∗δ,linear 51.160 53.941 52.798 1.84

Table 2: The values of the objective functions J1, J̃1 and Ĵ1 (up to 3 decimal places) and the
CPU time (up to 2 decimal places) needed to compute the (sub)optimal switching interval
vectors of Example 4.2.
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5 Conclusions and future research

We have introduced the Extended Linear Complementarity Problem (ELCP) and indicated
how it can be used to determine optimal switching time sequences for a class of switched
systems with linear dynamics subject to saturation. Since the ELCP is NP-hard, we have
also discussed several techniques to efficiently compute suboptimal and approximate switching
time sequences. Next we have applied these results to design (sub)optimal switching time
sequences for traffic signal controlled intersections.

In this paper we have derived methods to optimize performance measures such as average
or worst case waiting times and queue lengths for a switched system with linear dynamics
subject to saturation. So we have considered quantitative properties of the system. If we
are more interested in qualitative properties such as, e.g., safety, we could use the techniques
presented in [13].

An important topic for future research is the extension of the results obtained in this
paper to networks of dependent queues, i.e., a situation where the outputs of some queues
will be connected the inputs of some other queues. If we use a moving horizon strategy in
combination with a decentralized control solution, we can apply still the approach given in
this paper and use measurements from one queue to predict the arrival rates at the other
queues provided that we know the routing rates rij (i.e., the amount of cars, fluid, . . . that
will be routed from the output of queue i to the input of queue j) and the traveling times tij
from one queue to another.

Also note that we have assumed that the phase sequence order was pre-fixed. We could
use the switching time optimization presented in this paper as an inner loop in a discrete
optimization outer loop that also optimizes the phase order.

Other topics for further research include: development of other efficient algorithms and/or
approximations to compute optimal switching strategies for the class of systems discussed in
this paper, development of efficient algorithms for the special cases of the ELCP that appear
in the analysis of specific classes of switched linear systems with saturation, and investigation
of the use of the ELCP to model and to control other classes of switched systems.
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