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Near-Optimal Admission Control for Multiserver Loss Queues

in Series with Light Traffic

Cheng-Yuan Ku
Department of Information Management
National Chung Cheng University, Chia-Yi County, Taiwan, ROC
&
Scott Jordan
Department of Electrical and Computer Engineering
University of California, Irvine, CA 92697-2625, USA

Abstract

This paper considers access control policies in multiserver loss queues in series, such as
might arise in the context of computer and telecommunication networks. Each queue is
presented with both served upstream customers and Poisson arrivals from outside the
network, and it may route serviced customers out of the network or to the downstream queue.
Revenue is gained by each station when it serves a customer, but the amount of revenue
depends on whether the customer entered the network at this station or was routed from an
upstream station. We propose a simple recursive method to solve the problem using dynamic
programming on a set of reduced state spaces. This approach includes a rate estimation
technique for upstream stations, and a revenue estimation technique for downstream stations,
based on a light-traffic model. Numerical results demonstrate the performance of these
near-optimal policies.
Keywords: Queueing; Dynamic programming; Connection admission control; Downsizing

approximation; Optimisation



1. Introduction

This paper considers access control policies in multiserver loss queues in series. Each
queue is presented with arrivals of customers of two types: a stream of "internal customers"
from the previous queue, and a Poisson stream of "new customers" from outside the network.
Each queue has an arbitrary number of servers, but no queue. Service times of each customer
are 1.1.d., but the revenue generated is differentiated, with internal customers typically paying
more than new customers. Departures from the queue are Bernoulli routed either to the next
queue or out of the network, independent of their type. We are interested in the access control
policy, which will make a decision to accept or deny upon the arrival of any customer at each
queue. The objective here is to maximize the total discounted revenue over an infinite

horizon.

This problem arises in the context of computer and telecommunication networks, e.g.
Internet and Asynchronous Transfer Mode (ATM), which transport real-time traffic [1], [3],
[12], [21]. Computer networks were originally designed for "best-effort traffic", and
typically serve traffic on a first-come first-served basis in a series of queues.
Telecommunication networks, on the other hand, were originally designed for real-time
traffic using a "circuit-switched architecture" -- each station has essentially no queue and
reserves one server (defined as the transmission capacity required for one call) for each call

passing through it.

Both types of networks are currently evolving toward multi-service architectures, in
which transmission of traffic at each station is differentiated based on the service type. In
particular, we are interested here in real-time traffic. The new network architectures strictly

limit queueing time for real-time traffic, because of their inherent low-delay requirements. In



addition, these architectures implement some type of reservation or priority mechanisms to
give real-time traffic preference over best-effort traffic [13]-[16]. These reservation or
priority mechanisms typically result in a connection admission control (CAC) policy on

real-time calls, based on the capacity of each station.

In this paper, we model this type of network as a series of multi-server loss queues.
Only a single series of queues is considered here; extensions to a general network topology
will be considered at a later time. We assume that real-time traffic is given preference over
best-effort traffic; hence only real-time traffic is modeled. Delay is minimized by not
allowing real-time traffic to queue at any station. We only model the network traffic on an
intermediate time scale. A "customer" corresponds to a burst of real-time traffic, i.e. a
randomly sized batch of packets; we do not explicitly model long-term time scale
phenomena, e.g. calls. The CAC policy is modeled by a server policy at each station that can
reserve any number of servers for internal customers. In order to allow the policy to achieve
the desired balance of blocking of internal and new customers, we assume that each customer
pays revenue to each station it passes through. The amount of the revenue can depend on the
station and on its type. In general, internal customers would be assumed to pay more, in order
to bias the network in favor of completing transmission of traffic that has already received

service at a previous station.

A good survey of research on access control policies in queueing networks can be found
in [19], [20]. Most of the research on this topic, however, focuses on infinite queue models
and uses holding costs as the performance metric. In contrast, here we assume a loss network,

and use loss as the performance metric.

The typical approach to determine the optimal decision policy at each queue in a

network, as a function of the number of customers at each station, is to use dynamic



programming [2], [8], [9], [19]. However the size of the Markov chain for the entire network
grows exponentially with number of stations, so this approach quickly becomes numerically

infeasible.

Our goal in this paper is to reduce the amount of information contained in the state, and
correspondingly the size of the state space. We borrow an idea often used in the stochastic
modeling literature, where a common approach models only the bottleneck queue(s) in a
network, by recursively estimating internal flow rates. We are unaware of such an approach

being used in optimization of loss networks.

We propose determining a near-optimal policy for station i by creating a reduced
model whose state contains only the number of customers at station i and the number of
customers at its immediate upstream station i —1. This procedure ignores the states of
stations upstream from i —1, so it requires estimation of the flow into that station. We also
need to eliminate stations downstream from i. This reduction, however, contributes
significant error to the decision as to whether to accept new customers. Therefore we propose
a method to estimate the downstream revenue and to take this information into account at

station i.

The control policy at one station affects upstream stations by altering their expected
downstream revenue, and it affects downstream stations by altering their expected flow of
internal customers. We therefore propose to apply these two techniques, rate estimation and
revenue estimation, using simple recursions. Numerical results are presented to demonstrate

the success of this approach.



The multi-server-loss-queues-in-series model and problem formulation is presented in
section 2. In section 3, the state reduction method, along with rate and revenue estimation

techniques, is proposed. In section 4, the numerical results are presented.

2. Model and problem formulation

Denote by n the number of stations in the tandem network. Station i is a

non-preemptive loss queue with m, servers. Each station is presented with a Poisson stream
of new customers, with arrival rate A,. Service times are i.i.d. and exponential at rate [,.
Departures from station i are routed out of the network with probability P, or to station i +1

otherwise, independent where the customer entered the network, the customer's service time,

and of other customers. This network is pictured in Fig. 1.

MI/M/m /m — JM/m,/m, dMIm,/m,

Fig. 1. A finite number of multi-server loss queues in series

Revenue is paid by each customer at the start of service. If the customer entered the

network at station 7, it pays an amount 7, at station i. If the customer entered at an upstream
station, it pays an amount R, at station i. We assume R, >r, (2<i<n), so that internal

customers are preferable to new customers at station i, and that 1> P, 20 (1<i<n-1).



We consider connection admission control policies that are capable of accepting or
blocking arrivals of each customer type (internal or new) at each station. Blocked arrivals are
lost. Our objective is to maximize the total discounted revenue over an infinite horizon. The
optimal policy does not block customers at station 1 and does not block internal customers at
any station [9], [10]. Admission policies therefore reduce to determining whether to block or
accept new arrivals at station i, 2 <i < n. For a two-station-in-tandem network, the optimal
policy can be shown to consist of a switching curve in the two-dimensional state space [9],
[10]. On one side of the curve, new arrivals are accepted; on the other side, new arrivals are
blocked. Unfortunately, a similar characterization for the optimal policy in a series of more
than 2 stations is unknown. Our objective here is to numerically determine a near-optimal

policy.

3. State space reduction

Dynamic programming can be used to determine the optimal policy, which states
whether to accept or block each new arrival at each station as a function of the number of
current customers at each station in the network. However, the numerical complexity grows
exponentially with the dimension of the state space, n. This renders computation of the
optimal policy difficult for all but very small ». In this section, we propose a technique to
reduce the dynamic programming problem to a collection of smaller problems, each of which

consists of determining a switching curve for a single station.

Consider a particular station i. We propose determining a near-optimal policy for
station i by reducing the state to a vector containing only the number of customers at station
i and the number of customers at its immediate upstream station i —1. This procedure
requires estimation of two quantities: (1) the flow into station i —1 and (2) the expected

discounted reward paid at downstream stations. We will denote our estimate of the flow into



station i by I',, our estimate of the flow out of station i by d,, and our estimate of the

downstream discounted net revenue for a customer leaving station i by O, .

The estimation of rates is discussed in the first subsection, and the estimation of rewards

1s discussed in the second subsection.

3.1 Estimation of upstream rates

Reduction of the state space will involve elimination of both upstream and downstream
stations, reducing the state space for a single station to a vector containing the number of
customers in that station and the number in its immediate upstream neighbor. This tandem
queue can be easily analyzed. In this subsection, we consider elimination of upstream

stations.

Focus on station i. Elimination of stations 1 through i —2 will reduce the information
we have about short-term arrival rate variations of internal customers. The number of servers
reserved for internal customers at station i will typically be increasing with the number of
current customers present at each station upstream from i. However, we expect that the
contribution of an upstream station to the reservation level at station i will be decreasing
with the distance between the two stations. A reasonable approach, therefore, is to eliminate
all but the immediate upstream neighbor, station i —1, as shown in Fig. 2. (A more accurate,
but computationally more intensive, model is to keep additional upstream stations, e.g. from

i —2 to i and estimate the arrival rate into station i —2.)



Fig. 2. Eliminating the upstream stations

We make two approximations to simplify the model. First, we assume that the arrival
process into station i —1 is Poisson. The arrival process into station i —1 is the multiplexing
of the departure process from station i — 2, thinned by those departing the network, and the
new arrivals into station i/ —1. Since the departure process from station i —2 is not Poisson,
the arrival process into station i —1 is not Poisson. Nevertheless, we have found this

approximation to yield good results, under light traffic.

Second, for purposes of estimating the arrival rate into station i —1, we model the
upstream stations 1 through i —1 as uncontrolled loss queues. The rate of the departures from
station i —2 depends on the control policy used in station i —2. However, under light traffic,
ignoring this control policy is a reasonable approximation. Under moderate traffic, this
second approximation can be avoided by explicitly using information about the control
policies used in upstream stations. The resulting method then includes an iteration, which

significantly increases the computational complexity [9], [10].

Our approach requires estimation of the arrival rate of customers into station i —1, I',_,.

We approximate the flow into station i —1 as a Poisson process, with a rate equal to the flow



rate from station i —2 to station i —1 plus the rate of new arrivals into station i —1.

Every station in this systemisa M /M /m/m loss queue. Therefore, the loss probability

is given by the Erlang B. If the arrival rate is A and the service rate is U, then:

M

2

Blocking probability p(A, u,m) =

/\/u

For station j, 2 < j <i-—1, we estimate rates using conservation of flow:
r,=d;. (1- P )+ A

As noted above, this approximation method of the arrival rate depends on the departure
rate of the previous station. Using the Erlang B formula, we can approximate the departure

rate as:
dj—l = rj—l[1 _p(rj—louj'—lomj_l)]~

Denote g,(A) = A [1 - p(A, ., m, )](l —P.). This approximation can then be implemented

using a recursion, and the two preceding equations. For station 1, the estimated arrival rate is

equal to the arrival rate of new customers:

For station 2, the estimated arrival rate is based on the departure rate of station 1

customers and the arrival of new customers:

r,= dl(l_P1)+A2 = rl[l_p(rl’ul’ml)](l_l)l)-'-/\z =g1(r1)+/\2 =g1(A1)+A2-



The recursion continues to estimate the arrival rate into station i —1:

Mo =d. ( P12)+A ~|__2[1 ( Z’I’li—Z’mi—Z)](l_Pi—2)+Ai—l

=8 (rz z)+A gi—z( i—B(DHI__(gZ(gl(AI)-I_A2)+A3)DD])]+A1‘—2)+A[—1.
3.2 Estimation of downstream revenues

The second part of the reduction method of the state space involves elimination of the
downstream stations. Again, we focus on station i. Customers departing from station 7, with a
positive probability will enter station i +1 (and possibly additional downstream stations).
Therefore, these customers will generate further income to the network, which should be
taken into account when the system managers are formulating the admission control policy at

station i.

If we knew the number of customers at each downstream station, we could estimate
(using dynamic programming) the future net revenue generated downstream. Indeed, the
probability that a current customer at station i will be blocked at downstream stations
increases with the number of current customers at these downstream stations; therefore the
expected revenue this customer at station i will generate downstream is decreasing with the

number of downstream customers.

Our estimation technique is based on the idea that the total expected discounted net
revenue a customer will generate at downstream stations can replace the explicit effect of
including all stations in the dynamic programming problem. Net revenue is defined as the
revenue generated by this customer minus the lost revenue from blocking of new customers

due to this customer.

Using this estimate, we base the control decision at station i on the reward a customer



pays at station i plus the expected discounted net downstream revenue, denoted as ©,. The

downstream revenue is independent of whether the customer at station i is internal or new.

Our method therefore assumes a new customer at station i will contribute », + ©,, and an
internal customer coming from station i —1 will contribute R, + ©,. Accompanying this

change in revenue, we eliminate all stations downstream from station 7, leaving only stations

i—1 and i as shown in Fig. 3.

Fig. 3. Eliminating the downstream stations

The resulting model is a tandem queue, for which we can easily calculate the optimal
admission policy. This optimal policy depends on the ratio of the revenues generated by
internal versus new customers [9], [10]. If downstream stations were eliminated, but

downstream revenue was not included in the decision at station Z, then the admission policy

would be based on R—’ By including an estimate of downstream revenue, the decision is

r+0O, . . S o
based on ﬁ . Since this latter ratio is higher than the former one, the switching curve
-+ 0.

when downstream revenue is taken into account will be higher than (or equal to) the
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switching curve in the two-dimensional state space when the downstream revenue is not
taken into account [9], [10]. Namely, consideration of future revenue will result in a lower

reservation for internal customers at station i.

We now proceed to describe the method for estimating discounted net downstream

revenue, O, for 2<i<n. We start by observing that ©, depends on the expected net
revenue earned at station i +1 plus ©,,,. Furthermore, the expected net revenue earned at

station 7 +1 for an internal customer leaving station i is equal to the expected revenue paid
at station 7 +1 minus the expected loss from any blocking of new customers due to the

acceptance of this internal customer.

We first approximate the throughputs of internal and new customers at station i +1. We
approximate the result of the admission policy at station i +1, in light traffic, as equivalent to
internal customers receiving priority service. Consequently, we approximate the probability

that an internal customer will obtain service at station i+1 as 1— p(d,. (l —R), uiﬂ,mm),
which we denote by p.,, . Therefore, the throughput for internal customers at station i +1 is
approximately d, (1 - R)[l - p(di (1 -P ), /Jm,miﬂ)] . This gives us a basis for estimating the

1

revenue gained at station i +1.

From our upstream flow estimation above, we approximate the total flow rate going
through station i+1, which includes the internal customers and new customers at

M. [1 - p(l'i+1 TR )] Hence, the throughput for new customers arriving from outside

the network is approximately [, [1 - p(l’iﬂ, /Jm,miﬂ)] —-d, (1 - R)[l - p(di (l - P,.), uiﬂ,mm)].

The difference between the arrival rate of new customers and the throughput of new

customers is due to blocking. We attribute this blocking to the presence of internal customers.

11



Therefore, the reduction in new customer throughput at station i +1, per internal customer

passing through station 7 +1, is approximately

Ao~ I_i+1[1 - p(ri+l’ ui+1’mi+1)] +d, (1 - Pz)[1 - p(di (1 - Pz)> ui+l’mi+l)]
d, (1 -P )[1 - p(di (1 - R), l“li+l’mi+l)]

which we denote by ¢,,,. This gives us a basis to estimate for estimating the loss in revenue

due to blocking of new customers at station 7 +1. To complete the estimates, we must also
take into account the discounting of these revenues and losses. Denote the uniformization

constant as O, henceforth referred to as the reciprocal of one unit of time [9], [11]. Denote

the discount factor per unit of time as a. We define ﬁ(u) = a?*" which represents the

average discounting of future revenue for a customer receiving service at a rate [ .

We now use this discount factor, the rewards, and the losses obtained above to create an

recursion to estimate the net discounted downstream revenue. We start with the last station

A customer leaving station n —1 will gain service at station » with a probability of
approximately (I1— Pn_l)[l - p(a?n_1 (1 - Pn_l), u.,m, )] =(1-P,_,)p,. Hence, our estimate is

equal to this probability, times the discount factor, times the net expected revenue at station

n:

O,,= (I_Pn—l) nﬁ(un—lan —q,5 +@n): (1 _Pn—l) nB(:un—l)(Rn _ann)'

The recursion continues with each further upstream station:

12



O 1)p1+lB( )( 1+1 _ql‘+1ri+1 +@i+1)

(1-

(1 lp,+1B( )( R —qiur, ,+1)

(1 z)(l t+1)pi+1pi+2B( z)B( i+1)(Ri+2 T G2l ®i+2)~
n-1 j n

Pk+1B( k)@ 1 =4 nln )D
U

n

+

I

3.3 Calculation of near-optimal policies

In summary, the proposed procedure of reduction method operates as follows. First, we

estimate the upstream rates for each station, resulting in I'; and d,, as outlined in section 3.1.
Then, we estimate the downstream revenues for each station, resulting in ©,, as outlined in

section 3.2.

Finally, each tandem pair of stations (i —1 and i) is analyzed as a separate system,

using [, and ©,, as shown in the bottom part of Fig. 3. Then, the optimal admission policy

is calculated using dynamic programming, and is guaranteed to be a switching curve [9], [10].
This policy is used, along with the policies for all other stations, as a policy for the network.

Under light traffic, we believe that this simple recursive approach results in a near-optimal

policy.

4. Numerical results

In this section, we will demonstrate the accuracy of the approach for a
three-station-in-series network. Although our approach is computationally reasonable for
much larger networks, only three stations are used here in order to compare the resulting
near-optimal policy in two-dimensional state space to the optimal policy in
three-dimensional one, for which the computation is geometrically increasing with the

dimension. Numerical results were obtained by the method of successive approximation.
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The system parameters are as follows: m, =8, m, =7, m, =6, a =0.99995, O =2000,
AN =42, A, =418, A\, =422, 4, =22, 4,=25,4,=2,P =01, P, =01, n, =5,
r,=5,r,=5, R, =15 and R, =15. These parameters result in light traffic at stations 1 and

2, but moderate traffic at station 3.

4.1 Policy at station 3

The optimal admission policy imposed on new customers at station 3 is shown in Fig. 4.

The policy has a threshold: a new customer will be accepted if and only if the state (i, j,k) of

this system is below the switching surface.

6
5
4
5 No. of Customers at
2 Station 3
1
0

No. of Customers

at Station 1
No. of

Customers at
Station 2

Fig. 4. The optimal admission policy on new customers at station 3

In order to estimate the near-optimal admission control policy for station 3, we eliminate

station 1 and compute the expected arrival rate into station 2, i.e. I',. Following our upstream
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rate estimation technique:
L= A= p(, ,m (- P)+ A, =4.2x(1-0.000649)1-0.1)+4.18 = 7.9575.

The optimal admission policy on new arrivals at station 3, for the resulting tandem queue,
is shown in Fig. 5. As guaranteed, the policy is a switching curve. Acceptance decisions for
new customers are now based solely on the occupancy of stations 2 and 3, ignoring station 1.
This switching curve also coincides with the cross-section of the optimal switching surface

when station 1 has 2-4 customers.

No. of customers at station 3

o 1 2 3 4 5 6 7

No. of customers at station 2

Fig. 5. The near-optimal admission policy on new customers at station 3

4.2 Policy at station 2

The optimal admission control policy imposed on new customers at station 2 is shown
in Fig. 6. This policy also has a threshold. Since the load on station 2 is light, so the threshold

is fairly high.
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4 No. of Customers at
23 Station 2
1
0

No. of Customers at Station 1
No. of

Customers at
Station 3

Fig. 6. The optimal admission policy on new customers at station 2

In order to estimate the near-optimal admission control policy for station 2, we
eliminate station 3 and compute the discounted expected net downstream revenue for a

customer leaving station 2, i.e. ©,. We first use the upstream rate estimation recursion to

get:
d, = 0,[1- p(C,. 1y, m, )| = 7.9575[1 - p(7.9575,2.5,7)| = 7.7372,

and:
M=d,(1-P)+A, =7.7372%0.9+4.22 =11.1835

We then apply our downstream revenue estimation technique:

py =1=pld, (1 - P,), pty,my) =1- p(0.94,,2,6) = 1 - p(6.9635,2,6) = 0.9187

16



and:

_A —I_3[1—p(l_3,u3,m3)]+d2(l—PZXl—p(dz(l_P2)>/J3om3)] = (.3235.

7 dz(l_szl_p(dz(l_PZ)’ume]

and finally:
0, = (1-P,)p,B(t, (R, — ¢51;) = 0.9%0.9187 x0.9608 x (15 - 0.3235x5) = 10.6313

The admission policy at station 2 is then found by solving the dynamic programming

r,+0, 156313
R, +0O, 25.6313°

problem associated with the tandem queues of stations 1 and 2 using

and is shown in Fig. 7. As guaranteed, the policy is a switching curve. Acceptance decisions
for new customers are now based solely on the occupancy of stations 1 and 2, ignoring station
3. This switching curve also coincides with the cross-section of the optimal switching surface

when station 3 has 0 or 1 customer.

S = D W A N
T

No. of customers at station 2

01 2 3 45 6 738

No. of customers at station 1

Fig. 7. The near-optimal admission policy on new customers at station 2
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4.3 Accuracy

To evaluate the accuracy of the proposed techniques, the optimal and near-optimal
admission control policies were numerically evaluated on the basis of the total discounted
revenue they earn. For the purposes of comparison, an uncontrolled system was also
evaluated. This discounted revenue depends on the initial state of the system. A range of
initial states were evaluated. A sample result is shown in Fig. 8 and Table 1, wherein the
initial occupancy of stations 2 and 3 are fixed, and the initial occupancy of station 1 is varied

along its range.

2060 g— 0

2010 —a—

1960 g

1910
043 143 @43 @43 @43 643 043 (7143 @43

—l Optimal —®— Near-optimal —#&— No-control

Fig. 8. The expected discounted revenues of optimal, near-optimal and no-control policies for

three-queue-in-series system
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State | (0,4,3) | (1,4,3) | (2,4,3) | (3.4,3) | (4.4,3) | (5,4,3) | (6,4,3) | (7,4,3) | (8,4,3)

Control

Optimal 1954.2711972.74{1990.56|2007.60(2023.74/2038.90{2052.88|2065.19/2073.70

Near-optimal|1953.78/1972.29(1990.12{2007.17|2023.31{2038.42|2052.35/2064.59(2073.06

No-control  [1910.27/1927.84(1944.7311960.83|1976.07|1990.32/2003.42(2014.88|2022.69

Table 1. The expected discounted revenues of optimal, near-optimal and no-control policies for

three-queue-in-series system

The revenue is increasing with the occupancy of station 1, due to the increased
short-term (and thus lightly discounted) revenue that will be generated at stations 2 and 3
from these customers. Along the entire range, the near-optimal policy generates at least
99.9% of the revenue of the optimal policy. The difference between the revenue generated by
the near-optimal policy and by no control remains at least 98.8% of the difference between

the optimal policy and no policy.

4.4 Six-queue-in-series Example

When the network consists of more than 3 stations, the proposed approach remains
accurate. The performance gap between the optimal policy and the proposed near-optimal
policy increases slightly since more stations are eliminated. We present results for a
six-queue-in-series system with the following parameters: m, =5, m, =5, m; =5, m, =5,
ms =5, mg =5, a=09999, 0=2000, A, =5, A, =5, A, =5, A, =5, A, =5, A, =5,
u =6, u =55, u,=5, u, =45, y;, =4, u, =35, P =02, P,=02, P,=0.2,

P,=02, P, =02, n=1,n=1,n=1,r=1,r=1,r=1, R,=15, R, =15,

19



R, =15, R, =15 and R, =15. The optimal and near-optimal policies were numerically

evaluated on the basis of the total discounted revenue they earn. For comparison purposes, an

uncontrolled system was also evaluated. These revenues are shown in Table 2, for a range of

initial states differing in the occupancy of the third station.

State |(2,3,0,1,4,2)((2,3,1,1,4,2)((2,3,2,1,4,2)(2,3,3,1,4,2) | (2,3,4,1,4,2) | (2,3,5,1,4,2)
Control
Optimal 2869.767 | 2884.461 2897.215 2907.249 | 2913.160 | 2912.321
Near-optimal| 2865.421 2880.006 | 2892.623 2902.483 2908.181 2907.230
No-control 2772.975 2786.745 2798.582 | 2807.728 | 2812.832 | 2811.499

Table 2. The expected discounted revenues of optimal, near-optimal and no-control policies for

six-queue-in-series system

The optimal policy, found using dynamic programming on the six-dimensional state

space, requires a couple of days of computation. In contrast, the near-optimal policy, found

using the procedure proposed here, requires a few minutes of computation.

Along the entire range, the near-optimal policy generates at least 99.8% of the revenue

of the optimal policy. The difference between the revenue generated by the near-optimal

policy and by no control remains at least 95.5% of the difference between the optimal policy

and no policy.

5. Conclusion

We have considered access control policies in multiserver loss queues in series. Such

models arise in computer and telecommunication networks, in which continued downstream
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service to new customers is preferable to admission of new customers. Dynamic
programming solution of the entire network results in a computational complexity that is
geometric in the number of stations. We proposed a simple recursive method to solve the
problem using dynamic programming on a set of reduced state spaces. This approach
includes a rate estimation technique for upstream stations, and a revenue estimation
technique for downstream stations, based on a light-traffic model. Numerical results

demonstrate that these near-optimal policies are accurate.

References

[1] E. Altman, S. Stidham, Optimality of monotonic policies for two-action Markovian
decision processes, with applications to control of queues with delayed information,
Queueing Systems, 21, (1995), 267-291.

[2] R. -R. Chen, Sean Meyn, Value iteration and optimization of multiclass queueing
networks, Queueing Systems, 32, (1999), 65-97.

[3] P. -J. Courtois, G. Scheys, Minimization of the total loss rate for two finite queues in
series, IEEE Transactions on Communications, 39, (1991), 1651-1661.

[4] E. Gelenbe, X. Mang, R. Onvural, Bandwidth allocation and call admission control in
high-speed network, IEEE Communications Magazine, 35, (1997), 122-129.

[5] H. Ghoneim, S. Stidham, Optimal control of arrivals to two queues in series, European
Journal of Operation Research, 21, (1985), 399-409.

[6] S. Jordan, P. P. Varaiya, Throughput in multiple service multiple resource
communication networks, IEEE Transactions on Communications, 39, (1991), 1216-1222.
[7] W. Lin, P. R. Kumar, Optimal control of a queueing system with two heterogeneous
servers, IEEE Transactions on Automatic Control, 29, (1984), 696-703.

[8] G. Koole, Structural results for the control of queueing systems using event-based

dynamic programming, Queueing Systems, 30, (1998), 323-339.

21



[9] C.-Y. Ku, Access Control for Loss Network, Ph.D. dissertation, Department of EECS,
Northwestern University, 1995.

[10] C.-Y. Ku, S. Jordan, Access control to two multiserver loss queues in series, IEEE
Transactions on Automatic Control, 42, (1997), 1017-1023.

[11] P. R. Kumar, P. P. Varaiya, Stochastic Systems, Prentice-Hall, 1986.

[12] J. M. Hah, P. L. Tien, M. C. Yuang, Neural-network-based call admission control in
ATM networks with heterogeneous arrivals, Computer Communications, 20, (1997),
732-740.

[13] G. Karlsson, Capacity reservation in ATM networks, Computer Communications, 19,
(1996), 180-193.

[14] T. -H. Lee, K. -C. Lai, S. -T. Duann, Design of a real-time call admission controller for
ATM networks, [IEEE/ACM Transactions on Networking, 4, (1996), 758-765.

[15] P. Mohge, 1. Rubin, Reserving for future clients in a multipoint application-why and
how, IEEE Journal on Selected Areas in Communications, 15, (1997), 531-544.

[16] J. S. Park, S. H. Lee, S. C. Kim, J. Y. Lee, S. B. Lee, A conferencing system for
real-time, multiparty, multimedia services, IEEE Transactions on Consumer Electronics, 44,
(1998), 857-865.

[17] Z. Rosberg, P. P. Varaiya, J. C. Walrand, Optimal control of service in tandem queues,
IEEE Transactions on Automatic Control, 27, (1982), 600-610.

[18] S. M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, 1983.
[19] S. Stidham, R. Weber, A survey of Markov decision models for control of networks of
queues, Queueing Systems, 13, (1993), 291-314.

[20] S. Stidham, Optimal control of admission to a queueing system, IEEE Transactions on
Automatic Control, 30, (1985), 705-713.

[21] R. Zhang, Y. A. Phillis, Fuzzy control of arrivals to tandem queues with two stations,

22



IEEE Transactions on Fuzzy Systems, 7, (1999), 361-367.

23





