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Abstract

Assignment problems are well-known problems in practice. We mention house markets, job markets, and pro-

duction planning. The games of interest in this paper, the neighbor games, arise from a special class of assignment

problems. We focus on the nucleolus [D. Schmeidler, SIAM J. Appl. Math. 17 (1969) 1163–1170], one of the most

prominent core solutions. A core solution is interesting with respect to neighbor games because it divides the profit of

an optimal matching in a stable manner. This paper establishes a polynomial bounded algorithm of quadratic order in

the number of players for calculating the nucleolus of neighbor games.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neighbor games, which were introduced in Klijn et al. (1999), form the intersection of assignment games

(cf. Shapley and Shubik, 1972) and component additive games (cf. Curiel et al., 1994). This property implies

that many problems can be analyzed using neighbor games. The following two examples describe situations

that can be handled by neighbor games.

In the first example we consider a sequencing situation in which customers are lined up in a queue and

waiting for a taxi. The taxi company that provides the service has two types of cars: one that transports
only one customer (type A) and one that can only transport two customers (type B). The first customer in
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the queue can decide to pick a taxi of type A or wait for the next customer in the queue. In the latter case

they decide both to share a taxi of type B or the second customer will wait for the third customer. In the

latter case the first customer has to pick a taxi of type A. This procedure is repeated until all customers are

transported in a taxi. Since the costs of sharing a taxi of type B are lower than taking two taxis of type A, it

is obvious that the customers can save costs by sharing a taxi of type B. However, each customer faces the

problem that the cost of a taxi (of type B) is not fixed, because it depends on the trip to bring the customers
to the right locations. Hence, we have that only customers that are neighbors in the queue can obtain cost

savings, and customers that take a taxi of type A have cost savings equal to zero. All customers in the queue

want to choose a combination of taxis of type A and B such that their cost savings are maximized.

Moreover, they are looking for an allocation of the cost savings that is �stable�.
The second example can be viewed as a restricted matching problem. Suppose a river runs through a

number of regions. To be able to utilize this cheap transportation possibility, harbors have to be built.

Because of financial restrictions, each country is able to build at most one harbor. Neighbor regions might

join to build a harbor at their border (which then can serve both regions) and save costs. The regions are
interested in maximizing their cost savings and finding some proper allocation of the cost savings.

Because of the mentioned intersection property and the fact that component additive games are C-
component additive games (cf. Potters and Reijnierse, 1995) neighbor games have many appealing prop-

erties: the core is a non-empty set and coincides with the set of competitive equilibria (Shapley and Shubik,

1972), the core coincides with the bargaining set, and the nucleolus coincides with the kernel (Potters and

Reijnierse, 1995). Moreover, neighbor games satisfy the CoMa-property, i.e., the core is the convex hull of

all marginal vectors that are in the core (cf. Hamers et al., 2002).

This paper provides an Oðp2Þ algorithm for calculating the nucleolus (Schmeidler, 1969) of p-person
neighbor games. In literature, the computation of the nucleolus of assignment games and component

additive games has been discussed extensively. Solymosi and Raghavan (1994) presented an Oðp4Þ algo-
rithm for calculating the nucleolus of p þ p-person assignment games. An Oðp4Þ algorithm for calculating

the nucleolus of p-person balanced connected games was provided by Solymosi et al. (1998). The class of

balanced connected games contains the class of component additive games, and thus the class of neighbor

games. This paper provides an Oðp2Þ algorithm for calculating the nucleolus of p-person neighbor games.
Although the algorithm can be considered as a common specialization of the two algorithms mentioned

above, we present it on its own right, since it exhibits special features that neither of the two more general
algorithms does. Besides, we give a different line of arguments to see the correctness of the algorithm from

those which were used to justify the mentioned more general algorithms.

In Section 2 we provide some preliminaries on cooperative games. Then, in Section 3 we recall the

definition of neighbor games and present an Oðp2Þ algorithm for finding the nucleolus.

2. Preliminaries

A cooperative game with transferable utilities (or game, for short) is a pair ðP ; vÞ where P ¼ f1; . . . ; pg is a
finite set of players and v : 2P ! R is a map that assigns to each coalition S 2 2P a real number vðSÞ, such
that vð;Þ ¼ 0. Here, 2P is the collection of all subsets (coalitions) of P.
Let ðP ; vÞ be a game with a non-empty imputation set IðP ; vÞ :¼ fx 2 RP : xi P vðiÞ for all i 2 P

and xðP Þ ¼ vðP Þg, where xðP Þ :¼
P

i2P xi. For an imputation x 2 IðP ; vÞ and a coalition S 2 2P n f;g we call
f ðS; xÞ :¼ xðSÞ � vðSÞ the satisfaction of S. Next, let F ðxÞ :¼ ðf ðS; xÞÞ;6¼SN be the vector of satisfactions and

let hðF ðxÞÞ denote the vector of satisfactions with its elements arranged in non-decreasing order, i.e.,
hðF ðxÞÞ16 hðF ðxÞÞ26 � � � 6 hðF ðxÞÞj2P j�1. The nucleolus (Schmeidler, 1969) is then defined by

nðP ; vÞ :¼ fx 2 IðP ; vÞ : hðF ðxÞÞ �lex hðF ðyÞÞ for all y 2 IðP ; vÞg;
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where �lex denotes the lexicographical ordering on Rj2P j�1. Recall that for two vectors x; y 2 Rj2P j�1 we have

x �lex y if either x ¼ y or there exists a k such that xi ¼ yi for i ¼ 1; . . . ; k and xkþ1 > ykþ1. Schmeidler (1969)
proved that the nucleolus nðP ; vÞ is a singleton. For the sake of convenience, we identify nðP ; vÞ with its
unique element.

The nucleolus is an element of the core, whenever the latter is not empty. The core of a game ðP ; vÞ
consists of all vectors that distribute the gains vðP Þ obtained by P among the players in such a way that no
subset of players can be better off by seceding from the rest of the players and act on their own behalf.

Formally, the core of a game ðP ; vÞ is defined by
CoreðP ; vÞ :¼ fx 2 RP : f ðS; xÞP 0 for all S � P and f ðP ; xÞ ¼ 0g: ð1Þ

A coalition S 6¼ ; is called essential in the game ðP ; vÞ if S ¼ S1 [ S2; S1 \ S2 ¼ ;, and S1 6¼ ; 6¼ S2 imply
that vðSÞ > vðS1Þ þ vðS2Þ. Otherwise, it is called inessential. Note that one-player coalitions are always es-
sential. Note also that the inequality related to an inessential coalition in the definition of the core is re-

dundant, i.e., it can be left out without enlarging the solution set of the remaining inequalities. Therefore,

for any collection G  2P n f;g that contains all essential coalitions in the game ðP ; vÞ we can rewrite (1):
CoreðP ; vÞ ¼ fx 2 RP : f ðS; xÞP 0 for all S 2 G and f ðP ; xÞ ¼ 0g:

Huberman (1980) showed that inessential coalitions can also be omitted in the determination of the nu-

cleolus provided the core of the game is not empty. Since in that case the nucleolus lies in the core, the
underlying payoff set can be reduced to the core. More precisely,

nðP ; vÞ ¼ fx 2 CoreðP ; vÞ : hðGðxÞÞ �lex hðGðyÞÞ for all y 2 CoreðP ; vÞg;
where GðxÞ :¼ ðf ðS; xÞÞS2G is the vector of satisfactions of coalitions in G only.
Let ðP ; vÞ be a game with a non-empty core. Let G  2P n f;g contain all essential coalitions in the game.

We need to introduce some notions and notation to be able to describe a simplified version of Kohlberg�s
(1971) criterion for the nucleolus of such a game. We call a non-empty collection B of coalitions in P
balanced if there are positive numbers ðkSÞS2B such that

P
S2B kSeS ¼ eP , where eS is the vector in RP with

ðeSÞi ¼ 1 if and only if i 2 S and 0 otherwise. Given a number tP 0 and an allocation x 2 CoreðP ; vÞ we
define

Gðx; tÞ :¼ fS 2 G : f ðS; xÞ6 tg
to be the collection of all coalitions in G whose satisfaction is not more than the given level t at the given
core allocation x. In light of Huberman�s (1980) simplification it is easy to see that in this setting Kohlberg�s
(1971) general criterion can be replaced by the following characterization of the nucleolus.

Lemma 2.1. Let ðP ; vÞ be a game with a non-empty core. Let G  2P n f;g contain all essential coalitions in
ðP ; vÞ. Then for x 2 CoreðP ; vÞ it holds that fxg ¼ nðP ; vÞ if and only if Gðx; tÞ is balanced for all tP 0.

3. Neighbor games and the nucleolus

In this section we provide a polynomially bounded algorithm of order p2 for finding the nucleolus of
neighbor games. We present the algorithm of order p2 for finding the nucleolus of a special subclass of
neighbor games. After that, we show that we can calculate the nucleolus of an arbitrary neighbor game by

breaking up the game in appropriate subgames, applying the algorithm to the subgames, and combining the
nucleoli of the subgames. Moreover, we prove that this procedure does not change the computational

complexity. Before we present the algorithm we recall the definition and some special features of neighbor

games.
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Formally, let P be the player set of size p. For the sake of convenience we assume 2 that P ¼ f1; . . . ; pg.
Without loss of generality we assume that the players are ordered 1 � 2 � � � � � p. Players i and j are called
neighbors if ji� jj ¼ 1. A matching l for Q  P is a (possibly empty) collection of disjoint pairs ði; iþ 1Þ of
neighboring players (partners) in Q. LetNðQÞ denote the set of matchings for Q: For all pairs of neighbors
ði; iþ 1Þ let aiiþ1 P 0 be given. Then, a neighbor game ðP ; vÞ is defined by

vðQÞ :¼ max
X

ði;iþ1Þ2l

aiiþ1 : l 2 NðQÞ
( )

for all Q  P :

Note that since aiiþ1 ¼ vði; iþ 1Þ a neighbor game is completely determined by the values of the pairs
of neighbors. Note also that vðiÞ ¼ 0 for all i 2 P . A matching l 2 NðQÞ is called optimal for Q ifP

ði;iþ1Þ2l aiiþ1 ¼ vðQÞ. It is called minimal for Q if aiiþ1 > 0 for all ði; iþ 1Þ 2 l. Throughout this paper and
with a slight abuse of notation, we identify a (possibly non-matched) pair ði; iþ 1Þ of neighbors in P with
the two-person coalition fi; iþ 1g: Let Q  P and l 2 NðQÞ: Let i 2 P : If ði� 1; iÞ 2 l or ði; iþ 1Þ 2 l then
player i is called matched (with respect to l), otherwise he is called isolated (with respect to l).

Example 3.1. Let P ¼ f1; 2; 3; 4g be the player set. Take a12 ¼ 10; a23 ¼ 20; and a34 ¼ 30. Then the cor-
responding neighbor game ðP ; vÞ is depicted in Table 1. The matching l ¼ fð1; 2Þ; ð3; 4Þg is optimal and
minimal for P.

From the definition of neighbor games it immediately follows that the class of neighbor games is the

intersection of the class of assignment games and component additive games. It is also evident that

neighbor games are monotonic game (i.e., vðSÞ6 vðT Þ for all S  T  P ) and superadditive (i.e.,

vðS [ T ÞP vðSÞ þ vðT Þ for all S; T  P with S \ T ¼ ;).
Since neighbor games are special assignment games, the results of Shapley and Shubik (1972) on the core

of assignment games apply to the core of neighbor games. In particular, the core of neighbor games is not

empty. Furthermore, it is determined by the inequalities induced by the one player coalitions and the pairs
of neighbors. In other words, for any neighbor game ðP ; vÞ the collection

G :¼ ffig : i 2 Pg [ fði; iþ 1Þ : i 2 P n fpgg ð2Þ
contains all essential coalitions of any neighbor game on P. Henceforth, whenever we speak of a coalition it
is a singleton or a pair of neighbors.

For an optimal matching l of P we denote, with a slight abuse of notation, by Pþ the set of players that

are matched by l. Define P� :¼ P n Pþ, the set of isolated players. The following lemma is a straightforward
consequence of a result of Shapley and Shubik (1972).

Lemma 3.2. Let ðP ; vÞ be a neighbor game. Let l be an optimal matching of P. Let x 2 RP . Then,
x 2 CoreðP ; vÞ if and only if the following four conditions are satisfied:
ii(i) xi þ xiþ1 ¼ vði; iþ 1Þ for all ði; iþ 1Þ 2 l;
i(ii) xi þ xiþ1 P vði; iþ 1Þ for all ði; iþ 1Þ 62 l;
(iii) xi ¼ 0 for all players i 2 P�;

(iv) xi P 0 for all players i 2 Pþ.

Next, we present an algorithm for finding the nucleolus for a special class of neighbor games. Let us

consider the subclass of neighbor games ðP ; vÞ with an even number of players such that the pairs

2 Nevertheless, in some cases (Corollary 3.12 and further) we use a different set of players P to define a neighbor game ðP ; vÞ.
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ð1; 2Þ; . . . ; ðp � 1; pÞ form the unique optimal matching for P. Consequently, we must have
vð1; 2Þ; . . . ; vðp � 1; pÞ > 0.

Before we go on to the inductive step we prove that the initial payoff allocation x is the even friendly core
allocation and that the minimum satisfaction level of all unsettled coalitions is a ð¼ 0Þ.

Lemma 3.3. For the initial payoff allocation x we have
(i) xi ¼ vð1; . . . ; iÞ � vð1; . . . ; i� 1Þ for all i 2 P where vð1; 0Þ :¼ 0;
(ii) xi P 0 for every odd player i and xi > 0 for every even player i.

Proof. First note that in case i is even, we have

vð1; . . . ; iÞ ¼ vð1; . . . ; i� 2Þ þ vði� 1; iÞ; ð3Þ
and in case i is odd, we have

vð1; . . . ; iÞ ¼ maxfvð1; . . . ; i� 1Þ; vð1; . . . ; i� 2Þ þ vði� 1; iÞg: ð4Þ

Initial step of algorithm for the nucleolus for neighbor games

Input

A neighbor game ðP ; vÞ for which p is even and l ¼ fð2k � 1; 2kÞ : k ¼ 1; . . . ; p
2
g is the unique optimal

matching.
The initial allocation

Compute recursively for k ¼ 1; . . . ; p
2

x2k�1 :¼ maxfvð2k � 2; 2k � 1Þ � x2k�2; 0g
x2k :¼ vð2k � 1; 2kÞ � x2k�1;
where vð0; 1Þ :¼ 0 ¼: x0. The allocation x 2 RP is the initial allocation.

Satisfaction

Calculate the initial satisfactions of the singletons fk :¼ f ðfkg; xÞ ¼ xk and the initial satisfactions of the
even–odd pairs f2k;2kþ1 :¼ f ðf2k; 2k þ 1g; xÞ ¼ x2k þ x2kþ1 � vð2k; 2k þ 1Þ.
Set a :¼ 0.
Qualification

Call a coalition

� settled if it is an odd–even pair of neighbors; 3
� unsettled otherwise.
Call an unsettled coalition

� active if its satisfaction equals a;
� inactive otherwise.

Table 1

A neighbor game ðP ; vÞ

S {1,2} {2,3} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

vðSÞ 10 20 30 20 10 30 30 40

3 Henceforth, we say odd–even pair for short. Likewise for even–odd pairs of neighbors.
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(i) The proof is by induction on the players. Obviously, the lemma holds for i ¼ 1; 2. Suppose that the
lemma holds for players 1; . . . ; k with kP 2. We will prove that the lemma holds for i ¼ k þ 1. We dis-
tinguish between two cases.

Suppose i is even. Then,
xi ¼ vði� 1; iÞ � xi�1 ¼ vði� 1; iÞ � ½vð1; . . . ; i� 1Þ � vð1; . . . ; i� 2Þ� ¼ vð1; . . . ; iÞ � vð1; . . . ; i� 1Þ;

where the first equality follows from the definition of xi, the second equality from the induction hypothesis,
and the third equality from (3).

Suppose i is odd. Then,

xi ¼ maxfvði� 1; iÞ � xi�1; 0g
¼ maxfvði� 1; iÞ � ½vð1; . . . ; i� 1Þ � vð1; . . . ; i� 2Þ�; 0g
¼ maxfvð1; . . . ; i� 2Þ þ vði� 1; iÞ � vð1; . . . ; i� 1Þ; 0g
¼ maxfvð1; . . . ; i� 2Þ þ vði� 1; iÞ; vð1; . . . ; i� 1Þg � vð1; . . . ; i� 1Þ
¼ vð1; . . . ; iÞ � vð1; . . . ; i� 1Þ;

where the first equality follows from the definition of xi, the second equality from the induction hypothesis.
The third and fourth equalities are obtained by elementary rewriting. Finally, the last equality follows from

(4).

(ii) It immediately follows from the definition of xi that xi P 0 for every odd player i. For an even player i it
holds that

xi ¼ vð1; . . . ; iÞ � vð1; . . . ; i� 1Þ
¼ vð1; . . . ; i� 2Þ þ vði� 1; iÞ � vð1; . . . ; i� 1Þ
¼ vð1; . . . ; i� 2Þ þ vði� 1; iÞ �maxfvð1; . . . ; i� 2Þ; vð1; . . . ; i� 3Þ þ vði� 2; i� 1Þg
> 0;

where the first equality follows from (i). The second and third equalities from (3) and (4), respectively.

Finally, the inequality follows from the fact that l is the unique optimal matching (here we use that
vð1; 2Þ; vð3; 4Þ; . . . ; vðp � 1; pÞ > 0). �

Lemma 3.4. The initial payoff allocation x is a core allocation. Moreover, it is the even friendly core allo-
cation, i.e., for all y 2 CoreðP ; vÞ and for all even players i it holds that xi P yi.

Proof. One easily verifies that x satisfies the conditions of Lemma 3.2. This shows that x 2 CoreðP ; vÞ.
Suppose there is a core allocation y 2 CoreðP ; vÞ and an even player i such that xi < yi. Since

ði� 1; iÞ 2 l,

yi�1 ¼ vði� 1; iÞ � yi ¼ xi�1 � ðyi � xiÞ < xi�1; ð5Þ
where the equalities follow from Lemma 3.2(i) for x; y 2 CoreðP ; vÞ and the inequality from xi < yi.
If xi�1 < ðyi � xiÞ, then it follows from (5) that yi�1 < 0 ¼ vði� 1Þ, contradicting y 2 CoreðP ; vÞ. So,

xi�1 P ðyi � xiÞ > 0. Then, by definition of xi�1, we have xi�1 ¼ vði� 2; i� 1Þ � xi�2. So,

xi�2 ¼ vði� 2; i� 1Þ � xi�1 < vði� 2; i� 1Þ � yi�16 yi�2;

where the first inequality follows from (5) and the second inequality from y 2 CoreðP ; vÞ.
So, xi�2 < yi�2. We can repeat the same argument until we conclude that y1 < x1 ¼ vð1Þ, contradicting

y 2 CoreðP ; vÞ: �

Corollary 3.5. The minimum satisfaction level of all unsettled coalitions with respect to the initial allocation x
equals a ¼ 0.
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Proof. Follows immediately from Lemma 3.4 and f1 ¼ x1 ¼ 0: �

During the inductive step of the algorithm, which will be spelt out next, we settle singletons and pairs

that have not been settled yet. The satisfaction of a coalition that is settled will no longer change during the

remainder of the algorithm. The algorithm terminates when all singletons are settled.
In every step of the algorithm we deal with a collection of settled and unsettled coalitions. We refine the

collection of singletons and pairs that have not been settled yet in two subcollections: a collection of active

coalitions and a collection of inactive coalitions. An unsettled singleton or pair is called active if it has the

minimum satisfaction among all coalitions that are unsettled. Otherwise it is called inactive.

We define a component to be a maximal set of consecutive players in which each pair of neighbors is
settled or active. Note that since odd–even pairs are settled, a component always starts with an odd player

and ends with an even player.

The idea of the inductive step is the following. The initial allocation is the even friendly core allocation
(Lemma 3.4). Hence, in order to obtain the nucleolus we should decrease the satisfaction of the even players

and increase the satisfaction of the odd players. For every player i we determine a coefficient di that in-
dicates in what direction and with which factor the satisfaction of player i is going to change. After that, a
positive number b is determined. The number b depends on the unsettled even players and the inactive
(even–odd) pairs. For every player i, the satisfaction is now updated by adding dib to his current satis-
faction. The minimum satisfaction of all unsettled players and pairs is increased with b. Finally, some
singletons and pairs may become settled. If this is the case, we verify whether there are still unsettled

singletons. If there are no unsettled singletons left, then we are done and the allocation corresponding to the
final satisfactions is the nucleolus. Otherwise, we repeat the inductive step.

Inductive step of the algorithm for the nucleolus for neighbor games

Input

A neighbor game ðP ; vÞ for which p is even and l ¼ fð2k � 1; 2kÞ : k ¼ 1; . . . ; p
2
g is the unique optimal

matching.

The satisfactions fS ; S 2 G that correspond with the initial allocation x.
The initial minimal satisfaction level of all unsettled coalitions að¼ 0Þ:
The initial qualification of the coalitions in G as settled, active, or inactive.

As long as there is an unsettled singleton repeat the following procedure.

If all singletons are settled, then STOP, nðP ; vÞ ¼ ðfiÞi2P .

Beginning of the procedure

1. Coefficients

Compute for k ¼ 0; . . . ; p
2
� 1,

d2kþ1 :¼

0 if 2k þ 1 is settled;
1 if 2k þ 1 is active and 2k þ 1 ¼ 1;
1 if 2k þ 1 is active and ð2k; 2k þ 1Þ is inactive;
�d2k þ 1 if 2k þ 1 > 1 and ð2k; 2k þ 1Þ is active:

8>><
>>: ð6Þ

d2kþ2 :¼ �d2kþ1: ð7Þ

Compute for k ¼ 1; . . . ; p
2
� 1,

d2k;2kþ1 :¼ d2k þ d2kþ1: ð8Þ
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In the next example we illustrate the algorithm.

Example 3.6. Let P ¼ f1; . . . ; 8g be a player set. In Fig. 1, nodes depict the players and the number above
an edge denotes the value of the corresponding pair of players. The thick edges correspond with the

matched pairs in the optimal matching. The essential information of the neighbor game ðP ; vÞ induced by
Fig. 1 is represented in the first two rows of Table 2. The players and pairs are put in the first row. The

values of the pairs are given by the numbers in the second row. We calculate the nucleolus of ðP ; vÞ in Table
2. We first calculate the initial allocation x in row 3 using the initial step. In row 4 we turn to the inductive
step. For an explanation of the concise notation in the table, let us consider rows 4–6.
In row 4 we depict the satisfactions of all coalitions. If a particular satisfaction is in a box, then the

corresponding coalition has already been settled. If a satisfaction has an asterix, then the satisfaction equals

a, the minimum satisfaction of the unsettled coalitions. In row 5 we put the coefficients, which are deter-

mined by (6)–(8). If a satisfaction and the coefficient below are in boldface, then the corresponding coalition

determines the number b, using (9). Finally, in row 6 we update the satisfactions using (10). Finally, we
settle players using the qualification.

We repeat the inductive step until all singletons are settled. The final allocation ð3; 3; 2; 5; 6; 3; 1; 1Þ is the
nucleolus of the game ðP ; vÞ. Note that coalition ð2; 3Þ has not been settled by the algorithm.

The next lemma shows, among others, that the inductive step is well-defined and that the algorithm

terminates in a finite number of steps ((e), (f), and (g)). The lemma will also be used to prove Theorem 3.9,

which states that the resulting allocation of the algorithm is the nucleolus.

2. Increase of minimum satisfaction of unsettled coalitions

Compute

b :¼ min fS � a
1� dS

: S is an inactive coalition and dS

	
6 0



: ð9Þ

Now, update the satisfactions of all unsettled coalitions:

fS :¼ fS þ dSb for all unsettled S: ð10Þ

Update a :¼ a þ b.

3. Qualification

If an unsettled even player i becomes active, i.e., fi ¼ a, then settle all coalitions from the component’s
left most (odd) player upto and including player i.

If an inactive pair ði; iþ 1Þ becomes active and player iþ 1 was already settled, then settle all coalitions
from the component’s left most (odd) player upto and including coalition ði; iþ 1Þ.
End of the procedure

Fig. 1. A neighbor game ðP ; vÞ.
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Lemma 3.7. In the inductive step of the algorithm:
(a) The coefficients of the odd players in (6) are well-defined, that is:

(i) player 1 is not inactive;
(ii) for k > 1, player 2k þ 1 and pair ð2k; 2k þ 1Þ are not both inactive.

(b) The coefficients defined in (6), (7), and (8) satisfy:
ii(i) d2kþ1 P 1 for an unsettled odd player 2k þ 1;
i(ii) d2kþ26 � 1 for an unsettled even player 2k þ 2;
(iii) d2k;2kþ1 ¼ 1 for an active pair ð2k; 2k þ 1Þ;
(iv) d2k;2kþ16 0 for an inactive pair ð2k; 2k þ 1Þ in the first inductive step; d2k;2kþ16 1 for an inactive pair

ð2k; 2k þ 1Þ in all other inductive steps.
(c) 0 < b < 1.
(d) The updated minimum satisfaction level of all unsettled coalitions is a þ b.
(e) At least one unsettled even player gets settled or one inactive pair becomes active.
(f) Active pairs do not become inactive.
(g) Settled coalitions stay settled and the sum of the payoffs of its members does not change.
(h1) If an unsettled even–odd pair gets settled, then it has satisfaction a þ b.
(h2) Suppose that the left most (odd) player 2k þ 1 of a maximal connected set of players
that get settled 4 is unsettled. Then, player 2k þ 1 has satisfaction a þ b.

Proof.We prove the lemma by induction on the number of steps. First we prove that (a)–(h2) hold for step

1. After that, we assume that (a)–(h2) hold for step 1; . . . ; t � 1 of the algorithm and that there are still

unsettled singletons. Then, we will prove that (a)–(h2) also hold for step t of the algorithm.

Table 2

Calculating the nucleolus of ðP ; vÞ

1 12 2 23 3 34 4 45 5 56 6 67 7 78 8

v 6 1 7 9 9 2 2

x 0 6 0 7 2 7 0 2

a ¼ 0, f 0* 0 6 5 0* 0 7 0* 2 0 7 5 0* 0 2

b ¼ 1, d +1 0 )1 0 +1 0 )1 +1 +2 0 )2 )1 1 0 )1

a ¼ 1, f 1* 0 5 5 1* 0 6 1* 4 0 5 4 1* 0 1*

settling – – –

a ¼ 1, f 1* 0 5 5 1* 0 6 1* 4 0 5 4 1 0 1

b ¼ 1, d +1 0 )1 0 +1 0 )1 +1 +2 0 )2 )2 0 0 0

a ¼ 2, f 2* 0 4 5 2* 0 5 2* 6 0 3 2* 1 0 1

settling – – – – – – – –

a ¼ 2, f 2* 0 4 5 2 0 5 2 6 0 3 2 1 0 1

b ¼ 1, d +1 0 )1 )1 0 0 0 0 0 0 0 0 0 0 0

a ¼ 3, f 3* 0 3* 4 2 0 5 2 6 0 3 2 1 0 1

settling – – –

a ¼ 3, f 3 0 3 4 2 0 5 2 6 0 3 2 1 0 1

4 That is, there is no strict superset that is connected and that gets settled as well.
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(a) (i) Initially player 1 is not settled and f1 ¼ x1 ¼ 0 ¼ a. Hence, player 1 is active. (ii) Suppose that
ð2k; 2k þ 1Þ is inactive, i.e., x2k þ x2kþ1 � vð2k; 2k þ 1Þ > 0. So, x2kþ1 > vð2k; 2k þ 1Þ � x2k. Then, by defini-
tion of the initial allocation, x2kþ1 ¼ 0. Hence, x2kþ1 ¼ 0 ¼ a. So, player 2k þ 1 is active.
(b) (i) Follows from (6) and (7). (ii) Since player 2k þ 1 is not settled, we have by (i) that d2kþ1 P 1. Then,

(7) implies d2kþ26 � 1. (iii) Since ð2k; 2k þ 1Þ is active, we have according to (6) that d2kþ1 ¼ �d2k þ 1. By
(8) the result follows. (iv) Since ð2k; 2k þ 1Þ is inactive, we have by (a)(ii) that 2k þ 1 is active. Hence,
d2kþ1 ¼ 1 by (6). By (b)(ii) we have d2k 6 � 1. So, the result follows by (8).
(c) The coalitions that are relevant to calculate b are the even–odd pairs ð2k; 2k þ 1Þ that are inactive and

the inactive even players, since the odd–even pairs are settled and for inactive players 2k þ 1 it holds that
d2kþ1 P 1 > 0 by (b)(i).
Let ð2k; 2k þ 1Þ be an inactive pair. Then, d2k;2kþ16 0 by (b)(iv). Since ð2k; 2k þ 1Þ is inactive,

f2k;2kþ1 � a ¼ f2k;2kþ1 > 0. So,

f2k;2kþ1 � a
1� d2k;2kþ1

2 ð0;1Þ:

For an inactive even player 2k we have d2k 6 � 1 (by (b)(ii)) and f2k � a ¼ f2k ¼ x2k > 0 (by Lemma 3.3
(ii)). So, ððf2k � aÞ=ð1� d2kÞÞ 2 ð0;1Þ.
Now note that there is at least one unsettled even player and (c) follows.

(d),(e) We write f 0
S for the satisfaction of coalition S after the update.

From (c) it follows that there is an active coalition S that is either an inactive pair ð2k; 2k þ 1Þ or an even
player 2k with

b ¼ fS � a
1� dS

¼ fS
1� dS

;

since a ¼ 0. Then,

f 0
S ¼ fS þ dSb ¼ fS þ dS

fS
1� dS

¼ b ¼ a þ b:

So, it is sufficient to prove that for all unsettled coalitions S we have f 0
S P a þ b.

Let 2k þ 1 be an (unsettled) odd player. By (b) (i), d2kþ1 P 1. So, f 0
2kþ1 ¼ f2kþ1 þ d2kþ1bP f2kþ1þ

bP a þ b, where the last inequality follows since player 2k þ 1 is unsettled.
Let 2k be an (unsettled) even player. By (b)(ii), d2k 6 � 1. By definition of b,

b6
f2k � a
1� d2k

:

So, f 0
2k ¼ f2k þ d2kb P a þ b.

Suppose ð2k; 2k þ 1Þ is an active pair. By (b)(iii), d2k;2kþ1 ¼ 1. So,
f 0
2k;2kþ1 ¼ f2k;2kþ1 þ d2k;2kþ1b ¼ f2k;2kþ1 þ b ¼ a þ b;

where the last equality follows since ð2k; 2k þ 1Þ is active.
Suppose ð2k; 2k þ 1Þ is an inactive pair. By (b)(iv), d2k;2kþ16 0. Then from

b6
f2k;2kþ1 � a
1� d2k;2kþ1

it follows that

f 0
2k;2kþ1 ¼ f2k;2kþ1 þ d2k;2kþ1bP a þ b:

(f) Follows from (b)(iii) and (d).
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(g) By the settling procedure in the initial step, the only settled coalitions are the odd–even pairs. By

definition of the settling procedure they stay settled in the first recursive step. It follows from (7) and (8) that

the sum of the payoffs of the players in an odd–even pair does not change.

(h1) Suppose an unsettled even–odd pair ð2k; 2k þ 1Þ gets settled. Then, by definition of the settling
procedure, ð2k; 2k þ 1Þ is active. From (b)(iii) it then follows that the satisfaction of ð2k; 2k þ 1Þ is equal to
a þ b.
(h2) Let 2k þ 1 be the left most (odd) player of a maximal connected set of players that get settled. By the

initial settling procedure, player 2k þ 1 is unsettled. If 2k þ 1 ¼ 1, then the satisfaction of player 2k þ 1 is
equal to a þ b by (6). If 2k þ 1 6¼ 1, then, by definition of the settling procedure, ð2k; 2k þ 1Þ is not active.
So, by (a)(ii), player 2k þ 1 is active. Hence, by (6), the satisfaction of player 2k þ 1 is equal to a þ b.

Now assume that (a)–(h) hold for steps 1; . . . ; t � 1 of the algorithm. Assume that there are still unsettled
singletons. We prove that (a)–(h) also hold for step t of the algorithm.
(a) As for (i), suppose that player 1 is not settled in step t. Then it follows from the Induction Hypothesis

(IH, for short) ((g) and (a)(i)) that player 1 was active in step t � 1. Then, by (6), in step t � 1 we had d1 ¼ 1.
So, player 1 got the minimal increase of satisfactions of unsettled coalitions in step t � 1. So, by (d) for step
t � 1, player 1 is also active in step t.
As for (ii), suppose that in step t player 2k þ 1 is unsettled and ð2k; 2k þ 1Þ is inactive. Then it follows

from IH ((f) and (g)) that ð2k; 2k þ 1Þ was inactive in step t � 1. From IH ((g) and (a)(ii)) it follows that

player 2k þ 1 was active in step t � 1. So, player 2k þ 1 got the minimal increase of satisfactions of unsettled
coalitions in step t � 1. So, by (d) for step t � 1, player 2k þ 1 is also active in step t.
(b)(i) Follows from (6) and (7). (ii) Follows from (6), (7), and the fact that if player 2k is not settled, then

player 2k � 1 is also not settled. (iii) Follows from (6) and (8). As for (iv), note that d2kþ16 1 by (6).
Furthermore, d2k 6 0 by (6) and (7). So, d2k;2kþ1 ¼ d2k þ d2kþ16 0þ 1 by (8).
(c) Suppose ði; iþ 1Þ is an inactive pair. Then, ði; iþ 1Þ ¼ ð2k; 2k þ 1Þ for some k (by IH (g) for steps

1; . . . ; t � 1). Then, d2k;2kþ16 1 by (b)(iv). Since ð2k; 2k þ 1Þ is inactive, f2k;2kþ1 � a > 0. Since we compute

f2k;2kþ1 � a
1� d2k;2kþ1

only if d2k;2kþ1 < 1, this ratio is positive and finite.
For an unsettled even player 2k we have d2k 6 � 1 (by (b)(ii)) and f2k � a > 0 (by IH (d) for steps

1; . . . ; t � 1 and the definition of the settling procedure). So,
f2k � a
1� d2k

2 ð0;1Þ:

By assumption there are still unsettled singletons. Then, it follows from the definition of the settling

procedure and IH (g) for steps 1; . . . ; t � 1 that there is at least one unsettled even player. This proves (c).
(d),(e) The proof is almost a copy of the proof of (d),(e) for step 1, except for the part in which we prove

that for every inactive pair ð2k; 2k þ 1Þ it holds that f 0
2k;2kþ1 P a þ b. Take an inactive pair ð2k; 2k þ 1Þ. By

(b)(iv), d2k;2kþ16 1. If d2k;2kþ1 ¼ 1, then f 0
2k;2kþ1 ¼ f2k;2kþ1 þ d2k;2kþ1b ¼ f2k;2kþ1 þ b > a þ b, where the in-

equality follows from the fact that ð2k; 2k þ 1Þ is inactive and IH (d) for step t � 1.
If d2k;2kþ1 < 1, then from

b6
f2k;2kþ1 � a
1� d2k;2kþ1

it follows that f 0
2k;2kþ1 ¼ f2k;2kþ1 þ d2k;2kþ1bP a þ b.

(f) Follows from (b)(iii) and (d).

(g) By definition of the settling procedure the settled coalitions stay settled.
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Suppose an odd player 2k þ 1 is settled. By (6), d2kþ1 ¼ 0. So, the payoff of player 2k þ 1 does not
change.

Suppose an even player 2k is settled. By definition of the settling procedure, player 2k � 1 is also settled.
Then, it follows from (6) and (7) that d2k ¼ 0. So, the payoff of player 2k does not change.
Suppose an even–odd pair ð2k; 2k þ 1Þ is settled. By definition of the settling procedure, players 2k are

2k þ 1 are also settled. Then, it follows from the above that the payoffs of players 2k and 2k þ 1 do not
change. So, the sum of the payoffs of players 2k and 2k þ 1 does not change either.
Finally, let ð2k � 1; 2kÞ be a (settled) odd–even pair. By (6) and (7), the sum of the payoffs of players

2k � 1 and 2k does not change.
(h1) Suppose that an unsettled even–odd pair ð2k; 2k þ 1Þ gets settled. By definition of the settling

procedure, ð2k; 2k þ 1Þ is active. From (b)(iii) it then follows that the satisfaction of ð2k; 2k þ 1Þ is equal to
a þ b.
(h2) Let 2k þ 1 be the left most (odd) player of a maximal connected set of players that get settled.

Suppose that player 2k þ 1 is unsettled. If 2k þ 1 ¼ 1, then, by (a)(i), player 2k þ 1 is active. From (6) it
then follows that the satisfaction of player 2k þ 1 is equal to a þ b. If 2k þ 1 6¼ 1, then, by definition of the
settling procedure, ð2k; 2k þ 1Þ is not active. So, by (a) (ii), player 2k þ 1 is either settled or active. Since we
have assumed that player 2k þ 1 is unsettled, it follows that player 2k þ 1 is active. Hence, by (6) the
satisfaction of player 2k þ 1 is equal to a þ b: �

The following lemma will be used to show that the outcome of the algorithm is the nucleolus.

Lemma 3.8. Let ðP ; vÞ be a neighbor game. Let B  G be a non-empty collection of essential coalitions (see
(2)). Then, B is balanced if and only if for every T 2 B there is a partition C of P such that T 2 C  B.

Proof. First we prove the �if�-part. For each T 2 B, let CT be a partition of P such that T 2 CT  B. Let us
count how many times a coalition U 2 B appears in the partitions CT , T 2 B, and let u denote this number.
Clearly, 16 u6 jBj. Now it is straightforward to check that the weights kU :¼ u=jBj balance the collection
B.
To prove the �only if�-part, let B be balanced. Take any T 2 B. Let i denote the right most player in T,

i.e., T ¼ fig or fi� 1; ig. If i < p, then there must be a coalition U 2 B with left most player iþ 1, since the
weight of coalition fi; iþ 1g – if it is in B at all – is strictly less than 1, so player iþ 1 must also be covered
by coalitions in B disjoint from T. Let j denote the right most player in U, i.e., j ¼ iþ 1 or iþ 2. If j < p,
then we repeat the argument. Eventually we select disjoint coalitions from B that cover all the players from
iþ 1 upto and including p. A similar argument to the left gives that there are disjoint coalitions in B that

cover all the players on the left of T. We conclude that the condition in the lemma is indeed satisfied. �

Theorem 3.9. The final allocation of the algorithm is the nucleolus.

Proof. Let ðP ; vÞ be a neighbor game for which p is even and l ¼ fð2k � 1; 2kÞ : k ¼ 1; . . . ; p
2
g is the unique

optimal matching. Let z be the final allocation of the algorithm.
We prove that z ¼ nðP ; vÞ by using Lemma 2.1, i.e., we check the balancedness of Gðz; tÞ for all tP 0.

Actually, we verify the balancedness of Gðz; f ðS; zÞÞ for all S 2 G. Take S 2 G. We have to show that

Gðz; f ðS; zÞÞ is balanced. By Lemma 3.8 it is sufficient to show that for every T 2 Gðz; f ðS; zÞÞ there is a
partition C of P such that T 2 C  Gðz; f ðS; zÞÞ. So, take T 2 Gðz; f ðS; zÞÞ. We distinguish between the case
in which T gets settled and the case in which it does not get settled in the algorithm.
Case 1: Coalition T gets settled in the algorithm.
Suppose T gets settled in the initial step. Then T is an odd–even pair. Since also all other odd–even pairs

get settled in the initial step, the collection of these pairs is a partition with the desired property for T.
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Now we suppose that T gets settled during the inductive step of the algorithm. We distinguish between
the two events in the inductive step that cause T to get settled.
Subcase 1.a: an unsettled even player j becomes active.
Let f 0

j ¼ a þ b > 0 be his satisfaction. We settle all coalitions from the component�s left most (odd)
player i upto and including player j. Note that T is one of these coalitions.
By Lemma 3.7 (h1), (h2), and (g), the coalitions fig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj� 2; j� 1g; fjg

have satisfactions 6 a þ b. This collection together with some odd–even pairs forms a partition, and hence
a partition with the desired property for T if T 2 ffig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj� 2; j� 1g; fjgg.
If T 62 ffig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj� 2; j� 1g; fjgg, then T is some singleton fkg  fi; . . . ; jg,

since T is not an odd–even pair. Note that f 0
T P a þ b > 0 because all unsettled coalitions have satisfac-

tion P a þ b. Now T ¼ fkg forms together with some odd–even pairs and fk þ 1; k þ 2g; fk þ 3; k þ 4g;
. . . ; fj� 2; j� 1g; fjg a partition with the desired property for T if k is odd. If k is even, then T ¼ fkg
together with some odd–even pairs and fig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fk � 2; k � 1g is a partition
with the desired property for T.
Subcase 1.b: an inactive pair fj; jþ 1g becomes active and coalition jþ 1 is already settled.
Let f 0

ðj;jþ1Þ ¼ a þ b be the satisfaction of the pair fj; jþ 1g. We settle all coalitions from the component�s
left most (odd) player i upto and including coalition fj; jþ 1g. Note that T is one of these coalitions.
By Lemma 3.7 (h1), (h2), and (g), the coalitions fig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj; jþ 1g have

satisfactions 6 a þ b. Since fjþ 1g is settled, there exists some even player l for which the coalitions
fjþ 1g; fjþ 2; jþ 3g; fjþ 4; jþ 5g; . . . ; fl� 2; l� 1g; flg are settled and all have a fixed satisfaction <
f 0
fj;jþ1g. The collection that consists of the coalitions fig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj; jþ 1g;
fjþ 2; jþ 3g; fjþ 4; jþ 5g; . . . ; fl� 2; l� 1g; flg together with some odd–even pairs forms a partition and
hence a partition with the desired property for T if T 2 ffig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj; jþ 1gg.
If T 62 ffig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fj; jþ 1gg, then T is some singleton fkg  fi; . . . ; jg, since T

is not an odd–even pair. Now T ¼ fkg forms together with some odd–even pairs and fk þ 1; k þ 2g;
fk þ 3; k þ 4g; . . . ; fl� 2; l� 1g; flg a property with the desired property for T if k is odd. If k is even, then
T ¼ fkg together with some odd–even pairs and fig; fiþ 1; iþ 2g; fiþ 3; iþ 4g; . . . ; fk � 2; k � 1g is a
partition with the desired property for T.
Case 2: Coalition T does not get settled in the algorithm. Since all singletons and all odd–even pairs get

settled, T is an even–odd pair. So, T ¼ f2k; 2k þ 1g for some k. Note that f2k; 2k þ 1g is inactive (otherwise
we would have settled f2k; 2k þ 1g in the last step of the algorithm). Since the coalitions f2kg and f2k þ 1g
are already settled, it follows from the definition of the settling procedure and Lemma 3.7(h2) that the

satisfaction of f2k; 2k þ 1g is greater than the satisfaction of both f2kg and f2k þ 1g.
Then, by combining the partitions for f2kg and f2k þ 1g appropriately, it readily follows that there is

also a partition with the desired property for f2k; 2k þ 1g: �

Proposition 3.10. Let ðP ; vÞ be a neighbor game for which p is even and l ¼ fð2k � 1; 2kÞ : k ¼ 1; . . . ; p
2
g is the

unique optimal matching. Then, the algorithm determines the nucleolus of ðP ; vÞ in Oðp2Þ time.

Proof. Initially, there are at most p � 1 inactive singletons and pairs (p=2 even players and ðp=2Þ � 1 even–
odd pairs and odd players (by Lemma 3.7(a)(ii))). By Lemma 3.7 (e) and (f), in every inductive step at least

one unsettled even player gets settled or one inactive pair becomes active (and does not become inactive

anymore). So, the algorithm terminates after at most p � 1 inductive steps.
Since both the initial and the inductive steps take OðpÞ time, the algorithm determines the nucleolus in

Oðp2Þ time. �

Now we will show that we can calculate the nucleolus of an arbitrary neighbor game by breaking up the

game in appropriate subgames, applying the algorithm to the subgames, and constructing the nucleolus out
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of the nucleoli of the subgames. Moreover, we will prove that this procedure does not change the com-

putational complexity.

For this, let ðP ; vÞ be a neighbor game. Let us first consider the relation between the nucleolus and the
kernel (Davis and Maschler, 1965) of the game ðP ; vÞ. Since the class of neighbor games is a subclass of the
class of component additive games it immediately follows from Potters and Reijnierse (1995) that

the nucleolus coincides with the kernel. Moreover, Corollary of Theorem 5 of Potters and Reijnierse
(1995) gives

fnðP ; vÞg ¼ fx 2 CoreðP ; vÞ : siiþ1ðxÞ ¼ siþ1iðxÞ for all i ¼ 1; . . . ; p � 1g; ð11Þ

where siiþ1ðxÞ ¼ minfxðSÞ � vðSÞ : i 2 S  P n fiþ 1g; S connectedg (and siþ1iðxÞ defined similarly). Note
that siiþ1ðxÞ; siþ1iðxÞP 0 by the fact that x 2 CoreðP ; vÞ. Let l be an optimal matching for P. To simplify
expression (11), we make the following two remarks for a core allocation x 2 CoreðP ; vÞ. First, from
Lemma 3.2(iii) it follows that siiþ1ðxÞ ¼ 0 for i 2 P�, i 6¼ p. For such i, we have that iþ 1 2 P� or

ðiþ 1; iþ 2Þ 2 l. One can verify that in both cases siþ1iðxÞ ¼ 0. Second, if fi; iþ 1g  Pþ, but ði; iþ 1Þ 62 l,
then siiþ1ðxÞ ¼ 0 ¼ siþ1iðxÞ by using Lemma 3.2(i) and taking S ¼ fi� 1; ig and S ¼ fiþ 1; iþ 2g, respec-
tively. From these two remarks it follows that (11) can be reduced further to

nðP ; vÞ ¼ fx 2 CoreðP ; vÞ : siiþ1ðxÞ ¼ siþ1iðxÞ for all ði; iþ 1Þ 2 lg: ð12Þ

Note, however, that (12) does not directly help us a great deal in calculating the nucleolus. This is be-

cause the equations siiþ1ðxÞ ¼ siþ1iðxÞ contain a lot of cumbersome minimization operations, already for a
small number of players.

Nevertheless, expression (12) together with the next lemma shows that in order to calculate the nucleolus

of a neighbor game, it suffices to calculate the nucleolus for the subgames with possible isolated players on
the extremes and no isolated players in the middle.

Lemma 3.11. Let ðP ; vÞ be a neighbor game. Let x 2 CoreðP ; vÞ. Let i 2 P� and k 2 fi; . . . ; pg. Then,
skkþ1ðxÞ ¼ minfxðj; . . . ; kÞ � vðj; . . . ; kÞ : i6 j6 kg.

Proof. Take some connected set S � fi; . . . ; kg ¼: S0 with k þ 1 62 S. Let lS be an optimal matching for S.
Define a matching lS0 for S

0 by ðj; jþ 1Þ 2 lS0 if and only if ðj; jþ 1Þ 2 lS and jP i. Then,

ðxðSÞ � vðSÞÞ � ðxðS0Þ � vðS0ÞÞP
X
j2S

xj

 
�

X
ðj;jþ1Þ2lS

vðj; jþ 1Þ
!

�
X
j2S0

xj

0
@ �

X
ðj;jþ1Þ2lS0

vðj; jþ 1Þ

1
A

¼
X
j2SnS0

xj �
X

ðj;jþ1Þ2lS ;j<i

vðj; jþ 1Þ

¼
X

j2fig[ðSnS0Þ
xj �

X
ðj;jþ1Þ2lS ;j<i

vðj; jþ 1Þ

P
X

j2fig[ðSnS0Þ
xj � vðfig [ ðS n S0ÞÞP 0:

The first inequality follows from the fact that lS is an optimal matching for S and lS0 is a matching for S
0.

The first equality follows from the definition of lS0 . The second equality follows from i 2 P�. The second

inequality follows from the fact that fðj; jþ 1Þ : ðj; jþ 1Þ 2 lS; j < ig defines a (possibly non-optimal)
matching for fig [ ðS n S0Þ. The third inequality follows from the fact that x 2 CoreðP ; vÞ: �
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Corollary 3.12. Let ðP ; vÞ be a neighbor game. Suppose there is a player i 2 P� with 1 < i < p. Let
S1 :¼ f1; . . . ; ig and S2 :¼ fi; . . . ; pg. Then, 5

nðP ; vÞ ¼ ðn1ðS1; vjS1Þ; . . . ; ni�1ðS1; vjS1Þ; 0; niþ1ðS2; vjS2Þ; . . . ; npðS2; vjS2ÞÞ:

Now let us consider neighbor games with possible isolated players on the extremes and no isolated

players in the middle. In the next lemmas we show that we can make a further reduction by proving that it

suffices to calculate the nucleolus of a neighbor game that slightly differs from the original game and

in which we leave out the isolated players of the original game. In Lemma 3.13 we consider the case in
which only the first player is isolated. In Lemma 3.14 we consider the case in which only the last player is

isolated. And finally, in Lemmas 3.15 and 3.16 we consider the case in which both the first and the last

player are isolated. Only the proof of Lemma 3.13 is given; the proofs of Lemmas 3.14, 3.15, and 3.16 run

similarly.

Lemma 3.13. Let ðP ; vÞ be a neighbor game with jP jP 3. Suppose that the matching l ¼ fð2; 3Þ; . . . ; ðp � 1; pÞg
is optimal. Define a neighbor game ð�PP ;�vvÞ, by setting �PP :¼ P n f1g, �vvð2; 3Þ :¼ vð2; 3Þ � vð1; 2Þ, and �vvði; iþ 1Þ :¼
vði; iþ 1Þ for 36 i6 p � 1. Then, n1ðP ; vÞ ¼ 0, n2ðP ; vÞ ¼ n2ð�PP ;�vvÞ þ vð1; 2Þ, and niðP ; vÞ ¼ nið�PP ;�vvÞ for i 2 P ,
iP 3.

Proof. Note that �vvð2; 3ÞP 0, since vð2; 3ÞP vð1; 2Þ by optimality of l. So, ð�PP ;�vvÞ is indeed a neighbor game.
Let x ¼ nð�PP ;�vvÞ and define y 2 RP by y1 :¼ 0, y2 :¼ n2ð�PP ;�vvÞ þ vð1; 2Þ, and yi :¼ nið�PP ;�vvÞ for i 2 P , iP 3. By

Lemma 3.2, y 2 CoreðP ; vÞ. One easily verifies that f ðf1g; yÞ ¼ 0, f ðf1; 2g; yÞ ¼ f ðf2g; xÞ, and f ðf2g; yÞP
f ðf2g; xÞ ¼ f ðf1; 2g; yÞ. Further, it is clear that f ðS; yÞ ¼ f ðS; xÞ for any other singleton and pair of
neighbors. Using Lemmas 2.1 and 3.8 one verifies that y ¼ nðP ; vÞ: �

Lemma 3.14. Let ðP ; vÞ be a neighbor game with jP jP 3. Suppose that the matching fð1; 2Þ; . . . ; ðp � 2; p�
1Þg is optimal. Define a neighbor game ð�PP ;�vvÞ, by setting �PP :¼ P n fpg;�vvðp � 2; p � 1Þ :¼ vðp � 2; p � 1Þ�
vðp � 1; pÞ; and �vvði� 1; iÞ :¼ vði� 1; iÞ for 16 i6 p � 2. Then, npðP ; vÞ ¼ 0, np�1ðP ; vÞ ¼ np�1ð�PP ;�vvÞþ
vðp � 1; pÞ, and niðP ; vÞ ¼ nið�PP ;�vvÞ for i 2 P , i6 p � 2.

Lemma 3.15. Let ðP ; vÞ be a neighbor game with jP j ¼ 4. Suppose that the matching fð2; 3Þg is optimal.
Define a neighbor game ð�PP ;�vvÞ, by setting �PP :¼ P n f1; 4g and �vvð2; 3Þ :¼ vð2; 3Þ � vð1; 2Þ � vð3; 4Þ. Then,
n1ðP ; vÞ ¼ n4ðP ; vÞ ¼ 0, n2ðP ; vÞ ¼ n2ð�PP ;�vvÞ þ vð1; 2Þ, and n3ðP ; vÞ ¼ n3ð�PP ;�vvÞ þ vð3; 4Þ.

Lemma 3.16. Let ðP ; vÞ be a neighbor game with jP j > 4. Suppose that the matching fð2; 3Þ; . . . ; ðp � 2;
p � 1Þg is optimal. Define a neighbor game ð�PP ;�vvÞ, by setting �PP :¼ P n f1; pg; �vvð2; 3Þ :¼ vð2; 3Þ � vð1; 2Þ,
�vvðp � 2; p � 1Þ :¼ vðp � 2; p � 1Þ � vðp � 1; pÞ, and �vvði; iþ 1Þ :¼ vði; iþ 1Þ for 36 i6 p � 3. Then, n1ðP ; vÞ ¼
npðP ; vÞ ¼ 0, n2ðP ; vÞ ¼ n2ð�PP ;�vvÞ þ vð1; 2Þ, np�1ðP ; vÞ ¼ np�1ð�PP ;�vvÞ þ vðp � 1; pÞ, and niðP ; vÞ ¼ nið�PP ;�vvÞ for 36
i6 p � 2.

Now we will describe an extension of the algorithm for finding the nucleolus of an arbitrary neighbor
game.

5 Here and in the remainder of this section we consider neighbor games ðQ; vÞ that differ slightly from the definition in the sense that
there is no q 2 N such that Q ¼ f1; . . . ; qg:
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Below we present an example in which the procedure above is used to calculate the nucleolus of an 11-

person neighbor game.

Example 3.17. Consider the neighbor game ðP ; vÞ, where P ¼ f1; . . . ; 11g and v is given by Fig. 2. The
nodes depict the players and the number above an edge denotes the value of the corresponding pair of

players. The numbers below the nodes are the payoffs of the nucleolus of the corresponding game. The thick

edges correspond with the matched pairs in the optimal matchings. We calculate the nucleolus of ðP ; vÞ.
In view of Corollary 3.12, we break the game ðP ; vÞ up in the subgames ðf1; . . . ; 6g; v1Þ and

ðf6; . . . ; 11g; v5Þ. Then, in view of Lemma 3.16 we reduce ðf1; . . . ; 6g; v1Þ to ðf2; 3; 4; 5g; v2Þ. We take the
(unique) optimal and minimal matching fð4; 5Þg for the game ðf2; 3; 4; 5g; v2Þ: In view of Corollary 3.12 we
reduce the game ðf2; 3; 4; 5g; v2Þ to the game ðf3; 4; 5g; v3Þ and the zero two-person game ðf2; 3g; 0Þ. In view
of Lemma 3.13 we reduce the game ðf3; 4; 5g; v3Þ to the game ðf4; 5g; v4Þ. In view of Lemma 3.16 we reduce
the subgame ðf6; . . . ; 11g; v5Þ to the game ðf7; 8; 9; 10g; v6Þ.
The nucleolus of the game ðf4; 5g; v4Þ is ð1; 1Þ. So, by Lemma 3.13 the nucleolus of ðf3; 4; 5g; v3Þ is

ð0; 4; 1Þ. Hence, the nucleolus of ðf2; 3; 4; 5g; v2Þ is ð0; 0; 4; 1Þ. Then, by Lemma 3.16, the nucleolus of
ðf1; . . . ; 6g; v1Þ is ð0; 2; 0; 4; 3; 0Þ. By a similar reasoning and the use of the algorithm or Proposition 3.19,
the nucleolus of ðf6; . . . ; 11g; v5Þ is ð0; 53; 103 ; 43; 53; 0Þ. Finally, from Corollary 3.12 it follows that the nucleolus
of ðP ; vÞ is nðP ; vÞ ¼ ð0; 2; 0; 4; 3; 0; 5

3
; 10
3
; 4
3
; 5
3
; 0Þ.

Fig. 2. Subsequent break-ups of the neighbor game ðP ; vÞ.

Extended algorithm for the nucleolus for neighbor games

Let ðP ; vÞ be a neighbor game. Let l be an optimal and minimal matching for P. In view of Corollary
3.12 we break the game ðP ; vÞ up in (overlapping) subgames that are still neighbor games, but have no
longer isolated players in the middle. Then, in view of Lemmas 3.13–3.15, and 3.16 we remove the

isolated players from the subgames that are not zero two-person games. By doing this the induced

matchings of l for the obtained games may not all be minimal any longer. (See Example 3.17 for an
illustration of this.) By taking an optimal and minimal matching for the games in which this occurs, we

repeat the above procedure to remove the new isolated players. Eventually we have only games that

satisfy either the assumptions made for the algorithm or are zero two-person games. Once we have
calculated the nucleolus of every subgame we use Corollary 3.12 and Lemmas 3.13–3.15, and 3.16 to

construct the nucleolus of the game ðP ; vÞ.
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In Proposition 3.18 we show that the extended algorithm has the same computational complexity as the

original algorithm.

Proposition 3.18. The extended algorithm determines for a neighbor game ðP ; vÞ with p players the nucleolus
in Oðp2Þ time.

Proof. It takes Oðp2Þ time to find the subgames to which we apply the algorithm. Let p1; . . . ; pk be the
cardinalities of the player sets of these subgames. Note, p1 þ � � � þ pk 6 p. By Proposition 3.10 it takes Oðp2l Þ
time to calculate the nucleolus of the lth subgame. Since p21 þ � � � þ p2k 6 p2, it takes Oðp2Þ time to calculate
the nucleoli of all subgames. Finally, note that the construction of the nucleolus of ðP ; vÞ out of the nucleoli
of the subgames takes Oðp2Þ time. We conclude that we determine the nucleolus of ðP ; vÞ in Oðp2Þ time. �

We conclude the paper with closed formulas for the nucleolus of neighbor games in case there are four or

less players involved.

Proposition 3.19. Let ðP ; vÞ be a two-person neighbor game, where P ¼ f1; 2g and the characteristic function v
is induced by a12 ¼ aP 0: Then nðP ; vÞ ¼ ða

2
; a
2
Þ.

Let ðP ; vÞ be a three-person neighbor game, where P ¼ f1; 2; 3g and the characteristic function v is induced
by a12 ¼ aP 0 and a23 ¼ bP 0: Assume, without loss of generality, that aP b. Then,
(i) if b 2 ½0; a

2
�, then nðP ; vÞ ¼ ða

2
; a
2
; 0Þ,

(ii) if b 2 ða
2
; a�, then

ðP ; vÞ ¼ a� b
2

;
a� b
2

�
þ b; 0

�
:

Let ðP ; vÞ be a 4-person neighbor game, where P ¼ f1; 2; 3; 4g and the characteristic function v is induced by
a12 ¼ aP 0, a23 ¼ bP 0, and a34 ¼ cP 0. Assume, without loss of generality, that aP c. Then,
(i) if b 2 ½0; c

2
Þ, then nðP ; vÞ ¼ ða

2
; a
2
; c
2
; c
2
Þ;

(ii) if b 2 ½c
2
; 2a�c
2
Þ, then

nðP ; vÞ ¼ 2a� 2bþ c
4

;
2aþ 2b� c

4
;
c
2
;
c
2

� �
;

(iii) if b 2 ½2a�c
2
; aþ cÞ, then

nðP ; vÞ ¼ a� bþ c
3

;
2aþ b� c

3
;
�aþ bþ 2c

3
;
a� bþ c

3

� �
;

(iv) if b 2 ½aþ c;1Þ, then

nðP ; vÞ ¼ 0;
bþ a� c

2
;
b� aþ c

2
; 0

� �
:

Proof. Follows straightforwardly from Lemma 2.1. �
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