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Universidad Rey Juan Carlos, Móstoles (Madrid), Spain
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Abstract

We present a framework for solving some types of 0 − 1 multi-stage scheduling/planning problems
under uncertainty in the objective function coefficients and the right-hand-side. A scenario analysis
scheme with full recourse is used. The solution offered for each scenario group at each stage takes
into account all scenarios but without subordinating to any of them. The constraints are modelled
by a splitting variables representation via scenarios. So, a 0 − 1 model for each scenario is consid-
ered plus the non-anticipativity constraints that equate the 0 − 1 variables from the same group
of scenarios in each stage. The mathematical representation of the model is very amenable for the
proposed framework to deal with the 0 − 1 character of the variables. A Branch-and-Fix Coordi-
nation approach is introduced for coordinating the selection of the branching nodes and branching
variables in the scenario subproblems to be jointly optimized. Some computational experience is
reported for different types of problems.

Keywords: Stochastic programming, Multistage scenario tree, Mixed 0-1 programs, Splitting vari-
ables representation, Twin node families.

1 Introduction

Decision making is inherent to all aspects of industrial, business and social activities. In
all of them, difficult tasks must be accomplished. One of the most reliable decision sup-
port tools available today is Optimization, a field at the confluence of Mathematics and
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Computer Science. The purpose of the field is to build and solve effectively realistic math-
ematical models of the situation under study, in order to allow decision makers to explore
a huge variety of possible alternatives. Since reality is complex, many of these models are
large (in terms of the number of decision variables), stochastic (there are parameters whose
value cannot be controlled by the decision maker and are uncertain) and 0−1 integer (there
are binary variables to be dealt with). Each of the last two features makes the problem
difficult to tackle, yet its solution is critical for many leading organizations in fields such
as public policy making, supply chain planning, production and distribution planning,
financial assets and liability allocation, water resources planning, investments planning,
energy generation allocation planning and traffic planning and scheduling, among many
other areas.

Problems with the characteristics given above are transformed into mathematical op-
timization models. Often there are tens of thousands of constraints and continuous and
0 − 1 variables. Given today’s Operations Research state-of-the-art tools, deterministic
mixed 0 − 1 program optimization should not present major difficulties for moderate size
problems, at least. However, it has long been recognized (Beale, 1955 and Dantzig, 1955)
that traditional deterministic optimization is not suitable for capturing the truly dynamic
behaviour of most real-life applications. The main reason is that such applications involve
data uncertainties which arise because information that will be needed in subsequent de-
cision stages is not available to the decision maker when the decision must be made. See
Kall and Wallace (1994), Higle and Sen (1996) and Birge and Louveaux (1997) for good
surveys on Stochastic Linear Programming and additional references. However, Stochas-
tic 0 − 1 Programming is still in its infancy, see Johnson et al. (2000), although it has a
broad application field as well, see Laporte and Louveaux (1993), Van der Vlerk (1995),
Løkketangen and Woodruff (1996), Schultz et al. (1998), Stougie and Van der Vlerk (1997),
Carøe and Tind (1998), Carøe and Schultz (1998, 1999), Escudero et al. (1999a, b), Ahmed
et al. (2000) and Römisch and Schultz (2001) among others. For a recent survey on mixed
integer linear stochastic programs, see Klein Haneveld and Van der Vlerk (1999).

The goal of this work is to present a modelling approach to deal with multi-stage linking
constraints in a mixed 0 − 1 optimization setting under uncertainty in some parameters
as well as its algorithmic scheme for problem solving that looks very promising for the
types of large-scale problems that we have experimented with. See also in Alonso-Ayuso
et al. (2001) an application to a stochastic two-stage real-world problem. Moreover, the
general idea of the proposed algorithmic framework can be easily extended to more general
(mixed) integer problems.

The paper is organized as follows. Section 2 presents the stochastic programming set-
tings to deal with. Two types of stochastic 0− 1 problems are considered, namely, mixed
0 − 1 problems for two-stage environments, where the first stage has only 0− 1 variables,
and pure 0 − 1 problems for multi-stage environments. Section 3 presents the splitting
variables representation of the scenario-related model, and the main concepts of the so-

2



called Branch-and-Fix Coordination (BFC) scheme for problem solving. The mathematical
representation is very amenable for the proposed BFC approach to deal with the 0 − 1
character of the variables that are included in the non-anticipativity constraints. Its main
idea consists of using this type of constraints to coordinate the selection of the branching
nodes and branching variables in the scenario subproblems to be jointly optimized. Note
that the non-anticipativity constraints are related to the variables from the first stage for
two-stage problems and the variables from each scenario group for multi-stage problems.
Section 4 presents some variables fixing and branching criteria for BFC. The results pro-
duced by our approach are evaluated on the basis of a computational comparison with
an heuristic approach (so-called Fix-and-Relax) for the pure 0 − 1 problems. The new
approach yields very good results with reasonable computing time. Section 5 reports on
the computational results for instances of pure 0 − 1 problems and instances of mixed
0− 1 problems from two types of real-life applications. And, finally, section 6 draws some
conclusions from the work.

2 General Approach

Consider the following (deterministic) model

min ax + cy

s.t. Ax + By = b (1)
x ∈ {0, 1}n, y ≥ 0

where a and c are the vectors of the objective function coefficients, b is the right-hand-side
(rhs) m-vector, A and B are the m × n and m × nc constraint matrices, respectively, x
and y are the n− and nc−vectors of the 0 − 1 and continuous variables to optimize, say,
over a set of stages R, respectively, and m, n and nc are the related number of constraints,
0 − 1 variables and continuous variables. The model must be extended in order to deal
properly with uncertainty in the values of some parameters. Thus, an approach to model
the uncertainty in the problem data is needed. We may employ the so-called scenario
analysis technique, where the uncertainty is modelled via a set of scenarios.

Let S = {1, . . . , |S|} denote the set of scenarios to consider, and ws the likelihood
assigned to scenario s by the decision maker. (Note: Only finite sets of scenarios are
considered throughout the paper). One way to deal with the uncertainty is to obtain
the solution x, y that best tracks each of the scenarios, while satisfying the constraints
for each scenario. This can be achieved by obtaining a solution that minimizes a norm
of the weighted difference between the proposed solution value and the optimal solution
value for each scenario. The resulting model does not increase the number of variables
of the original representation, but now there are m|S| constraints. Unfortunately, this
representation does not preserve the structure of the deterministic model (1) and, on the

3



other hand, the objective function is no longer linear. Models of this form are known as
scenario immunization models, or SI models for short, see Mulvey et al. (1995), among
others.

As an alternative, we could minimize the expected value of the objective function; in
this case, the model (1) becomes

min
∑

s∈S
ws(asx + csy) + α

∑

s∈S
H(zs)

s.t. Ax + By + zs = bs, ∀s ∈ S (2)
x ∈ {0, 1}n, y ≥ 0

where as, bs and cs are the realizations of the vector a, b and c under scenario s, α is a
nonnegative weighting factor, H(·) is a penalty function and zs is a vector that expresses
the constraints’ infeasibility for scenario s. Note that the coefficients of the matrices A
and B can also be associated with the occurrence of the scenarios but, for the sake of
simplicity in the exposition, we are not considering it.

Note that in SI models the z−recourse variables seldom represent decisions to be
taken at future time stages but, rather, they represent penalties to be taken into account
for better decision making in the initial stage. In this case, the models will be usually
reoptimized in a rolling time horizon mode. However, when spot decisions (i.e., decisions
for the first stage) are the only ones to be made, the information about future uncertainty
should be taken into account in a different way for a better spot decision making.

Let νs
r = (xs

r, y
s
r) denote the vector of the variables related to stage r under scenario s

for r ∈ R, s ∈ S, and let νs be the set of vectors {νs
r , ∀r ∈ R} for scenario s.

Rockafellar and Wets (1991), see also Wets (1989), state the so-called non-anticipativity
principle: If two different scenarios, say, s and s′ are identical up to stage r on the basis of
the information available about them at that stage, then the values of the ν-variables must
be identical up to stage r. This principle guarantees that the solution obtained from the
model at stage r does not depend on information that is not yet available. This type of
scheme is termed full recourse. To illustrate this concept, consider a so-called scenario tree
where each node represents a point in time where a decision can be made. Once a decision
is made several contingencies can happen, and information related to these contingencies
is available at the beginning of the next stage. This information structure is visualized
as a tree, where each root-to-leaf path represents one specific scenario and corresponds to
one realization of the uncertain parameters.

In order to introduce the implications of this principle in our approach, we define a
set of scenario groups, say, Gr for each stage r, such that all scenarios having the same
realizations of the uncertainty up to stage r belong to the same scenario group, say, g for
g ∈ Gr. See figure 1. Let Sg,r denote the set of scenarios that belong to group g at stage r,
for Sg,r ⊆ S. Let a node, say, k, in the scenario tree for k ∈ Gr, r ∈ R, such that the tree
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Figure 1: Scenario tree

is defined by the set of nodes {k} and the set of directed arcs E , where (k, #) ∈ E if and
only if S!,r+1 ⊆ Sk,r for k ∈ Gr and # ∈ Gr+1. Finally, let N denote the set of solutions
that satisfy the so-called non-anticipativity constraints. That is,

ν ∈ N =
{
νs such that νs′

r = νs
r | ∀s, s′ ∈ Sg,r, g ∈ Gr, r ∈ R

}
. (3)

Hence, the Deterministic Equivalent Model (DEM) of the full recourse version of model
(1) can be expressed as follows.

min
∑

s∈S
ws(asxs + csys)

s.t. Axs + Bys = bs ∀s ∈ S

x ∈ N

xs ∈ {0, 1}n, ys ≥ 0 ∀s ∈ S.

(4)

Recall that in our approach only the 0 − 1 variables xs ∀s ∈ S are allowed for multi-
stage problems, and only the 0 − 1 variables xs

1 are allowed in the first stage for two-
stage problems. Anyway, the model (4) has a nice structure that we may exploit. Two
approaches can be used to represent the non-anticipativity constraints (3). One approach
is based on a compact representation, where (3) is used to eliminate variables in (4) as
well as to reduce the model size, so that there is a single variable for each element at
each scenario group from each stage, but any special structure of the constraints in (1) is
destroyed.

Benders (1962) decomposition can be applied to the compact representation. Its first
application to two-stage stochastic LP is due to Slyke and Wets (1969). Moreover, we
consider some other types of mathematical formulations, specifically, the so-called splitting
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variables representations, since they are more amenable for our approach to deal with
0 − 1 variables. Given the large-scale instances of the model, decomposition in smaller
models is a key for success. One type, so-called node-related representation, requires to
produce siblings of the variables with non-zero elements in the constraint blocks through
time stages, so-called the multi-stage linking constraints. Another one, so-called scenario-
related representation, requires siblings of all variables in the model. In both cases the non-
anticipativity constraints must be added explicitly, but the second type of representation
preserves the problem structure in a more amenable way for our purposes and, then, it is
our chosen representation, see below.

3 Splitting variables representation of the DEM

Let us rewrite the DEM (4) in the following form, by adding explicitly the non-anticipativity
constraints.

min
∑

s∈S
ws(asxs + csys)

s.t. Axs + Bys = bs ∀s ∈ S
xs

r − xs+1
r = 0 ∀s ∈ Sg,r, g ∈ Gr, r ∈ R (5)

xs ∈ {0, 1}n, y ≥ 0 ∀s ∈ S.

Figure 2 illustrates the block structure of the splitting variables representation (5). Notice
that relaxing the non-anticipativity constraints results in |S| independent mixed 0 − 1
models. Carøe and Schultz (1998, 1999) and Hemmecke and Schultz (2001) use a similar
decomposition approach for two-stage problems. However, that approach focuses more on
using Lagrangian relaxation to obtain good bounds, and less on branching and variable
fixing. See also Takriti and Birge (2000). For an impression on Lagrangian approaches for
multi-stage stochastic integer programming developments we refer to Römisch and Schultz
(2001).

Let us consider the relaxation of the 0 − 1 character of the x−variables as well as the
non-anticipativity constraints in model (5),

xs
r − xs+1

r = 0 ∀s ∈ Sg,r, g ∈ Gr, r ∈ R, xs ∈ {0, 1}n ∀s ∈ S, (6)

such that the new problem can be expressed

min
∑

s∈S
ws(asxs + csys)

s.t. Axs + Bys = bs ∀s ∈ S (7)
xs ∈ [0, 1]n, y ≥ 0 ∀s ∈ S.
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Figure 2: Block structure of the scenario-related splitting variables representation

Note that the LP model (7) consists of a set of |S| independent models.

Let I denote the set of indices of the x−variables, and let Ir denote the set of indices
of the x−variables associated with stage r such that (xs

r)i will give an element of vector
xs

r for i ∈ Ir. Let also Bs denote the Branch-and-Fix (BF) tree associated with scenario
s, and As the set of active nodes in Bs. Any two active nodes, say, a ∈ As and a′ ∈ As′

with s '= s′ are said twin nodes if the path from the root node to each of them in their
own BF trees, say, Bs and Bs′ respectively, has branched or fixed on the same values for
the branched or fixed common variables. The variables, say, (xs

r)i and (xs′
r )i are said to

be common variables if s, s′ ∈ Sg,r, s '= s′, for g ∈ Gr, i ∈ Ir, r ∈ R. See that in order
to satisfy the non-anticipativity constraints (6), the branching or fixing on the common
variables must be on the same value k ∈ {0, 1} for the twin nodes. A twin node family, say,
Tf is a set of nodes, such that any node is a twin node to all the other nodes in the family.
(Note. For technical reasons, all BF nodes should belong to one twin node family, at least,
even if its cardinality is one). Let F denote the set of twin node families, such that it is
said that the nodes a and a′ are twins if a, a′ ∈ Tf , f ∈ F . Note. |Tf | = 1 is allowed. See
figure 3, where the vector xi is included by the elements {(xs

r)i, r ∈ R : i ∈ Ir, s ∈ S}.

A candidate twin node family is a set of active nodes from different BF trees whose
paths from their root nodes have not yet branched nor fixed on any of their common
variables from their related attached LP subproblems; see section 4.3. Notice that the set
of root nodes in the BF trees is a candidate twin node family.
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We can observe in figure 3 that the nodes 1, 9, 17 and 25 belong to the same twin node
family, since the path from the root node to each of them in their own BF has branched on
the same values for the common variables (xs

1)i, i ∈ I1, such as (xs
1)1 = 0 and (xs

1)2 = 0 for
s = 1, 2, 3, 4. Note that there is still one common variable, say (xs

1)3 to branch on, and the
branching value from {0, 1} has to be the same for all members of the family. Similarly,
we can observe that the nodes 1 and 9 belong to the same twin node family, since the path
from the root node to each of them in their own BF trees, say, s = 1, 2, has branched on
the same values for their common variables (xs

r)i, i ∈ Ir, r = 1, 2, say (xs
1)1 = 0, (xs

1)2 = 0
and (xs

2)4 = 0 for s = 1, 2. See also that the nodes 3 and 9 are twin nodes and, then, node
9 belongs to two twin node families for the same scenario group, such that some members
of these families (say, the nodes 1 and 3) belong to the same scenario tree; see in section
4.3 the branching criteria for this situation.

So, the proposal is to execute |S| BF phases (one per scenario) in a coordinate way,
so that the non-anticipativity constraints (6) are satisfied. For this purpose the following
topics should be addressed: potential variable fixing applications from one member of a
twin node family to any other member of the family, estimation of the lower bounds of
the deterioration of the original problem’s relaxation (7), selection of the branching twin
node family and selection of the common branching variable.

4 Branch-and-Fix Criteria for Coordination of Scenario BF
Phases Execution

Consider the relaxation (7), where the non-anticipativity constraints and the integrality
requirement of the 0 − 1 variables are not included, see (6).

4.1 Fixing variables in a BF tree

The problem to be solved for each scenario s is as follows,

(IP s) : Zs
IP = min asxs + csys

s.t. Axs + Bys = bs

xs ∈ {0, 1}n, ys ≥ 0.
(8)

Its linear relaxation will be

(LP s) : Zs
LP = min asxs + csys

s.t. Axs + Bys = bs

xs ∈ [0, 1]n, ys ≥ 0.
(9)

For simplicity and when there is not ambiguity, we will drop the index r from (xs
r)i, so

the new notation for the variable will be xs
i . Let it be a non basic variable in the optimal
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solution of (LP s) and cs
i its reduced cost. It is well known that |cs

i | is a lower bound of
the deterioration of the objective function if xs

i is set from 0 to 1 or viceversa. Let Z
s
IP

be an upper bound of Zs
IP . The Dantzig cuts allow to fix variables as follows:

xs
i ← 0 if cs

i > Z
s
IP − Zs

LP (10)

xs
i ← 1 if −cs

i > Z
s
IP − Zs

LP . (11)

Our scheme allows to extend the Dantzig cuts to basic variables. For simplicity of
notation let us drop the subindex s when referring to the problem related to a single
scenario.

Define Z1
LPi (resp., Z0

LPi) as the new optimal value of (LP ) when the cut xi = 1 (resp.,
xi = 0) is appended to the LP problem. Let ∆1

LPi and ∆0
LPi denote the increase in the

objective function of (LP ) if the variable xi is fixed to 1 or to 0, respectively, such that

∆1
LPi = Z1

LPi − ZLP and ∆0
LPi = Z0

LPi − ZLP .

Note that if xi had originally a fractional value in the optimal solution of (LP ), both ∆1
LPi

and ∆0
LPi can be strictly positive. Let ∆1

LPi and ∆0
LPi be lower bounds of ∆1

LPi and ∆0
LPi,

respectively.

Let the following additional notation.

Jr ⊆ Ir, set of indices of the x−variables from stage r whose related constraints (6) are not
satisfied (i.e., either they have fractional values or the non-anticipativity constraints
are violated) at a given active node of a BF tree. Note that the variables (xs

r)i from
set Ir \Jr for r ∈ R : s ∈ Sg,r, where g ∈ Gr, have already the same value k ∈ {0, 1}
in all members of the related twin node family.

MTf ,k′

ik , set of indices of the x-variables whose value must be fixed to k′ in any feasible solution
to the problems (8) attached to the members of the twin node family Tf , f ∈ F ,
provided that the common variable (xs

r)i is fixed to k, for k, k′ ∈ {0, 1}, i ∈ Jr,
s ∈ Sg,r, g ∈ Gr, r ∈ R, for s : a ∈ As where a ∈ Tf . It can be obtained
by using probing, see Guignard and Spielberg (1981) and conflict graph analysis, see
Savelsbergh (1994) and Atamtürk et al. (2000), among others on the scenario-related
problems (8), and using the potential x-fixings in the problem attached to any node
a ∈ Tf for performing the appropriate implications in the problems attached to the
other members of the family Tf .

Procedure BOUND for obtaining ∆1
LPi and ∆0

LPi.

1. xi non basic.

(a) If xi = 0 then ∆0
LPi = 0, and ∆1

LPi = ci.

10



(b) If xi = 1 then ∆0
LPi = −ci, and ∆1

LPi = 0.

2. xi basic. Let cD
i and cU

i be lower bounds of the deterioration of the objective function
when xi is set to 0 and 1, respectively. (Note that these values can be obtained by
using sensitivity analysis, such that the deterioration of the objective function up to a
basis change is obtained). Note that the pair given by cD

i and cU
i is a different concept

from the classical down- and up-pseudocost concept, since the latter is related to
deterioration’s estimations and the former gives deterioration’s lower bounds.

(a) If xi = 0 then ∆0
LPi = 0 and ∆1

LPi = cU
i .

(b) If xi = 1 then ∆0
LPi = cD

i and ∆1
LPi = 0.

(c) If xi ∈ (0, 1) then ∆0
LPi = cD

i and ∆1
LPi = cU

i

A weaker but faster approach is based on the following relationship that is easy to prove,

∆k
LPi ≥ ∆k′

LPj for j ∈ MTf ,k′

ik , k, k′ ∈ {0, 1}, (12)

where Tf is the twin node family of the node under study. So, ∆k′
LPj gives a lower bound

of ∆k
LPi when (12) occurs. Furthermore, if ∆k

LPi = 0 then ∆k′
LPj = 0.

In general, the following procedure can be executed.

Procedure BOUND2 for obtaining ∆1
LPi and ∆0

LPi.

Step 1: Set ∆k
LPi := −1 ∀i ∈ I, k ∈ {0, 1}.

Step 2: If I = ∅, stop. Otherwise, select i ∈ I and proceed as follows for k ∈ {0, 1}: If
∆k

LPi has not yet been obtained (i.e., ∆k
LPi = −1) and ∃j ∈ MTf ,k′

ik , where Tf is
as above, such that ∆k′

LPj > 0 for k′ ∈ {0, 1}, then

∆k
LPi := max

j∈M
Tf ,k′

ik ,k′∈{0,1}
{∆k′

LPj}. (13)

If ∆k
LPi ≥ 0 ∀k ∈ {0, 1} then I := I \ {i} and go to Step 2.

Step 3: Apply procedure BOUND to obtain ∆k
LPi if ∆k

LPi = −1, k ∈ {0, 1}.
Update I := I \ {i}.

Step 4: If ∆k
LPi = 0 then ∆k′

LPj := 0 ∀j ∈ MTf ,k′

ik with k′ ∈ {0, 1}.

If ∆k
LPi = 0 ∀k ∈ {0, 1} then I := I \ {j : MTf ,k′

ik , k′ ∈ {0, 1}}.
In any case, go to Step 2.

By using standard arguments let the following propositions.
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Proposition 4.1. Let ZIP be an upper bound of the optimal solution value for (IP ). Let
(LP ) be the linear relaxation of (IP ). If ZLP + ∆k

LPi ≤ ZIP and ZLP + ∆1−k
LPi > ZIP ,

then xi can be fixed to k, for k ∈ {0, 1}.

Then, the updating of the upper bound ZIP has the following implications:

xi ← 1 if ∆0
LPi > ZIP − ZLP ,

xi ← 0 if ∆1
LPi > ZIP − ZLP ,

Proposition 4.2. If (IP ) is feasible then ZIP ≥ ZLP + max
i∈I

{
min{∆1

LPi, ∆
0
LPi}

}
.

4.2 Fixing variables in a BFC scheme

Let us consider now our proposal for solving the stochastic 0− 1 problem (5) by using the
so-called Branch-and-Fix Coordination scheme. Let the following additional notation.

s, ∗, root node of the BF tree Bs, for s ∈ S.

Zs,a
LP , solution value of the LP subproblem (9) attached to active node a in BF tree Bs,

for a ∈ As, s ∈ S.

∆s,a,k
LPj , lower bound of the solution value Zs,a

LP increase, if the variable (xs
r)j is fixed to k,

for k ∈ {0, 1}, j ∈ Jr, r ∈ R, a ∈ As, s ∈ S. Note: It includes the weight ws, by
construction.

Zs,a
IP , lower bound of the solution value for the scenario s-related problem (8) to be obtained

from the subtree where a is the root node of the BF tree Bs and the non-anticipativity
constraints (6) are considered, for a ∈ As, s ∈ S. It can be expressed

Zs,a
IP = Zs,a

LP + max
j∈Jr,r∈R

{
min

k∈{0,1}
{∆s,a,k

LPj }
}
. (14)

Zs
IP , lower bound of the solution value for the scenario s-related problem (8), where the

non-anticipativity constraints (6) are considered. It can be expressed

Zs
IP = min

a∈As
{Zs,a

IP }. (15)

Remark 1. When solving the LP subproblem attached to an active node a in the BF
tree Bs, for a ∈ As, s ∈ S, the fixing of the variable (xs

r)j to k ∈ {0, 1} implies that the
current solution value Zs,a

LP is increased by ∆s,a,k
LPj , at least, see Proposition 4.2.

Remark 2. In order to satisfy the non-anticipativity principle, if the common variable
(xs

r)i is fixed to a given value k ∈ {0, 1} in an active node, say, a for a ∈ As, then the
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variable (xs′
r )i must be fixed to the same value and the variables in set MTf ,k′

ik must be
fixed to the value k′ ∈ {0, 1}, in all members of the twin node family Tf for a ∈ Tf , f ∈ F ,
such that a′ ∈ Tf for a′ ∈ As′ , where s, s′ ∈ Sg,r for g ∈ Gr, r ∈ R : i ∈ Jr. So,
additionally, the solution value Zs′,a′

LP of (LP s′) will have an increase of ∆s′,a′,k
LPj , at least,

for a′ ∈ As′ , s′ ∈ Sg,r.

Proposition 4.3. If (xs
r)i = k is appended to problem (7) for k ∈ {0, 1} and s ∈ Sg,r for

given r ∈ R, such that g ∈ Gr, then, a lower bound of the solution value for the enlarged
problem can be expressed

∑

s′∈S
Zs′

LP +
∑

s′∈S\Sg,r

max
j∈Jr′ ,r

′∈R

{
min

l∈{0,1}
∆s′,∗,l

LPj

}
+

∑

s′∈Sg,r

∆s′,∗,k
LP i , (16)

where ∆s′,∗,l
LPj gives the lower bound increase of the solution value Zs′

LP for the LP problem
attached to the root node of the BF tree Bs′, if the variable (xs′

r′)j is fixed to l ∈ {0, 1} for
j ∈ Jr′, r′ ∈ R.

Proof. The problem (7) consists of |S| independent subproblems. The solution value
increase due to fixing (xs

r)i = k, i ∈ Ir, r ∈ R in the related problem (LP s) is ∆s,∗,l
LP i, at

least. On the other hand, the non-anticipativity constraint (6) (xs
r)i − (xs′

r )i = 0 implies
(xs′

r )i = k ∀s, s′ ∈ Sg,r for g ∈ Gr, and the result follows. !

The following corollaries follow trivially from Proposition 4.3.

Corollary 4.1. (BFC variable fixing). Consider the problem (5) and its relaxation
(7). Let ZIP be an upper bound of the solution value for (5) and ZLP be the solution
value for (7). Then, the variable (xs

r)i can be fixed to k ∈ {0, 1}, if (5) is feasible and the
following condition holds

ZLP +
∑

s∈S
∆s,∗,k

LP i ≤ ZIP and ZLP +
∑

s∈S
∆s,∗,1−k

LPi > ZIP . (17)

Note that this result allows to fix new variables in the set As of active nodes for Bs

∀s ∈ S when the updating of the incumbent solution (and, then, ZIP ) occurs for problem
(5).

Corollary 4.2. (BF node pruning and variable fixing). Consider a twin node
family, say, Tf , f ∈ F . Then,

1. The whole set Tf of twin nodes can be pruned if the following condition holds
∑

s′∈S:As′∩Tf={∅}

Zs′
IP +

∑

a∈Tf

Zs,a
IP ≥ ZIP . (18)
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2. The common variables (xs
r)i for i ∈ Ir, r ∈ R in the LP subproblems attached to

the members of the twin node family Tf can be fixed to k ∈ {0, 1} if the following
condition holds

∑

s′∈S:As′∩Tf={∅}

Zs′
IP +

∑

a∈Tf

(Zs,a
LP + ∆s,a,1−k

LPi ) ≥ ZIP (19)

where s : a ∈ As.

Corollary 4.3. (BFC incumbent solution optimality proof). Consider the value,
say, ZIP of the incumbent solution for the original problem (5). Then, the incumbent
solution is optimal if the following condition holds

∑

s∈S
Zs

IP ≥ ZIP . (20)

4.3 Branching criteria

The branching in the BFC scheme is performed on the same common variable for all
members of the selected twin node family. Moreover, notice that in case that a given
node belongs to more than one family then all the node members of these families must
simultaneously branch on the same common variable. Let us say that a twin node family,
say, f belongs to a twin node family set, say, F , if ∃f ′ ∈ F , f '= f ′ such that Tf

⋂
Tf ′ '= {∅},

i.e., there is another family member, say, f ′ from set F that has a (twin) node in common
with family f . As an illustration the members of the twin node families, say, T1 = {1, 9}
and T2 = {3, 9} for scenario group 2 in figure 3 should branch simultaneously on the
common variable {xs

2}5, s = 1, 2, 3 and, so, the families 1 and 2 belong to the same twin
node family set, say, F , i.e., 1, 2 ∈ F .

Among the different criteria for selecting the next twin node family set, say, F , to
branch (see in Linderoth and Savelsbergh, 1999, the related criteria for single Branch-and-
Bound trees), we use the depth first search strategy. According to this criterion, the set,
say, F̂ is the set with the smallest lower bound of the solution value among the two twin
node family sets, say, F1 and F2 that have just been created, i.e.

F̂ = argminF∈{F1,F2}
{
min
f∈F

{ ∑

a∈Tf

Zs,a
IP

}}
, (21)

where s : a ∈ As and Zs,a
IP is given by (14), provided that the LP subproblems attached

to the members of the twin node families Tf , f ∈ F still have common variables that have
not yet been branched, nor fixed on. Otherwise, the branching family set F̂ is chosen
according to the rule (22) from the set, say, C of the candidate twin node family sets, say,
Fc ∀c ∈ C that can be identified from the two twin node family sets F1 and F2 that have
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just been created.
F̂ = argminc∈C

{
min
f∈Fc

{ ∑

a∈Tf

Zs,a
IP

}}
, (22)

Once the branching family set F̂ has been selected, the branching x−variable must
be the same in all members of the twin node family set, in order to satisfy the non-
anticipativity constraints (6). We use the most deterioration criterion for selecting the
common variable (xs

r)i to branch on for a ∈ Tf , f ∈ F̂ ,

i = argmaxj∈Jr

{
min

k∈{0,1}

{
min
f∈F̂

{ ∑

a∈Tf̂

∆s,a,k
LPj

}}}
(23)

where s : a ∈ As, and r is the earliest stage such that Jr '= ∅. Note that the earlier stage
r is the bigger the cardinality |Sg,r| is and, then, bigger can be the global deterioration of
the solution value in the original model (5). Notice that ∆ only represents a lower bound
of that deterioration. Note also that Sg,r = S for r = 1 (and, then, |Gr| = 1) and |Sg,r| = 1
for r = |R| (and, then, Gr = S).

Alternative strategies can be used for selecting the branching variable, by using the
traditional criteria considered in MIP Branch-and-Bound schemes. Typical strategies are
the most fractional value, the biggest objective function coefficient, a combination of both
such that the M most fractional x−variables for 1 ≤ M ≤ n are considered and, then, the
variable with the biggest objective function coefficient is chosen, etc.

A more sophisticated rule will be based on computing the deterioration of the solution
value due to fixing each variable (xs

r)i to zero and to one, exactly. The so-called strong
branching approach (see Applegate et al., 1997) gives a lower bound of the up- and down-
deterioration by performing a given number of dual Simplex iterations. See its performance
comparison in the study reported by Linderoth and Savelsbergh (1999). The criterion (23)
is in the same spirit as this approach.

5 Application cases

In this section we present two application cases of the BFC scheme to stochastic 0 − 1
problems, the first one related to the Air Traffic Flow Management problem and the second
one related to the Strategic Supply Chain Management problem.

5.1 Air Traffic Flow Management

The Air Traffic Flow Management (ATFM) problem under uncertainty in a multi-stage
pure 0− 1 program environment considers a network of airports such that ground-policies
for one of them have impact on the other airport schedules.
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The goal is to obtain a schedule for a set of flights to minimize the total cost delay
without violating the airport and air sector capacities and preserving the precedence rela-
tionships between flights, among other constraints. The main assumption on the problem
described in the open literature is the deterministic character of the data. However, the
airport capacity for flight arrivals and departures is a random parameter mainly due to
the weather conditions; the airsector capacity is also an uncertain parameter, due to a
variety of conditions.

Using a tight pure 0 − 1 deterministic model for ATFM due to Bertsimas and Stock
(1998), Alonso-Ayuso (1997) proposed a stochastic model via scenario analysis and a
related algorithmic framework for ATFM to deal with the uncertainty on the airport
and air sector capacities. These capacities can be assumed deterministic for the first time
periods, but the weather prediction for the other periods should be considered as a random
variable. A Lagrangian-based Decomposition procedure was used for problem solving but
the computational effort is not worthy. Alternatively, Alonso-Ayuso et al. (2000) propose
an heuristic approach to solve the problem. This approach, so-called Fix-and-Relax, is a
Branch-and-Cut scheme that utilises a restrictive criterion for node branching selection,
i.e., only the node with the best solution value in the LP relaxation of the associated full
IP compact model representation for a given stage is chosen, provided that all variables
up to the stage take 0−1 values. The approach obtains a feasible solution that frequently
can be proved optimal.

We report the computational experience obtained while optimizing the stochastic
ATFM problem for a set of large-scale instances by using the BFC approach. Due to
the tightness of the 0− 1 model, some perturbed cases are introduced in order to destroy
the special structure of the problem. The testbed contains 24 instances grouped in 2
sets. The original instances are labelled starting with an A and the perturbed instances
start with a P, followed by the number of flights in the case. Two airports and three sec-
tors have been considered, while the time horizon has been divided into 48 time periods.
Furthermore, three stages have been considered with 16 time periods each of them.

The flights are uniformly distributed over the two potential paths that are allowed.
The departure time periods are randomly assigned so that the departure and arrival time
periods of any flight are within the planning horizon. The precedence relationships between
pairs, say, (f ′, f) of flights are randomly chosen, such that the time lag between the
departure time of flight f and the arrival time of flight f ′ is constrained to be non-smaller
than a given value, the so-called turnaround time. See in Alonso-Ayuso et al. (2000) the
scheme that we have used for generating the scenario tree, included by |S| = 16 scenarios.

5.2 Strategic Supply Chain Management

The Strategic Supply Chain Management (SSCM) problem under uncertainty in a two-
stage mixed 0 − 1 program environment consists of determining the topology of a given

16



supply chain system, included by the plant sizing, single/multilevel product selection,
product allocation among plants and vendor selection for raw material. The objective
is the maximization of the expected benefit given by the product net profit minus the
operation cost and the plant investment depreciation cost along a given time horizon. The
uncertain parameters are the product demand and price, the production cost and the raw
material cost along the time horizon. Alonso-Ayuso et al. (2001) present a two stage mixed
0 − 1 model. The first stage is devoted to the strategic decisions about the plant sizing,
production selection and allocation and vendor selection; the decisions are modelled with
0−1 variables. The second stage is devoted to the tactical decisions about the raw material
volume to be supplied from the vendors, product volume to be processed in plants, stock
volume of product/raw material to be stored in warehouses, component volume to be
transported from origin plants/warehouses to destination plants and product volume to
be shipped from plants to market centres along the time horizon, given the topology of
the supply chain system decided in the first stage. The tactical decisions are modelled by
continuous variables and some strategic decisions, also modelled with 0 − 1 variables, are
allowed for plant capacity expansion.

We report the computational experience obtained while optimizing the stochastic
SSCM problem for a set of large-scale instances by using the BFC approach. The testbed
contains 12 instances, labelled starting with an S in the tables that report the computa-
tional results. The instances have the following dimensions: 4 to 6 plants/warehouses, 3
capacity levels per plant, 12 products, where 8 to 10 are subassemblies, 12 raw materials,
24 vendors, 2 markets per product and 10 time periods.

Up to 7 levels of demand for the products and 5 levels of price/cost for the products/raw
materials have been considered for generating the scenario tree, resulting in |S| = 19
significant scenarios.

5.3 Computational results

Our algorithmic approach has been implemented in a FORTRAN code, so-called BFC.
It uses the optimization engine IBM OSL v2.1 for solving the LP subproblems at the
active nodes in the BF trees. The computational experiments were conducted on a 800
MHz Pentium III Processor with 512 Mb of RAM. Note. An ad-hoc branching tree
management scheme for BFC has been used (see Alonso, 1997), instead of the related
MIP OSL routines.

Table 1 gives the number of constraints (given by the heading m) and variables together
with the matrix density (%). See that the problem dimensions are very high.

Table 2 shows the main results of our computational experimentation obtained by
using BFC. The headings are as follows: ZLP , solution value of the LP relaxation; ZIP ,
solution value of the optimal integer solution; GAP , optimality gap (%) defined as |ZIP −
ZLP |/ZLP ×100 (note that ZLP gives the solution value of the integer model for GAP = 0);
TLP and TIP , the elapsed time (secs.) to obtain the LP solution and the additional time to
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Table 1: Testbed model dimensions

Instance Deterministic model DEM Stochastic model
m n nc density m n nc density

A150-1 2388 3993 - 0.09 17061 29631 - 0.01
A150-2 1318 2201 - 0.17 15280 26660 - 0.01
A150-3 1932 3342 - 0.12 16593 29964 - 0.01
A150-4 2158 3696 - 0.10 16660 29715 - 0.01
A150-5 2426 4224 - 0.09 16952 30690 - 0.01
A150-6 1932 3341 - 0.12 16593 29948 - 0.01
A200-1 3188 5556 - 0.07 22277 40272 - 0.01
A200-2 3268 5492 - 0.07 23875 41786 - 0.01
A200-3 3200 5548 - 0.07 22337 40087 - 0.01
A200-4 3220 5644 - 0.07 22132 40258 - 0.01
A200-5 3200 5551 - 0.07 22493 40447 - 0.01
A200-6 3220 5644 - 0.07 22132 40258 - 0.01
P150-1 2158 3695 - 0.10 16660 29699 - 0.01
P150-2 2190 3744 - 0.10 16794 30153 - 0.01
P150-3 2426 4228 - 0.09 16952 30754 - 0.01
P150-4 1318 2206 - 0.17 15280 26740 - 0.01
P150-5 2158 3692 - 0.10 16660 29675 - 0.01
P150-6 2052 3465 - 0.11 17544 30834 - 0.01
P200-1 2900 5075 - 0.08 22256 40127 - 0.01
P200-2 2150 3719 - 0.10 20870 37733 - 0.01
P200-3 2900 5075 - 0.08 22256 40127 - 0.01
P200-4 3200 5548 - 0.07 22337 40087 - 0.01
P200-5 2832 4847 - 0.08 22569 40238 - 0.01
P200-6 3130 5289 - 0.07 22843 40020 - 0.01
S-01 3406 108 2820 0.10 63436 756 54948 0.01
S-02 3059 79 2430 0.11 57041 403 46854 0.01
S-03 3458 108 2960 0.10 64388 756 57608 0.01
S-04 3101 103 2430 0.11 57731 751 47538 0.01
S-05 3145 103 2560 0.11 58495 751 50008 0.01
S-06 3933 114 3540 0.10 73323 762 68628 0.01
S-07 3718 111 3160 0.10 69328 759 61408 0.01
S-08 2959 89 2540 0.11 55213 629 49400 0.01
S-09 3081 103 2440 0.12 57351 751 47728 0.01
S-10 3678 111 3100 0.10 68568 759 60268 0.01
S-11 2819 89 2260 0.13 52553 629 44080 0.01
S-12 3405 105 2960 0.10 63435 753 57608 0.01

obtain the integer solution, respectively; T , total time; nf , number of twin node families
that have been considered for joint branching and fixing variables in the scenario trees;
nn, total number of branching nodes. Note. The A− and P−instances are minimization
problems, and the S− instances are maximization problems.
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Table 2: Branch-and-Fix Coordination scheme performance

Instance ZLP ZIP GAP TLP TIP T nf nn
A150-1 4128.50 4138.29 0.24 40.48 90.02 130.50 187 760
A150-2 943.92 1000.46 5.99 11.65 214.32 225.97 1021 4096
A150-3 1844.18 1913.93 3.78 44.27 21.20 65.47 26 416
A150-4 1397.25 1449.57 3.74 33.01 53.44 86.45 143 584
A150-5 1530.23 1574.55 2.90 30.87 137.75 168.62 409 1648
A150-6 1682.86 1775.61 5.51 40.70 75.08 115.78 141 1032
A200-1 6426.91 6559.22 2.06 92.82 1455.86 1548.68 961 15376
A200-2 3329.22 3336.70 0.22 79.80 10.05 89.85 7 40
A200-3 1090.78 1213.60 11.26 98.65 355.86 454.51 182 2864
A200-4 1046.61 1182.09 12.94 72.45 173.45 245.90 146 2336
A200-5 864.06 924.33 6.98 82.61 305.99 388.60 377 1664
A200-6 1303.33 1426.16 9.42 91.01 256.39 347.40 147 2352
P150-1 63768.13 84299.35 32.20 16.04 351.68 367.72 698 10352
P150-2 138193.59 146502.25 6.01 15.77 86.51 102.28 177 2496
P150-3 360703.95 379813.32 5.30 37.73 793.95 831.68 1220 17978
P150-4 74569.37 76637.22 2.77 8.08 4.28 12.36 9 72
P150-5 26784.89 40785.83 52.27 15.65 258.70 274.35 512 6752
P150-6 120795.87 122262.89 1.21 19.83 29.49 49.32 50 368
P200-1 137456.91 144081.97 4.82 32.35 232.17 264.52 272 3968
P200-2 432209.31 441757.53 2.21 24.72 165.16 189.88 209 860
P200-3 84408.66 89180.73 5.65 27.63 86.39 114.02 160 2368
P200-4 138617.09 151665.09 9.41 66.02 1085.77 1151.79 1420 10912
P200-5 79895.25 87661.45 9.72 28.56 47.02 75.58 72 840
P200-6 111106.96 118970.64 7.08 38.94 625.66 664.60 690 3552
S-01 237838.66 181997.69 23.48 1257.57 7200.00(*) 8457.57 3605 6521
S-02 163599.55 124092.48 24.15 275.61 1129.71 1405.32 1373 4631
S-03 64217.66 0.00 100.00 296.10 30.98 327.08 7 133
S-04 175033.83 140832.71 19.54 267.87 970.48 1238.35 623 4421
S-05 284638.74 227401.41 20.11 544.25 2572.44 3116.69 2273 9131
S-06 51920.95 0.00 100.00 1336.22 897.65 2233.87 39 741
S-07 114305.25 58995.35 48.39 761.04 1915.97 2677.01 1109 3827
S-08 130357.12 95229.39 26.95 282.26 5822.93 6105.19 9349 20635
S-09 180121.04 147078.30 18.34 213.71 631.53 845.24 419 3929
S-10 108551.50 50513.93 53.47 805.48 6789.40 7594.88 3277 22447
S-11 94799.09 14411.54 84.80 460.55 3425.98 3886.53 2245 6007
S-12 119917.28 68990.07 42.47 500.97 1267.96 1768.93 801 3555
(*) The CPU time limit has been reached

The first observation on the results shown in Table 2 is that the BFC scheme proves
the solution’s optimality for all instances in the testbed but one, (whose optimization was
stopped due to reaching the 2 hours time limit).

We can also observe in Table 2 that the GAP for the (pure 0−1 scheduling) A−instances
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is small (giving an indication of the tightness of the Bertsimas-Stock scenario model),
mainly when comparing it with the GAP for the P−instances (that result from perturba-
tions in the A−instances) and, mainly, with the GAP for the S−instances. See that the
elapsed time needed to obtain the optimal solution for the A− and P−instances barely
reaches 25 minutes, while most of the cases require less than 10 minutes. (Note. See in
Table 3 a computational comparison of these results and the results obtained by an ad-hoc
heuristic algorithm that we present elsewhere for the Air Traffic Flow Management prob-
lem). Notice that, although the optimality GAP between the LP and IP solution values
is small for the A− and P−instances, an important branching effort has been required
(see the nn and nf columns) for obtaining the optimal solution in most of the instances.

Moreover, we can also notice in Table 2 that the GAP for the (mixed 0− 1 planning)
S−instances is quite high. (However, see in Table 4 a smaller GAP by replacing the LP
bound by a tighter one). This fact, together with the extremely high dimensions of the
related stochastic models, makes more difficult to prove solution’s optimality. In any case,
a 2 hours time limit was only reached in one out of 12 instances before the solution’s
optimality was proved.

Table 3 shows the main results of our computational experimentation with the heuristic
algorithm, so-called Fix-and-Relax (for short, FR) presented in Alonso-Ayuso et al. (2000)
for the multi-stage stochastic pure 0 − 1 approach for the Air Traffic Flow Management
problem, and its computing time comparison with the BFC scheme. The headings have
the same meaning as in Table 2, with the following main differences. ZLP in the BFC
scheme gives the LP solution value for the splitting variables representation, where the
non-anticipativity constraints have been relaxed in the LP model, while Z ′

LP in the FR
scheme gives the LP solution value for the compact representation where, by construction,
the non-anticipativity constraints are not relaxed and, as a consequence, the values of
GAP ′ and nn′ that are shown in Table 3 are much smaller than the related values that are
shown in Table 2. However, the computing time T ′ (for the FR scheme) is much bigger
than the computing time T (for the BFC scheme) in 21 out of 24 instances, in spite of
the FR scheme does only prove the optimality in 15 out of 24 instances. See also the
column RT where the ratio T/T ′ is shown. In any case, one of the main advantages of
the BFC scheme over the FR scheme is that the dimensions of the scenario-related models
that are used in the Branch-and-Fix execution phase do not change, by construction, with
the number of scenarios (although obviously the number of BF trees increases). By the
contrary, the dimensions of the compact representation used in the FR scheme increase
with the number of scenarios and, so, the instances’ optimization process may collapse
more easily when using it than when using the BFC scheme.

Table 4 shows some parameters, say, WS (Wait-and-See), EV PI (Expected Value of
Perfect Information), EEV (Expected result of using the Expected Value solution) and
V SS (Value of the Stochastic Solution) (see, e.g., Birge and Louveaux, 1997 for more
details) for analyzing the goodness of the stochastic approach by comparing it with the
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Table 3: FR scheme performance for ATFM and its comparison with the BFC scheme

Instance Z ′
LP Z ′

IP GAP ′ T ′
LP T ′

IP T ′ nn′ RT (%)
A150-1 4134.17 4138.29(*) 0.10 419.36 4.72 424.08 5 30.77
A150-2 1000.46 1000.46 0.00 344.66 0.00 344.66 0 65.56
A150-3 1913.93 1913.93 0.00 517.72 0.00 517.72 0 12.65
A150-4 1449.57 1449.57 0.00 408.48 0.00 408.48 0 21.16
A150-5 1574.55 1574.55 0.00 452.91 0.00 452.91 0 37.23
A150-6 1775.61 1775.61 0.00 618.35 0.00 618.35 0 18.72
A200-1 6549.83 6559.22 0.14 927.26 54.15 981.41 5 157.80
A200-2 3329.22 3509.13(*) 5.40 1295.04 39.98 1335.02 9 6.73
A200-3 1213.60 1213.60 0.00 893.81 0.00 893.81 0 50.85
A200-4 1182.09 1182.09 0.00 793.34 0.00 793.34 0 31.00
A200-5 924.33 924.33 0.00 814.60 0.00 814.60 0 47.70
A200-6 1426.16 1426.16 0.00 859.69 0.00 859.69 0 40.41
P150-1 66280.89 84299.35 27.19 38.23 1161.23 1199.46 529 30.66
P150-2 139777.05 146502.25 4.81 83.10 109.08 192.18 83 53.22
P150-3 361887.12 380390.48(*) 5.11 178.73 749.68 928.41 696 89.58
P150-4 76637.22 76637.22 0.00 39.22 0.00 39.22 0 31.51
P150-5 27411.35 41135.31(*) 50.07 21.26 422.54 443.80 348 61.82
P150-6 121377.42 124865.89(*) 2.87 66.73 8.74 75.47 8 65.35
P200-1 139017.08 144081.98(*) 3.64 200.04 158.30 358.34 82 73.82
P200-2 433260.48 441757.53(*) 1.96 219.70 47.46 267.16 35 71.07
P200-3 85458.53 89180.73 4.36 72.34 57.89 130.23 67 87.55
P200-4 139013.54 155333.59(*) 11.74 56.19 321.48 377.67 267 304.97
P200-5 79895.25 88796.45(*) 11.14 48.34 97.16 145.50 85 51.95
P200-6 111250.64 118970.64 6.94 171.37 27.90 199.27 7 333.52
(*) Optimality has not been proved

more traditional average scenario related approach. We can observe that the parameter
EV PI (%) is relatively small for the A− and P−instances. It may suggest that no further
research to reduce the variability of the scenario tree is very much needed for the testbed.
On the other hand, the parameter V SS (%) is not a finite number for 9 out of 36 instances.
Note that V SS = +∞ means that there is one scenario with an infeasible solution, at
least. On the other hand, there are 13 out of 36 instances where V SS is finite and greater
than 10%. Additionally, there is one S−instance (namely, S-03) where the BFC scheme
does not recommend to carry out any initiative, but the average scenario related scheme
does recommend it resulting in an expected big loss. Independently of that, there are 4
S−instances where both schemes recommend the same type of action. And, finally, there
is one S−instance (namely, S-11), where both schemes recommend to carry out some
activity, but the BFC based planning gives an expected profit, while the average scenario
planning gives an expected loss.
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Table 4: Goodness Measure of the Stochastic Solution

Instance ZIP WS EV PI (%) EEV V SS (%)
A150-1 4138.29 4136.82 1.47 (0.04) 6159.26 2020.97 (48.84)
A150-2 1000.46 943.92 56.53 (5.65) 1302.40 301.94 (30.18)
A150-3 1913.93 1844.18 69.75 (3.64) 3735.52 1821.59 (95.17)
A150-4 1449.57 1397.25 52.32 (3.61) 1529.00 79.43 (5.48)
A150-5 1574.55 1530.23 44.32 (2.81) 1782.99 208.43 (13.24)
A150-6 1775.61 1682.86 92.75 (5.22) +∞ +∞ −
A200-1 6559.22 6432.39 126.83 (1.93) +∞ +∞ −
A200-2 3336.70 3331.74 4.96 (0.15) +∞ +∞ −
A200-3 1213.60 1090.77 122.83 (10.12) +∞ +∞ −
A200-4 1182.09 1046.60 135.48 (11.46) +∞ +∞ −
A200-5 924.33 864.05 60.28 (6.52) +∞ +∞ −
A200-6 1426.16 1303.33 122.83 (8.61) +∞ +∞ −
P150-1 84299.35 81479.00 2820.36 (3.35) 91655.32 7355.97 (8.73)
P150-2 146502.25 144918.79 1583.45 (1.08) 188702.05 42199.81 (28.80)
P150-3 379813.32 379006.75 806.56 (0.21) 439283.59 59470.27 (15.66)
P150-4 76637.22 74569.37 2067.84 (2.70) 81947.96 5310.74 (6.93)
P150-5 40785.83 38082.71 2703.12 (6.63) +∞ +∞ −
P150-6 122262.89 122098.74 164.15 (0.13) +∞ +∞ −
P200-1 144081.97 142601.36 1480.62 (1.03) 311464.58 167382.61 (116.17)
P200-2 441757.53 440706.36 1051.17 (0.24) 572504.06 130746.53 (29.60)
P200-3 89180.73 88130.86 1049.87 (1.18) 90634.59 1453.87 (1.63)
P200-4 151665.09 145740.84 5924.25 (3.91) 310844.96 159179.87 (105.95)
P200-5 87661.45 87661.45 .00 (0.00) 146046.70 58385.25 (66.60)
P200-6 118970.64 118826.96 143.68 (0.12) 118970.64 0.00 (0.00)
S-01 181997.69 202053.82 20056.12 (11.02) 178663.97 3333.72 (1.83)
S-02 124092.48 125641.89 1549.41 (1.25) 124092.48 0.00 (0.00)
S-03 0.00 21172.92 21172.92 − −13908.84 13908.84 −
S-04 140832.71 144260.55 3427.85 (2.43) 140832.71 0.00 (0.00)
S-05 227401.41 247574.33 20172.92 (8.87) 210865.90 16535.51 (7.27)
S-06 0.00 7935.54 7935.54 − 0.00 0.00 −
S-07 58995.35 74463.54 15468.19 (26.22) 56977.70 2017.65 (3.42)
S-08 95229.39 104328.67 9099.28 (9.56) 79091.18 16138.21 (16.95)
S-09 147078.30 158895.42 11817.11 (8.03) 147078.25 0.00 (0.00)
S-10 50513.93 68759.07 18245.13 (36.12) 41393.37 9120.56 (18.06)
S-11 14411.54 34525.28 20113.75 (139.57) −6321.80 20733.34 (143.87)
S-12 68990.07 82680.97 13690.90 (19.84) 66806.05 2184.02 (3.17)

6 Conclusions

In this paper we have presented an algorithmic framework to deal with 0 − 1 programs
for stochastic decision making via scenario analysis. The types of stochastic problems
that are considered in the paper are multi-stage pure 0− 1 programs and two-stage mixed
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0 − 1 programs (where only 0 − 1 variables have nonzero elements in the first stage con-
straints). We present a splitting variables representation of the problem via scenario to
create the appropriate siblings of the coupling variables. A so-called BFC (Branch-and-
Fix Coordination) approach is introduced to coordinate the BF phase execution for each
scenario-related model, such that the non-anticipativity constraints are also satisfied. For
this purpose, the concept of twin node families in the set of BF trees is introduced. The
branching node and branching variable selection rules as well as the variable fixing and
the node pruning criteria that are proposed result to be very effective in the types of 0−1
problem applications that we have experimented with. Computational results for large
0−1 instances are reported and a comparison with previous results has been shown in some
of them. Although more computational testing is required, the new approach for solving
stochastic 0 − 1 models seems to be very promising. We have compared the proposed
approach via scenario analysis for obtaining the full recourse stochastic solution with the
more traditional approach based on the average scenario 0−1 program solving. Although
we have obtained the optimal solution for the second type of problems in all instances,
the stochastic solution never has worse expected performance; usually, it behaves much
better than the average scenario related solution.
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