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Abstract

When making decisions with multiple criteria, a decision maker often thinks in terms of an
aspiration point or levels of achievement for the criteria.  In multiple objective
mathematical programming, solution methods based on aspiration points can generate
nondominated solutions using a variety of scalarizing functions.  These reference point
solution methods commonly use a  scalarizing function that reaches down from the ideal
solution, in a direction specified by the aspiration point.  Conversely, a similar scalarizing
function can push out from the nadir point toward a specified aspiration point.  In this paper
we explore the structure of these two reference point approaches, examine the discrepancy
between resulting solutions and consider the effect of problem framing on decision maker
behaviour. 

1   Introduction

Reference point methodology provides the foundation for many interactive search
procedures in multiple objective programming.  The concept of a reference point is
consistent with Simon’s [6] description of satisficing decision making where a decision
maker tends to have targets or goals in mind while proceeding toward a decision.  This
satisficing approach is specifically accommodated in the reference point methods of
Wierzbicki [9] and Korhonen and Wallenius [4].  However, reference point formulations
have also been used in “non-satisficing” models such as [7], where a reference point
formulation is used as a mechanism for implicitly optimizing a decision maker’s value
function. Two forms of reference points exist:  aspiration points (desirable levels of
achievement) and reservation points (levels of achievement that should be attained, if at
all possible).  In this study, we focus our attention on aspiration points.



Wierzbicki [9] produced seminal research on reference point methods, including an
investigation of the characteristics of various achievement functions for allowing the search
for attractive nondominated solutions to be controlled by reference points.  These
achievement functions were designed to have a significant advantage over goal
programming by producing only nondominated, or Pareto-optimal, solutions.  An important
class of achievement functions considered in this paper have formulations similar to the
weighted Tchebycheff distance metric. 

In addition to their desirable structural features, reference point methods have also
appeared useful from a methodological or operational perspective. They provide the “shell”
for a simple, decision maker controlled solution method that does not require the decision
maker to conform to any particular requirements or axioms.  The Pareto Race method of
Korhonen and Wallenius [4], where a decision maker simply moves over the efficient
search in a relatively unstructured search for a most preferred solution, is one such example.
Buchanan [2] has proposed an even simpler solution method, also using a Tchebycheff
achievement function. 

In this paper we compare two formulations, both using Tchebycheff-based achievement
functions and aspiration points, but having quite different philosophies.  One seeks to “push
out” from an undesirable solution while the other “reaches down” from a desirable but
unachievable solution.  It is known that these two formulations produce different solutions,
given identical input (that is, the same aspiration point) from a decision maker.  We shall
investigate the patterns of discrepancy between solutions from these two formulations and
show that the resulting solutions can be significantly different, for the same aspiration
point.  

From a behavioural perspective, the choice of reference point can considerably affect
a decision maker’s perception of the resulting solution.  Proverbs 27:7 states the point
succinctly, “He who is full loathes honey, but to the hungry even what is bitter tastes
sweet.”  If, for example, the reference point is the nadir or worst solution, then any resulting
solution is a significant improvement.  Conversely, if the reference point is the ideal or best
solution, any resulting solution must be worse.  Even if these two solutions are the same,
comparison with their respective reference points is likely to result in different “values”
being placed on them.  The two opposing reference points for the formulations (pushing out
from an undesirable solution or reaching down from a desirable solution) is similar to the
concept of framing, which has been discussed in the behavioural decision making literature.
Image Theory, a descriptive decision making model proposed by Beach and Mitchell [1],
provides a useful illustration of framing.  They suggest that a decision maker has images
or schemata which represent, in some way, his view or values.  With the Image Theory
model, the first stage of any decision is a Compatibility Test where each alternative in turn
is assessed to determined its “fit” with the decision maker’s images. Usually these images
will be, in some sense, ideal. Clearly, the choice of image significantly affects the choice
of alternative.  More specifically, Tversky and Kahneman [8] show that how a problem is
framed (in their example, whether the same problem is stated negatively or positively)
significantly affects decision maker choice.  With respect to reference points, the pushing-
out and reaching-down formulations can be viewed as different ways of framing the
decision problem, for the same aspiration point. To examine the behavioural effects of this
framing, we also present some results of a study on how human decision makers respond
to solutions from these two formulations, given the same aspiration  point. 



PM(w) : Max y
s.t. y $ wk hk(x) , wk $ 0, k ' 1, 2, ..., q

x 0 X

2 Terminology and Definitions

The multiple objective mathematical programming problem can be stated as:

where x is an n-dimensional vector of decision variables; F is a vector-valued function
comprising q distinct, concave objective functions of x; X d Rn  is the feasible set of
constrained decisions; and Z = F(x) 0 Rq is the image of X in objective function or criterion
space. We further assume that set X comprises m constraints of the form, X = {x 0 Rn:
gj(x)# 0, j = 1, 2,...,m}.  The operator MAX indicates that each objective function is to be
maximized over X.  

The set of nondominated solutions N consists of those criterion vectors z 0 Z which are
not dominated by another criterion vector in Z.  A criterion z1 is said to dominate solution
z2 if

Two assumptions are made about the preferences of the decision maker.  First,
preferences are assumed to monotonic;  that is, given the MAX operator for each objective,
“more is always better than less.”  Second, a decision maker is presumed to want to
consider only non-dominated solutions.  Let Uk and Mk be the maximum and minimum
values of each objective k over the non-dominated set N.

The vector of Uk values U is usually referred to as the ideal point while the vector of Mk

values M is often labelled the nadir point.   The Uk and Mk values can be used to rescale the
criterion vectors in order to provide commensurable measurement of all objectives over N.
The function hk(x) maps any criterion vector z 0 N onto the range [0,1].  Using this
transformation, h(M) = (0, 0, ..., 0), and h(U) = (1, 1, ..., 1) and hk(x) = (fk(x)-Mk)/(Uk-Mk).
The criterion space is therefore scaled and N is contained within a q-dimensional unit
hypercube anchored at the origin of the nonnegative orthant.  The remaining discussion
assumes this transformation. 

2.1  PU and PM Formulations
Programs PU and PM are defined as follows.  PU uses a Tchebycheff-based achievement
function  to minimize the maximum weighted deviation from the ideal solution U.  Program
PM, on the other hand, seeks to maximize the minimum weighted achievement from the
nadir solution M.  For a given set  of weights w, the PU and PM formulations are:

MAX F(x) ' [f1(x), f2(x),..., fq(x)]
s.t. x 0 X

zk
2
# zk

1 for all k ' 1, 2, ..., q

zj
2 < zj

1 for at least one j 0{1, 2, ..., q}

PU(w) : Min y
s.t. y $ wk (1 & hk(x)) , wk $ 0, k ' 1, 2, ..., q

x 0 X
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The PM formulation has M as its reference point while for PU the reference point is U.
We distinguish between a reference point such as either M or U, which is an integral part
of the problem formulation, and an aspiration point, which is an input specified by the
decision maker. 

Figure 1 shows, in two dimensions, the relationships among these different terms. The
set of nondominated solutions is the piecewise linear set ABCD.  a1 and  a2 are aspiration
points.  The line segment AD is the set of points where h1+h2 = 1.   h*M1 is the PM solution
for a1 while h*U1 is the PU solution for a1; similarly for a2.  From Figure 1, it can be seen
that the discrepancy between PM and PU solutions is a function of the shape of the
nondominated set, the location of the aspiration point relative to nondominated set, and the
distance of the aspiration point from the line segment L = MU.  Even in the two-
dimensional case, it is obvious that the discrepancy between h*M and h*U can be substantial.
It is also worth noting that for aspiration points “underneath” N and not on L, h*U is closer
to the center of N than h*M..  The reverse is true for aspiration points “above” N. 

1.  Comparing PM and PU in a two-dimensional polyhedral case

The PU formulation seeks a solution such that weighted deviations from the ideal point

U are equal.  In contrast, PM seeks a solution such that the weighted deviations from the

nadir point M are equal. Both formulations are based on weighted deviations from a

reference point.  However, since the nadir point is the true zero point, the weighted

deviations from this nadir point for PM are equivalent to weighted achievement.  Figure 1

shows PM as “pushing out” from M, and PU as “reaching down” from U.  

The relationship between aspiration points and weights is as follows.  For a given

aspiration point  a = (a1, a2, ..., aq), the weights  w = (w1, w2, ..., wq) are:

These weights can be normalized so that they sum to unity although it is not necessary to

do so.  In this paper, however, our investigation is undertaken using aspiration points, not

PU: wk '
1

1 & ak

, k ' 1, 2,... , q: PM: wk '
1
ak

, k ' 1, 2,... , q



weights.  The use of aspiration points better reflects the intent of most reference point

methodologies.  PU seeks to minimize the maximum weighted deviation, but so that the

proportional deviations are equal; that is:

PM seeks to maximize the minimum weighted achievement so that, if possible,

proportional achievements are equal; that is:

There is, of course, no guarantee that these equalities  will hold.  Rather, these equations

reflect the intent of the different formulations.  In almost every case, for a given aspiration

point, a = (a1, a2,...,aq), PU and PM result in different solutions.  

2.2  Aspiration Point Location
We assume that all aspiration points have been scaled and are contained within the unit

hypercube.   The location of aspiration point a can be described relative to N, the set of

nondominated solutions.  First, a is either on N or not.  If not, a belongs to one of three

mutually exclusive categories: under N, over N or neither.

For either formulation (PM or PU), if solution h* is a proportional solution, then the

aspiration vector a will be either on, over or under N.   When h*U and h*M (ú a) are both

proportional and  a is under N,  h*U will be closer to L than h*M.  The reverse holds when

a is over N .  

3  Analysis of the Hyperspherical Case

We now apply our analysis of discrepancy to the case where the set of nondominated

solutions,  N, is described by the boundary of the nonnegative section of a unit hypersphere

centered at the origin.  In two dimensions, this is the intersection of the boundary of a unit

circle with the nonnegative quadrant, where the equation for N is                   .

This simplification of representing N as the boundary of the nonnegative portion of a

q-dimensional spheroid aids the ensuing analysis without any loss of generality, especially

in higher dimensions.  A hyperspherical approximation is one (symmetric) limit of a

general polyhedral set, as the number of facets tends to infinity.  Consequently, the analysis

of differences between the two formulations is less affected by the “noise” of the

nondominated surface.  In addition to being smooth and symmetric, the hyperspherical

approximation shares with the unit hypercube the q extreme points which individually

maximize each objective function over the unit hypersphere.  Also, since the discrepancy

associated with the hyperspherical approximation tends to be less than in the linear case,

it is a conservative estimate of discrepancy.  
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2. Two-dimensional hyperspherical case

We define dh as the Euclidean distance between the PM and PU solutions for any given

a and use it as the measure of discrepancy.  In order to explore how the amount of

discrepancy depends on the location of a, we examine how close a is to the line segment

L =MU and characterize the hyperplane containing a.  We define daL as the Euclidean

distance of a from L and let c=h1 + h2 +...+hq.  Figure 2 illustrates these measures.  Note

that for c < 1, all corresponding aspiration points are on or under N.  As c approaches 0, the

aspiration points approach M.  For c > 2/%2&, all corresponding aspiration points are on or

over N.  As c approaches 2, the aspiration points approach U.

For a under N, as c increases and a is closer to the nondominated set, the discrepancy

decreases. Choosing aspiration points very near to the ideal point U will result in

considerable discrepancy, as also will aspiration points which are near M.

Let us put the discrepancy measure in context.  The maximum theoretically possible

discrepancy in two dimensions, with a hyperspherical N, is 0.7654.  In this (unlikely)

situation, for a given aspiration point, PU would give solution (1,0) while PM would give

solution (1/%2,1/%2), or vice versa.  Consider a “middle of the road” discrepancy of 0.2.

What does this mean?  For the case of c=1; that is, for all aspiration points on the

hyperplane  h1 + h2 =1, the median discrepancy is 0.21, with a mean of 0.19.  A discrepancy

of 0.2 is quite realistic.  An example of a 0.2 discrepancy is shown in Table 3.

 

a1 a2 h1
*U h2

*U h1
*M h2

*M

0.310 0.690 0.583 0.813 0.410 0.912

3. Discrepancy Example where dh=0.2
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Thus, the solution is such that h1
*U is 42% larger than h1

*M while h2
*U is 89% of h2

*M.

Since the objective value has been normalized over the range [0,1], we have that h1
*U is

17.3% further along the range (i.e., 17.3% better achievement) than h1
*M, while h2

*M is 9.9%

further along the range than h2
*U.  Clearly, very different solutions result from the same

aspiration point - depending entirely on the framing; that is, whether it is deviation from the

ideal or achievement from the nadir.

3.1  Dispersion of PU and PM solutions in three dimensions
The behaviour of these two formulations can also be examined from the perspective of

dispersion.  That is, for a given set of aspiration points, what does the pattern of solutions

produced by PU and by PM look like?

To examine this, we consider the three-dimensional case with equally spaced aspiration

points within the unit cube.  By projecting the unit cube onto the plane, a visual picture of

the dispersion patterns for PU and PM can be obtained.  Using a 0.05 grid, this represents

11x11x11=1,331 aspiration points within the unit cube.  Any of these aspiration points is

therefore equally likely.  Figure 4 shows the resulting dispersion of solutions over the

spherical nondominated set for PM and PU.  The perspective is that of looking straight

down the ray MU, from above the ideal point U.

 4.  Two-dimensional projection of PM and PU dispersions respectively

The dispersion of, and by implication the discrepancy between, PU and PM solutions

are different.  Overall, PM provides a more even pattern of solutions.  PU solutions are

either toward the centre or to the absolute extremes.  Although it cannot be seen from

Figure 4, the three extreme point solutions (1,0,0), (0,1,0) and (0,0,1) each comprise 100

solutions.  For example, under PU there were 100 different aspiration points which all gave

the same final solution of (1,0,0).  In three dimensions, 52% of the aspiration points are

under N.  



4  Experiment

Differences between PM and PU are largely a function of the location of the aspiration

point.  Clearly, in any practical use of reference point methods, decision makers do not

randomly choose aspiration points evenly throughout the unit hypercube.   Perhaps in

practice with actual aspiration points, these differences are not as significant?  We therefore

designed a simple experiment to examine this question and to also see which of the two

formulations (PM or PU) decision makers preferred.

A production scheduling decision problem was used for the experiment.  This simple

problem has been used successfully in other experimental contexts by one of the authors

(Corner and Buchanan, [3]).  The nondominated set of the three objective production

scheduling problem was chosen to be spherical.

A naive solution method, similar to the GUESS method [2], was used to solve the

problem whereby the decision maker guesses a solution (the aspiration point) and the

method finds a solution using both the PM and PU formulation.  The decision maker

chooses between the PM and PU solutions (or indicates indifference) and the method

proceeds until a satisfactory solution is found.  Although it was the goal of the participants

to derive a good production schedule, we were only interested in the choice between the

PM and PU solutions at each iteration.  58 students participated in the experiment which

was treated as a case study and became part of their assessable work for a course; 38 were

MBA students at Auburn University, while the remaining 20 were students from the

University of Waikato.

The hypothesis was that participants would prefer PM to PU because, we assumed,

decision makers are more “achievement-oriented” than “deviation-oriented.”  Because the

production scheduling problem was formulated with a spherical nondominated set, PM will

always produce a proportional solution.  This is not the case for PU.  We therefore

eliminated all iterations where the PU solution was not proportional. The data was further

reduced by eliminating all responses of indifference.  The final data set contained aspiration

points which resulted in a proportional PM or PU solution, between which participants

expressed a clear preference.

4.1  Results
Aspiration points were distributed such that almost 75% were over N.  This is not surprising

- participants simply wanted greater achievement than was often feasible.  If aspiration

points were randomly distributed, then only 48.65% of aspiration points would be over N.

The distribution of guesses, therefore, is not random (p=0.0000).  With the raw data (before

non-proportional PU solutions and indifference were excluded), 82% of aspiration points

were over N.

Overall, PM is preferred at 57.0% (p=0.0006).  However, this overall preference for PM

should be interpreted in the context of the aspiration point.  If a is over N, PM is clearly

preferred at 61.0% (p=0.0000).  If a is under N, PU is preferred at 55.2%, although this is

not statistically significant (p=0.2131).  



Prefer PM Solution Prefer PU Solution Total

a under

19.3% 31.5% 24.5%

65 80 145

44.8% 55.2% 100.0%

a over

80.7% 68.5% 75.5%

272 174 446

61.0% 39.0% 100.0%

Total

100.0% 100.0% 100.0%

337 254 591

57.0% 43.0% 100.0%

5. Categorization of aspiration points and solution choices

Recall that if the aspiration point is over N, then PM is closer to the center than PU; the

converse is true for an aspiration point under N.  The data above suggest that decision

makers prefer solutions which are closer to the center, which represent more of a

compromise.  Certainly the achievement hypothesis, where decision makers are assumed

to prefer an achievement-oriented approach, is rejected.  Rather the position of the

aspiration point (under N or over N) and the apparent desire of decision makers for

“centered” solutions would seem to explain the choice of solution.  If this is accepted and

given that most aspiration points are over N, then PM would be the solution method of

choice.  However, this should be qualified in two ways.  First, if weights are used (i.e.,

aspiration points on the hyperplane h1+h2+...+hq = 1), then because such aspiration points

will always be under N, decision makers are likely to prefer PU.  Second, if an analyst was

seeking to encourage divergence rather than convergence, then PU is a better choice given

that most aspiration points are over N.

5 Conclusion

The motivation for this paper came from an examination of reference point solution

methods.  Specifically, what is the effect of the choice of reference point?  We limited our

study to a simple Tchebycheff reference point formulation and considered both the ideal

and nadir reference points.  It has been shown that these two formulations (PU - reaching

down and PM - pushing up) typically give different solutions for the same aspiration point.

The choice of reference point influences the structure of the interactive solution model and

may, perhaps, influence the behaviour of a decision maker. 

The two formulations have different philosophies.  PU seeks to minimize the maximum

deviation; i.e., to make all weighted deviations equal, if possible.  PM seeks to maximize

the minimum achievement; i.e., to make all weighted achievements equal, if possible.  We

asked whether decision makers may be more comfortable with achievement, rather than



deviation, oriented solution methods.  In practice, the two formulations behave differently

and their respective usefulness is contingent on what one is trying to achieve.  If, for

example, the aim is to generate a wider range of possible solutions then PU, with its

typically greater dispersion, may be more appropriate.

The study shows that different solutions result from the same aspiration point, and that

this difference can be significant. The magnitude of this difference depends on the location

of the aspiration point and the shape of the nondominated surface.  Particularly, if aspiration

points are located near the nadir or ideal reference points and they are somewhat away from

the center, then the two solutions are often considerably different.  

A classification of aspiration points was developed as under N, over N or neither.  In

general, if an aspiration point is under N then the PU solution will be closer to the centre

than the PM solution.  Conversely, if the aspiration point is over N then the PM solution

will be closer to the centre than the PU solution.  This result enables us to comment further.

The congruence between the aspiration point and the resulting solution is also an important

consideration, at least in an interactive reference point solution method.  Thus, if the

aspiration point is over N and near to the ideal point, and PU is used, there will be

considerable difference between the aspiration point and the resulting solution.  This

difference will also occur when PM is used, if the aspiration point is under N and near the

nadir point.   Evidence from this experiment and other experiences with the reference point

methods suggests that aspiration points will usually be close to the ideal point; decisions

makers typically want more than they can get.  This suggests that if some congruence is

desired so that the resulting solution is somewhat similar to the aspiration point, then PM

should be used.

The experiment showed that there is evidence of preference for one type of solution;

however, this is not simply a preference for the results of one formulation over another.

The preference appears, rather, to be related to the centrality of the resulting solution,

suggesting that decision makers tend to seek compromise solutions, when given the

opportunity.  There appears to a tendency toward compromising among the objectives.

Practically speaking, then, what should an analyst do?  Recommend a method that will give

a centralising tendency (assuming most aspiration points are over N and close to the ideal

point) and thereby support a decision maker in this direction?  Or should the analyst

recommend a method which counteracts this tendency of decision maker toward

compromise in the hope that new and better solutions will be found?  

Both methods have their advantages.  Therefore we should make use of both methods;

we should encourage decision makers, as Russo and Schoemaker [5] suggest, to use more

than one frame of reference.  The value comes not from choosing the “best” or most

appropriate frame of reference, but from considering more than one perspective or frame.

This paper has shown how these two different formulations (same scalarizing function but

with different reference points) behave.  They behave differently and both can be useful.

It does not appear that the structure of the method significantly affects decision maker

behaviour.  It does not appear that decision makers are necessarily oriented toward either

an achievement or a deviation focus.
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