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Abstract

This note develops a modelling approach for wireless networks driven by fluid traffic models. Introducing traffic sets
that follow movement of subscribers, the wireless network with time-varying rates is transformed into a stationary
network at these traffic sets, which yields that the distribution of calls over the cells of the network depends on the call
length distribution only through its mean. The result is extended to a network of infinite server queues with time-
varying arrival rates.
! 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Wireless communications has been a rapidly
growing service in the field of telecommunications.
In contrast with this rapid growth, the capacity of
wireless networks is severely restricted causing
service degradation due to e.g. blocking or inter-
ruption of calls. Due to the cellular nature of
wireless networks, these networks have been

modelled using queueing networks; a cell is rep-
resented as an Erlang loss queue, where the limited
capacity of the wireless network is represented by
the limited number of servers. Calls moving among
the cells (handovers) are modelled as customers
routing among the queues, see Massey and Whitt
(1994).

The representation of a wireless network using
the queueing network formulation is only partly
valid, since

(i) the exact location of a call on e.g. a road is
required for interference,
(ii) in a cellular network the call length is related
to the call, whereas the service time of a cus-
tomer in a queueing network is related to the
queue.

When a call moves from one cell to another, the
residual call length must be taken into account.
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Only under the assumption of exponentially dis-
tributed call lengths and holding times in the cells
a standard queueing network formulation is jus-
tified as in this case the call length can be re-
sampled upon a handover due to the memoryless
property of the exponential distribution, see Eve-
ritt (1994). For general call lengths this is no longer
correct as we have to explicitly deal with the re-
sidual call length of calls entering a cell, and for
general holding times in the cells we have to ex-
plicitly take the location of the calls into account.
This note investigates the effect of the call length
distribution on the transient distribution of calls
over the cells of the network, and presents suffi-
cient conditions for the call length to affect the dis-
tribution of calls over the cells only through its
mean.

A queueing model of a wireless network with
calls extending over multiple cells was presented in
Boucherie and Van Dijk (2000), where the network
was characterized by the call length distribution
and the call holding times in the cells. For sta-
tionary networks, the influence of the call length
distribution on the distribution of the calls over
the network was investigated. Typical wireless
networks, however, have time-varying arrival
rates, due to e.g. hot spots (with increased sub-
scriber density) travelling along a road. As a result,
arrival rates are non-stationary, and insensitivity
results as obtained in Boucherie and Van Dijk
(2000) do not apply. In addition, as observed in
Massey and Whitt (1993), for networks of infinite
server queues, where call holding times are related
to the cell only (and the location of subscribers
in the cell is not taken into account), it is shown
that – already for a single infinite server queue
modelling a single cell – the distribution of the
number of calls in a cell depends on all moments of
the holding time in the cell. By carefully model-
ling the precise subscriber location in the cell,
mobility of subscribers, and the general call length
distribution, this note demonstrates that the dis-
tribution of subscribers over the cells in net-
works with non-stationary arrival rates to the cells
generated by a non-stationary Poisson process
with rate determined by the density of subscribers in
that cell is insensitive to the call length distribu-
tion.

First, to determine the exact location of sub-
scribers, a fluid traffic model for subscriber mo-
bility is investigated in detail. Rather than
considering the location of subscribers on the lo-
cation space X, e.g. a road or a set of roads, we
consider the volume, Ut, under the density curve
over this location space at time t. Subscribers are
assumed to be randomly placed at locations inside
this volume. Obviously, the projection of these
user locations on X results in the distribution
of subscribers over X at time t. We characterize
(mobility of) subscribers via (movement of) sub-
sets / ! Ut, referred to as traffic sets. Due to our
modelling assumptions, that are shown to include
standard traffic models, subscribers follow the
path of the traffic sets.

Second, under the realistic assumption that calls
follow the mobility of subscribers, the influence of
the call length distribution is investigated. Here the
traffic sets play an important role: due to our
transformation, the process counting the number
of active calls in a traffic set is stochastically
equivalent to a stationary infinite server queue,
which yields insensitivity with respect to the call
length distribution. This insensitivity result is
shown to carry over to the distribution of calls
over the cells of the network that obviously do
have time-varying arrival rates.

The resulting model is closely related to the
Poisson arrival location model (PALM) intro-
duced in Massey and Whitt (1993). The general
PALM is not directly amenable for performance
analysis, and further specification is required to
obtain tractable models. In Massey and Whitt
(1994) the PALM is applied to wireless networks,
and in Leung et al. (1994) a fully Markovian set-
ting is analyzed. In these references, in accordance
with the queueing network approach, the distri-
bution of the holding times in the cells is taken as
the main distribution governing the behavior of
the network. In contrast, this note provides an
alternative specification of the PALM investigat-
ing the influence of the call length distribution on
the distribution of calls over the cells of the net-
work. Via a transformation of the process on the
location space X into the traffic sets, a straight-
forward analysis of the influence of the call length
distribution can be provided. This demonstrates
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that our modelling approach is suitable for per-
formance analysis of wireless networks.

Here is the organization of this note. Section 2
presents our modelling approach for a network
with deterministic subscriber mobility. Section 3
illustrates that this approach includes standard
road traffic models. Based on the principle of mass
conservation underlying the results of Section 2,
Section 4 provides a closely related insensitivity
result for networks of infinite server queues
with time-varying arrival rates proportional to
the number of subscribers in the queue. Under the
assumption of exponential holding times in the
queues and call lengths extending over multiple
queues, it is shown that the distribution of calls
over the cells depends on the general call length
distribution only through its mean.

2. Model and main result

Consider a location space X ! Rm. The distri-
bution of subscribers over X is determined by the
summable density k : X" R ! ½0;1Þ, i.e. kðx; tÞ
gives the mass of subscribers per unit space on
location x 2 X at time t. The density of subscribers
changes in time according to a fluid traffic model.
To this end, let

Ut :¼ fðx; hÞ; x 2 X; 06 h6 kðx; tÞg ! X" R

be the traffic at time t, i.e. Ut denotes the set under
the graph of the density curve kðx; tÞ at time t (see
Fig. 1(a)). Movement of subscribers is modelled by
movement of traffic sets / ! Ut. Of particular in-
terest for wireless networks is the behavior of the
traffic volume in a cell A ! X. Therefore, for any
A ! X we introduce the traffic in cell A at time t,

At :¼ fðx; hÞ; x 2 A; 06 h6 kðx; tÞg ! Ut;

and the traffic mass in cell A at time t (see Fig. 1(b))

V ðAtÞ ¼
Z

A
kðx; tÞdx:

Similarly, for each / ! Ut we introduce the mass
V ð/Þ as the Euclidean volume of /:

V ð/Þ ¼
Z

Ut

1½x 2 /'dx;

where 1½E' denotes the indicator function of event
E. Movement of subscribers is determined by the
traffic flow function

L : fðt;/; uÞ; t 2 R;/ ! Ut; u 2 Rg ! X" R;

where Lðt;/; uÞ ! Uu gives the position at time u of
the traffic set / ! Ut (see Fig. 2). Assume that the
traffic flow function has the following properties,
for t; s; u 2 R:

(a) (b)

Fig. 1. (a) Traffic Ut at time t; (b) traffic in cell A at time t.

Fig. 2. Lð0;/; tÞ describes the evolution of the traffic set / ! U0.
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L1 Lðt; (; uÞ : Ut ! Uu is a bijection,
L2 Lðs; Lðt;/; sÞ; uÞ ¼ Lðt;/; uÞ and Lðt;/; tÞ ¼ /

for all / ! Ut,
L3 V ð/Þ ¼ V ðLðt;/; uÞÞ for all / ! Ut, i.e. the

traffic flow function is volume preserving.
The assumptions on the traffic flow function

imply that the system is closed, i.e. external ar-
rivals and departures of subscribers to the system
are excluded. In particular, applying L1, L2, and
L3, for each t; u 2 R,
Z

X
kðx; tÞdx ¼

Z

X
kðx; uÞdx:

External arrivals and departures can be included in
the model by labelling a subset of X as !outside"
and then consider subscribers moving to and from
!outside" as departures and arrivals to the system,
respectively.

In this paper we are interested in the distribu-
tion of calls over the cells of the network. Sub-
scribers are assumed to generate fresh calls at
random times, independent of their location and
movement, and independent of other calls. More
subscribers generate more calls and here it is as-
sumed that this relation is linear. Fresh calls are
generated uniformly over traffic. For any A ! X,
arrival times of fresh calls to cell A form a Poisson
process with non-stationary arrival rate

kAðtÞ :¼ a
Z

A
kðx; tÞdx ¼ aV ðAtÞ; ð1Þ

which is proportional to the density of subscribers
in cell A at time t, where a is the arrival rate of
fresh calls per unit mass of subscribers. For nota-
tional convenience the results below are restricted
to a constant unit mass arrival rate a. As is indi-
cated in Remark 4 the results can readily be ex-
tended to a non-stationary arrival rate aðtÞ. The
Poisson process of call arrivals to cell A corre-
sponds to a Poisson arrival process to traffic sets
fAt; t 2 Rg in which calls arriving to cell A at time
t are uniformly distributed over At. The fresh call
arrival processes for disjoint cells A;B ! X are in-
dependent.

A call remains active during a generally dis-
tributed period of time (the call length) S with
distribution G and finite first moment s :¼ E½S',
independent of other calls, its location and gener-

ation time. A call generated in / ! Ut at time t will
move along X according to the traffic flow function
L, independent of its call length and other active
calls: if a call was generated by a certain sub-
scriber, it will follow the path of this subscriber for
the whole period it is active.

For a call generated at time t in x 2 Ut we call
the point Lðt; x; 0Þ its owner, i.e. it is the position of
x at time 0. Due to L1 and L2, the path of each call
through the system is uniquely determined by its
arrival time, its owner and its call length. If a call is
generated at time t with owner x and call length
Mt, its path is a function ‘ : ½t; t þ Mt' ! X"
½0;1Þ, ‘ðuÞ ¼ Lð0; x; uÞ, t6 u6 t þ Mt. For each
traffic set / ! Ut, let

L/ :¼ fðLðt;/; sÞ; sÞ; s 2 Rg

be its trace through the system. A traffic set b// such
that ðb//; uÞ 2 L/ will be called trace L/at time u.
Two important properties of traces are embodied
in the following lemma.

Lemma 1. For / ! Ut and b// such that ðb//; uÞ 2 L/

for some u, L/ ¼ L/̂. For disjoint sets /;w ! Ut, for
each u the sets b// and bww such that ðb//; uÞ 2 L/ and
ðbww; uÞ 2 Lw are disjoint.

Proof. For / ! Ut there is a unique set
b// ¼ Lðt;/; uÞ such that ðb//; uÞ 2 L/. The first
statement follows from the transitivity property
L2. The second property follows from L1. !

Lemma 1 states that each traffic set defines a
unique trace and each trace determines at each
time a unique traffic set. Furthermore disjoint
traffic sets define traces that do not intersect at any
time.

Lemma 1 offers a ground to define the following
process based on a process of calls in the traffic. For
a traffic set /, consider the process C/ ¼ fC/ðsÞ;
s 2 Rg counting the number of calls in trace L/:
C/ðsÞ gives the number of active calls present in
trace L/ at time s. A call generated by a subscriber
in traffic set / ! Ut follows its path, i.e. at time
s > t it will be in Lðt;/; sÞ assuming its call length
exceeds s* t. Thus, calls generated in trace L/ stay
in L/ for the whole activity period. Furthermore,
for disjoint sets /;w ! Ut, calls generated in L/
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never occur in Lw. However, as is pointed out in
Section 3.2, our formulation also allows merging
traffic flows.

Due to L3, the volume of traffic in trace L/ is
preserved throughout time. Therefore calls arrive
to L/ with Poisson rate

bkk/ ¼ aV ð/Þ;

while the period of time a call stays in L/ is drawn
from the call length distribution G. These obser-
vations lead to the following results for the tran-
sient behavior of the process C/.

Theorem 2. Assume that time t0 exists such that
no active calls are present in Ut0 . For / ! Ut and
all sP t0, C/ðsÞ is Poisson distributed with finite
mean

E½C/ðsÞ' ¼ aV ð/Þ ( E½S j Sð 6 s* t0'Gðs* t0Þ
þ ðs* t0Þ 1ð * Gðs* t0ÞÞÞ: ð2Þ

Furthermore, for disjoint sets /;w ! Ut, the pro-
cesses C/ and Cw are independent.

Proof. The process C/ is stochastically equivalent
to a process counting the number of busy servers
in an M=G=1 queue with arrival rate bkk/ ¼ aV ð/Þ
and i.i.d. service time distribution G which implies
the Poisson distribution of C/ðsÞ, and

E½C/ðsÞ' ¼ E

Z s

maxfs*S;t0g

bkk/ du

" #

¼ bkk/E s½ *maxfs* S; t0g'

(see e.g. Massey and Whitt, 1993; Keilson and
Servi, 1994), hence (2). Lemma 1 argues that for
any times s and u, C/ðsÞ and CwðuÞ are independent
for disjoint /;w ! Ut, which implies that the pro-
cesses C/ and Cw are independent. !

Remark 3 (Initial conditions). The restrictions on
the initial condition in Theorem 2 can be relaxed,
see e.g. Keilson and Servi (1994). For example, if
at time t0 a Poisson random number of calls are
generated uniformly over traffic Ut0 then Theorem
2 still holds true with an additional term in (2)
depending on the intensity of initial distribution.

Remark 4 (Time-dependent fresh call arrivals).
Call generation characteristics can readily be ex-
tended to a non-stationary setting as is the case
when observing daily behavior of subscribers. For
example, subscribers might generate less calls
during early morning hours than during office
hours, where business activities generate addi-
tional calls. To include this behavior into our set-
ting, consider a time-dependent arrival rate of
fresh calls per unit mass of subscribers aðtÞ. For
any traffic set /, calls arrive to L/ with Poisson rate

bkk/ðtÞ ¼ aðtÞV ð/Þ:

The process C/ is stochastically equivalent to a
process counting the number of busy servers in an

Mt=G=1 queue with arrival rate bkk/ðtÞ and i.i.d.
service time distribution G which again implies a
Poisson distribution for C/ðsÞ with

E½C/ðsÞ' ¼ E

Z s

maxfs*S;t0g

bkk/ðuÞdu

" #

;

assuming no calls are present in traffic at time t0.

An important special case is t0 ! *1, indi-
cating that the system has been in operation long
enough for the call characteristics to have reached
equilibrium. We assume this is the case from this
point on. Hence, for / ! Ut and all s, C/ðsÞ is
Poisson distributed with finite mean

E½C/ðsÞ' ¼ aV ð/ÞE½S':

While the call behavior in traces under the as-
sumptions above is stationary, the mobility char-
acteristics of the subscribers make the behavior of
the load offered to the cells time-dependent. This
behavior is studied below.

Consider cell A ! X. Let DA ¼ fDAðsÞ; s 2 Rg
be the process counting the number of active calls
in cell A. The arrival rate of calls to cell A consists
of fresh call arrivals with time-varying arrival rate
kAðtÞ of (1) and of handovers migrating into cell
A from neighboring cells due to the mobility of
subscribers following the flow function L. The
distribution of DAðtÞ can now be obtained from the
number of calls in the trace of At and the corre-
sponding process CAt as is apparent from relation

DAðtÞ ¼ CAtðtÞ:
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Corollary 5. For any positive integer k and any
disjoint cells A1; . . . ;Ak, the random variables
DA1ðtÞ; . . . ;DAk ðtÞ are independent and Poisson dis-
tributed with finite means

E½DAiðtÞ' ¼ kAiðtÞE½S'; i ¼ 1; . . . ; k; t 2 R:

Proof. For disjoint cells A1; . . . ;Ak the corre-
sponding traffic sets A1

t ; . . . ;A
k
t at time t are disjoint

as well. Theorem 2 implies that the distributions of
DAiðtÞ, i ¼ 1; . . . ; k, are independent Poisson with
means kAiðtÞE½S'. !

Observe that while for disjoint cells A;B ! X,
the numbers of calls DAðtÞ and DBðtÞ are indepen-
dent for a fixed t, the processes DA and DB are
generally not independent.

The model studied in this section is a special
case of the PALM introduced in Massey and
Whitt (1993): a Poisson random measure on
R" U0 " R is determined by the arrival rate k,
homogeneity of calls over the traffic and the call
length distribution. While Massey and Whitt
(1993) studied the distribution of the number of
calls in a cell of the wireless network with call
holding time distribution related only to the cells
(the classical queueing network approach), the
special setting of our model enables us to study the
influence of the call length distribution. In partic-
ular, as an immediate consequence of our model-
ling approach, we can conclude that when calls are
homogeneously generated in traffic and subse-
quently follow the flow of traffic then the numbers
of calls in disjoint traffic sets (or cells) are inde-
pendent (at fixed time) and Poisson distributed
with rate proportional to the mass of traffic in the
sets, depending on the call length distribution only
through its mean.

Remark 6 (Blocking of calls). The model analyzed
above does not include blocking of calls such as
naturally occurring in wireless networks due to
their capacity restrictions. Our model is a step
towards obtaining blocking probabilities for such
networks that take into account time-varying rates
due to customer mobility, and general call lengths.
For example, the number of calls in the cells of our
network with unlimited capacity clearly exceeds

that number in cells with finite capacity, where
blocked calls are cleared from the network, see e.g.
Stoyan (1983). Therefore, the probability that the
number of subscribers exceeds K in the infinite
server queue may be used to approximate the
blocking probability in an Erlang loss queue with
capacity K: Alternatively, approximations such as
the modified offered load approximation, and the
pointwise stationary approximation might be
generalized to take into account the general call
length distribution. These approximations use the
relation in equilibrium between the infinite server
queue and the Erlang loss queue as the basis for
the approximation of the network of Erlang loss
queues with time-varying rates via a truncation of
the state distribution of the network with unlim-
ited capacity. For details see Massey and Whitt
(1993).

3. Examples and extensions

Section 3.1 demonstrates that the traffic flow
model incorporates most of the standard traffic
models and Section 3.2 considers superposition
of flows.

3.1. Standard highway model

Consider a single lane road with cars that can-
not overtake, see e.g. Lighthill and Whitham
(1955) and Newell (1993) for a complete descrip-
tion. Following Newell (1993), let Aðx; tÞ be the
cumulative number of vehicles to pass some location
x by the time t, starting with the time of passage of
some reference vehicle, that is a vehicle travelling
along the road which passage is used as starting
point for the observation of the road, e.g. the first
vehicle that passes location 0 after time 0. Then,
smoothing the curve of Aðx; tÞ such that it is twice
differentiable, Aðx; tÞ determines the flow of traffic
qðx; tÞ through location x at time t, and the density
of traffic kðx; tÞ on location x at time t:

qðx; tÞ ¼ oAðx; tÞ
ot

; kðx; tÞ ¼ * oAðx; tÞ
ox

:

The velocity vðx; tÞ on location x at time t is ob-
tained from
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qðx; tÞ ¼ kðx; tÞvðx; tÞ; ð3Þ

while differentiation of A yields the traffic mass
conservation principle when there are no external
departing or arriving flows:

okðx; tÞ
ot

þ oqðx; tÞ
ox

¼ 0: ð4Þ

For a subscriber on location x at time t, its tra-
jectory vðt; x; (Þ is determined by a solution of the
differential equation

dy
du

¼ vðy; uÞ; yðtÞ ¼ x:

Assuming v is continuous and differentiable, there
is a unique solution for any pair ðx; tÞ 2 X" R.
Hence for any times t and u, vðt; (; uÞ is bijective
and transitive. The mass preservation property
Z

U
kðx; tÞdx ¼

Z

vðt;U ;uÞ
kðy; uÞdy

for any cell U ! R and any times t; u can be shown
by applying conservation principle (4). The flow
function Lv corresponding to this setting is

Lvðt; ðx; hÞ; uÞ :¼ vðt; x; uÞ; h ( kðvðt; x; uÞ; uÞ
kðx; tÞ

! "

for any times u; t 2 R, and any position ðx; hÞ 2 Ut,
i.e. any location x 2 X and any h with 06 h6
kðx; tÞ. It can readily be shown that this flow
function satisfies L1, L2 and L3.

3.1.1. Location independent velocity field
Consider the special case with all subscribers

travelling at equal velocity, vðx; tÞ + vðtÞ, t 2 R.
Then

vðt; x; uÞ :¼ xþ
Z u

t
vðsÞds:

The density now satisfies the relation

kðx; uÞ ¼ k x
!

*
Z u

t
vðsÞds; t

"
:

The corresponding flow function is of a similar
simple form:

Lvðt; ðx; hÞ; uÞ :¼ x
!

þ
Z u

t
vðsÞds; h

"

for any u; t 2 R, and any position ðx; hÞ 2 Ut.

3.2. Superposition of flows

Consider two independent traffic streams on the
same location space X with densities k1ðx; tÞ and
k2ðx; tÞ and flow functions L1 and L2. The total
traffic is then obtained as the superposition of
these flows. The joint traffic flow is determined by
the joint traffic density kðx; tÞ ¼ k1ðx; tÞ þ k2ðx; tÞ,
and the joint flow function L can be defined as

Lðt; ðx; hÞ; uÞ :¼
L1ðt; ðx; hÞ; uÞ; h6 k1ðx; tÞ;
L2ðt; ðx; h* k1ðx; tÞÞ; uÞ

þð0; k1ðx; uÞÞ; h > k1ðx; tÞ;

8
><

>:

for any times u; t 2 R, and any position ðx; hÞ 2 Ut.
Flows on multi-lane roads, two-way highways

and road junctions can be straightforwardly
modelled by a superposition of flows. A single car
can be described by a single flow with density
having a limited support that keeps its shape
throughout time. A superposition of a number of
such traffic flows would describe traffic in detail.
Further examples of a superposition of flows
extend the model to general traffic networks.
Another extension incorporating non-determinis-
tic holding times is the queueing network in
Section 4.

4. Networks of infinite server queues

This section provides an insensitivity result for
networks of infinite server queues with time-vary-
ing arrival rates proportional to the number of
subscribers in the queue. Although the result of
this section does not build upon Section 2, it is
based on the principle of mass conservation that is
underlying the result of Section 2, which demon-
strates the implications of arrival rates being pro-
portional to the number of subscribers, and of
calls following subscriber mobility. To mimic the
setting of Section 2, for a network of infinite server
queues we introduce a virtual traffic flow of sub-
scribers to determine both customer arrival rates
and customer mobility. Under the assumption of
exponential holding times in the queues and call
lengths extending over multiple queues, it is shown
that the distribution of calls over the cells depends
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on the general call length distribution only
through its mean.

Consider a tandem network of infinite server
queues, labelled j ¼ . . . ;*1; 0; 1; . . . Customers
arrive to queue j according to a non-homogeneous
Poisson arrival process with arrival rate kjðtÞ. As-
sume that the arrival rate kjðtÞ of customers is
determined by a virtual traffic flow of subscribers
moving among the queues. If this virtual flow
travels with rate lj through queue j, then the ar-
rival rate of customers in queue j changes ac-
cording to

dkjðtÞ
dt

¼ lj*1kj*1ðtÞ * ljkjðtÞ: ð5Þ

We say that the queueing network admits service
mass preservation (SMP) when (5) holds for each
queue j and each time t.

The holding times Hj of customers in queue j
are i.i.d. exponentially distributed with mean l*1

j
(naturally corresponding to the movement of the
virtual traffic flow), independent of holding times
in other queues and of the arrival process. The
service requests S of customers extend over mul-
tiple queues and are i.i.d. with general distribution
G, independent of the arrival process and of
holding times in the queues: a customer stays in
the network until his service is over, but might
traverse a number of queues during his stay. As a
consequence, with a customer two clocks are as-
sociated, one clock for his service request S (that is
set upon arrival in the network, and which the
customer takes with him when he moves around in
the network), and one clock for his holding time in
the queue in which he currently resides (this clock
is set upon entry in the queue). Thus, a customer in
queue j leaves this queue when either

1. his remaining service time is shorter than his
holding time (the clock for his service time S ex-
pires before the clock for the holding time Hj

expires, in which case the customer also imme-
diately leaves the network), or

2. his holding time is shorter than his remaining
service time (he routes to queue jþ 1, there
drawing a new exponentially distributed hold-
ing time with mean l*1

jþ1 and his clock for the
service time S continues).

Theorem 7 shows that the queue length process
in the queueing network under SMP with random
holding times in the queues satisfies a relation
similar to that obtained in Corollary 5 for the
cellular network. To this end, let KjðtÞ denote the
number of customers in queue j at time t. Assume
that l*1

j P ! > 0 for all j, and that kjðtÞ6M for all
j and all t. For simplicity we assume the network
started empty at t ¼ *1.

Theorem 7. Consider the queueing network above
satisfying service mass preservation (5). The distri-
bution of number of customers in queue j at time t is
Poisson with mean

E½KjðtÞ' ¼ kjðtÞE½S':

Proof. As the arrival process is Poisson with rates
in (5) and customers move independently the
analysis of Massey and Whitt (1993) applies and it
remains to compute the mean E½KjðtÞ'. An explicit
expression will be obtained similar to the proof of
Corollary 5 by backward tracing of customers.

Let Hn
j denote the total random holding time of

a customer from queue j* n up to queue j* 1,

Hn
j :¼

Xj*1

i¼j*n

Hi;

with distribution F n
j ðyÞ and H 0

j ¼ 0. Let Pn
j ðyÞ de-

note the probability that a customer originating in
queue j* n at some time u will be in queue j at
time uþ y providing it has not yet terminated, that
is

Pn
j ðyÞ :¼ P½Hn

j þ Hj P y;Hn
j 6 y'

¼ F n
j ðyÞ * F nþ1

jþ1 ðyÞ; ð6Þ

where P 0
j ðyÞ ¼ 1* FjðyÞ, and P*1

j ðyÞ ¼ 0. Notice
that Pn

j ð0Þ ¼ 0, nP 1, and P 0
j ð0Þ ¼ 1. F n

j ðyÞ and
Pn
j ðyÞ are continuous and continuously differen-

tiable on ½0;1Þ .
We will first show that for each j and nP 0,

lj*nP
n
j ðyÞ * lj*nP

n*1
j ðyÞ þ d

dy
Pn
j ðyÞ ¼ 0: ð7Þ

This is clear for n ¼ 0. For nP 1, let un
j ðsÞ ¼

E½e*sHn
j ', which exists for ReðsÞP 0. As Hn

j is a sum
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of independent exponentially distributed random
variables,

un
j ðsÞ ¼

Yj*1

i¼j*n

li

sþ li
; ReðsÞP 0: ð8Þ

Taking the Laplace–Stieltjes transform in (7), using
(6), we arrive at

lj*n un
j ðsÞ

#
* unþ1

jþ1 ðsÞ
$
* lj*n un*1

j ðsÞ
#

* un
jþ1ðsÞ

$

þ s un
j ðsÞ

#
* unþ1

jþ1 ðsÞ
$
¼ 0

for all s, ReðsÞP 0. Inserting (8) into this expres-
sion allows us to conclude (7).

Now consider the arrival rate of customers from
other queues into queue j,

mjðt; uÞ :¼
X1

n¼0

kj*nðt * uÞPn
j ðuÞ

for some j and t, which is clearly finite since
kjðt * uÞ6M for every j for each u. The rate mjðt; uÞ
is constant in u. To this end, observe that, using (5)

d

du
mjðt; uÞ ¼

X1

n¼0

%
* lj*n*1kj*n*1ðt * uÞ

þ lj*nkj*nðt * uÞ
&
Pn
j ðuÞ

þ
X1

n¼0

kj*nðt * uÞ d

du
Pn
j ðuÞ

¼
X1

n¼0

kj*nðt * uÞ lj*nP
n
j ðuÞ

'

* lj*nP
n*1
j ðuÞ þ d

du
Pn
j ðuÞ

(

¼ 0;

where the last equality follows from (7) and we
have used that all the sums are uniformly con-
vergent, since lj 6 ! for each i. Thus, for all j and
any u; t,

X1

n¼0

kj*nðt * uÞPn
j ðuÞ ¼ mjðt; 0Þ ¼ kjðtÞ: ð9Þ

We are now ready to calculate E½KjðtÞ'. With
a random service time extending over multiple
queues, P½Hn

j þ Hj P u;Hn
j 6 u; SP u' gives the

probability that a customer arriving to the system
in queue j* n is present in queue j after the time

period of u. Therefore, the expected number of
customers arriving to the system in queue j* n
and present in cell j at time t is
Z 1

0

kj*nðt * uÞP½Hn
j þ Hj P u;Hn

j 6 u; SP u'du

¼
Z 1

0

kj*nðt * uÞPn
j ðuÞP½SP u'du:

Summing this expression over all nP 0 yields the
expected number of customers in queue j at time t.
Thus, using (9)

E½KjðtÞ' ¼
X1

n¼0

Z 1

0

kj*nðt * uÞPn
j ðuÞP½SP u'du

¼ kjðtÞ
Z 1

0

P½SP u'du ¼ kjðtÞE½S': !

The result of Theorem 7 can readily be extended
to a network of N infinite server queues labelled
j ¼ 1; 2; . . . ;N , with exponential holding times Hj

with mean l*1
j in queue j and general service time

S extending over multiple queues where arrival
process, holding times and service times are inde-
pendent. A customer leaving queue j with positive
remaining service time routes to queue i with
probability pji in accordance with the mean virtual
traffic flow, where

PN
i¼1 pji ¼ 1. A customer leaving

queue j due to completion of his service leaves the
network.

Service mass preservation is expressed as

dkjðtÞ
dt

¼
XN

i¼1

likiðtÞpij * ljkjðtÞ; j ¼ 1; . . . ;N :

ð10Þ

Theorem 7 applies for any deterministic path
through this network. Superposition of different
paths can be extended to this setting which allows
us to conclude the following result.

Theorem 8. Consider the queueing network satis-
fying service mass preservation (10). The distribu-
tion of number of customers in queue j at time t is
Poisson with mean

E½KjðtÞ' ¼ kjðtÞE½S':
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Remark 9. Insensitivity results for infinite server
queues in equilibrium are well-established. In
contrast, the queue length distribution of infinite
server queues with time-varying arrival rates de-
pends in general on the service time distribution
through all its moments, see e.g. Massey and Whitt
(1993). Theorems 7 and 8 provide insensitivity
results for a network with time-varying arrival
rates. These results are due to the service mass
preservation properties (5) and (10) describing the
movement of subscribers among the queues. Ser-
vice mass preservation mimics the properties of the
traffic flow function, that allow for a transforma-
tion of the network with time-varying rates into a
stationary setting, which shows that our network
with time-varying arrival rates operates on the
edge between transient networks and networks
in equilibrium.

5. Conclusion

This paper has developed a modelling approach
for wireless networks with subscriber movement
driven by a fluid traffic that includes standard road
traffic models. Through a transformation of the
network characteristics to properties of the traffic
sets, the distribution of calls over the cells of the
network is shown to be a multi-dimensional Pois-
son distribution with time-varying mean that de-
pends on the call length distribution (that extends
over multiple cells) only through its mean. This
result ignores capacity constraints and blocking of

calls, and is a step towards developing offered load
approximations for wireless networks with time-
varying arrival rates (such as e.g. due to a traffic
jam moving along a road), and general call
length distribution, which is our aim for further
research.

References

Boucherie, R.J., Van Dijk, N.M., 2000. On a queueing network
model for cellular mobile telecommunications networks.
Operations Research 48, 38–49.

Everitt, D., 1994. Traffic engineering of the radio interface for
cellular mobile networks. Proceedings of the IEEE 82, 1371–
1382.

Keilson, L., Servi, L.D., 1994. Networks of non-homogeneous
M/G/1 systems. Journal of Applied Probability 31A, 157–
168.

Leung, K.K., Massey, W.A., Whitt, W., 1994. Traffic models
for wireless communication networks. IEEE Journal on
Selected Areas in Communications 12, 1353–1364.

Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves. II A
theory of traffic flow on long crowded roads. Proceedings
of The Royal Society A 229, 317–345.

Massey, W.A., Whitt, W., 1993. Networks of infinite-server
queues with nonstationary poisson input. Queueing Systems
13, 183–250.

Massey, W.A., Whitt, W., 1994. A stochastic model to capture
space and time dynamics in wireless communication sys-
tems. Probability in the Engineering and Informational
Sciences 8, 541–569.

Newell, G.F., 1993. A simplified theory of kinematic waves in
highway traffic, Part I: General theory. Transportation
Research 27B, 281–287.

Stoyan, D., 1983. Comparison Methods for Queues and Other
Stochastic Models. Wiley, Berlin.

A. Ule, R.J. Boucherie / European Journal of Operational Research 147 (2003) 146–155 155


	On the distribution of calls in a wireless network driven by fluid traffic
	Introduction
	Model and main result
	Examples and extensions
	Standard highway model
	Location independent velocity field

	Superposition of flows

	Networks of infinite server queues
	Conclusion
	References


