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Abstract

In many multi-criteria decision-making problems the decision criteria present some
interaction whose nature may vary from one situation to another. For example, some
criteria may be statistically correlated, thus making them somewhat redundant or
opposed. Some others may be somewhat substitutive or complementary depending
on the behavior of the decision maker. Some others may be decisive in the sense
that the global score (of any alternative) obtained by aggregation is bounded by the
partial score along one of them.

In this paper we analyze this latter form of interaction. When a criterion bounds
the global score from above, it is called a blocker or a veto, due to its rather intolerant
character. When it bounds the global score from below, it is then called a pusher or
a favor. We thus investigate the tolerance of criteria, or equivalently, the tolerance
of the weighted aggregation operator (here the Choquet integral) that is used to
aggregate criteria. More specifically, we propose (axiomatically) indices to appraise
the extent to which each criterion behaves like a veto or a favor in the aggregation
by the Choquet integral. Previous to this, we also propose global tolerance degrees
measuring the extent to which the Choquet integral is conjunctive or disjunctive.

Keywords: multi-criteria analysis; interacting criteria; fuzzy measure; Choquet integral.

1 Introduction

The use of the fuzzy measures in multi-criteria decision-making enables us to model some
interaction phenomena existing among criteria; see [10, 20]. For example, when two criteria
are positively correlated then the importance of these criteria, taken together, should be
strictly less than the sum of the importances of the single criteria.

Of course, there are interaction phenomena whose nature is not linked to correlation.
In [20] the author discusses the concepts of substitutiveness and complementarity. Two

∗This paper is a revised and extended version with proofs of some parts of the book chapter [19].
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criteria are said to be substitutive if the satisfaction of only one of them produces the
same effect as the satisfaction of both. In that case the importance of the two criteria
taken together is equal to the importance of each of them. By contrast, two criteria are
said to be complementary if the satisfaction of only one of them does not produce any
effect. In that case the importance of each criterion alone is null. Contrary to correlation
phenomena, these latter interaction forms cannot be detected by observing a score table.
They just represent the opinion of the decision maker on the relative importance of criteria,
independently of the partial scores obtained by the alternatives along these criteria.

Another form of dependence among criteria corresponds to the presence of veto or favor
criteria [10]. A criterion is a veto (resp. a favor) if the partial score of any alternative
along this criterion bounds from above (resp. from below) the global score obtained by
aggregation.

For example, consider the problem of evaluating students with respect to various courses
(criteria) and suppose that there exists a veto (resp. favor) course. This means that the
global grade obtained by any student cannot be greater than (resp. less than) the grade
obtained at this course.

We thus see that, in some respect, veto criteria are intolerant and favor criteria are
tolerant. Even though such an extreme behavior rarely occurs in practical applications,
some criteria may have a certain degree of veto or favor.

In this paper we analyze the tolerance degree of criteria, locally and globally. That
is, we propose (axiomatically) veto and favor indices giving the extent to which a given
criterion behaves like a veto or a favor. We also propose global indices, called andness and
orness degrees, that measure the overall tolerance of criteria. These latter indices also give
the degree to which the aggregation is conjunctive or disjunctive.

We assume here that criteria are all expressed on the same interval scale, and hence
we aggregate them by means of the discrete Choquet integral, which has been proved to
be the best suitable operator to aggregate interacting criteria defined on such a scale type
(see Theorem 2.1 below). Thus the main aim of this paper is to investigate the average
tolerance degree of criteria as well as the tolerance degree of each of them when they are
aggregated by the Choquet integral.

The outline of this paper is as follows. In §2 we recall the definition of the Choquet
integral and its use in multi-criteria decision aid. We also present some of its particular
cases, namely the weighted arithmetic mean, the ordered weighted averaging, and the partial
minimum and maximum. In §3 we define global tolerance degrees of criteria as andness and
orness degrees of the Choquet integral. §4 is then devoted to veto and favor degrees which
are characterized by means of rather natural properties. Finally, in §5 we demonstrate the
use of all these indices on a practical example.

Throughout this paper, the label set N = {1, . . . , n} represents the set of criteria of a
given decision problem. To avoid a heavy notation we will often omit braces for singletons,
e.g., writing a(i), N \ i instead of a({i}), N \ {i}. Moreover, cardinality of subsets S, T, . . .
will be denoted whenever possible by the corresponding lower case letters s, t, . . ., otherwise
by the standard notation |S|, |T |, . . ..

For any subset S ⊆ N , 1S will denote the characteristic vector of S in {0, 1}n, i.e., the
vector of {0, 1}n whose ith component is 1 if and only if i ∈ S.
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2 The Choquet integral and its particular cases

The use of the Choquet integral has been proposed by many authors as an adequate sub-
stitute to the weighted arithmetic mean to aggregate interacting criteria; see e.g. [9, 20].
In the weighted arithmetic mean model, each criterion i ∈ N is given a weight ωi ∈ [0, 1]
representing the importance of this criterion in the decision. In the Choquet integral model,
where criteria can be dependent, a fuzzy measure [28] is used to define a weight on each
combination of criteria, thus making it possible to model the interaction existing among
criteria.

Definition 2.1 A fuzzy measure on N is a set function v : 2N → [0, 1], that is nondecreas-
ing with respect to set inclusion and such that v(∅) = 0 and v(N) = 1.

For any S ⊆ N , v(S) can be regarded as the weight of importance of the combination
S of criteria. This interpretation will be illustrated in the remark following Theorem 2.1.

Throughout, we will denote by FN the set of all fuzzy measures on N , and by ΠN the
set of permutations on N .

For any fuzzy measure v ∈ FN , the dual fuzzy measure v∗ ∈ FN is defined by v∗(S) =
1− v(N \ S); see [10, 13]. Obviously, we have (v∗)∗ = v for any v ∈ FN .

For any fuzzy measure v ∈ FN and any permutation π ∈ ΠN , πv will denote the fuzzy
measure of FN defined by πv(π(S)) = v(S) for all S ⊆ N , where π(S) = {π(i) | i ∈ S}.

We now give the definition of the Choquet integral. Although this concept was first
introduced in capacity theory [3], its use as a (fuzzy) integral with respect to a fuzzy measure
was proposed by Höhle [15] and rediscovered later by Murofushi and Sugeno [24, 25].

Definition 2.2 Let v ∈ FN . The (discrete) Choquet integral of x : N → R with respect to
v is defined by

Cv(x) :=
n∑

i=1

x(i) [v(A(i))− v(A(i+1))],

where (·) indicates a permutation on N such that x(1) ≤ . . . ≤ x(n). Also A(i) = {(i), . . . , (n)},
and A(n+1) = ∅.

Thus defined, the Choquet integral has very good properties for aggregation (see e.g.
Grabisch [9]). For instance, it is continuous, non decreasing, comprised between min and
max, stable under the same transformations of interval scales in the sense of the theory of
measurement, and coincides with the weighted arithmetic mean (discrete Lebesgue integral)
as soon as the fuzzy measure is additive. Moreover, in [18, 20] the author proposed an
axiomatic characterization of the class of all the Choquet integrals with n arguments. The
statement is the following:

Theorem 2.1 The operators Mv : Rn → R (v ∈ FN) are

• linear w.r.t. the fuzzy measures, that is, there exist 2n functions fT : Rn → R (T ⊆ N),
such that

Mv =
∑

T⊆N

v(T ) fT (v ∈ FN).

• non decreasing in each argument,
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• stable for the admissible positive linear transformations, that is,

Mv(r x + s1N) = r Mv(x) + s

for all x ∈ Rn, r > 0, s ∈ R,

• properly weighted by v, that is,

Mv(1S) = v(S) (S ⊆ N),

if and only if Mv = Cv for all v ∈ FN .

The axioms presented in the previous characterization are natural enough in the context
of multi-criteria decision-making. The first one is proposed to keep the aggregation model as
simple as possible. The second axiom says that increasing a partial score along any criterion
cannot decrease the global score. The third axiom only demands that the aggregated value
is stable with respect to any change of scale, provided that the partial scores are defined
on an interval scale. Finally, assuming that the partial score scale is embedded in [0, 1], the
fourth axiom suggests that the weight of importance of any subset S of criteria is defined as
the global evaluation of the alternative that completely satisfies criteria S and totally fails
to satisfy the others. This latter axiom is fundamental. It actually gives an appropriate
definition of the weights of subsets of criteria, interpreting them as global evaluations of
particular profiles.

The following proposition [14, §4] (see also [16, §4]) gives the link between the Choquet
integral Cv defined from a given fuzzy measure v ∈ FN and the Choquet integral Cv∗ defined
from the dual measure v∗.

Proposition 2.1 For any v ∈ FN , we have

1− Cv(1− x1, . . . , 1− xn) = Cv∗(x1, . . . , xn) (x ∈ Rn). (1)

Now, the Möbius transform of a given fuzzy measure v ∈ FN is a set function a : 2N → R
defined by

a(S) =
∑

T⊆S

(−1)s−t v(T ) (S ⊆ N). (2)

The transformation is invertible and we have (see e.g. [26])

v(S) =
∑

T⊆S

a(T ) (S ⊆ N). (3)

The Möbius transform enables us to express some functions of v in a simpler form. For
example, the Choquet integral is written [2, 21]

Cv(x) =
∑

T⊆N

a(T )
∧

i∈T

xi (x ∈ Rn). (4)

Rewriting Eq. (4) for v∗ and then using Eq. (1), we also have

Cv(x) =
∑

T⊆N

a∗(T )
∨

i∈T

xi (x ∈ Rn),
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where a∗ is the Möbius transform of the dual fuzzy measure v∗.
Note that the conversion relationship between a and a∗ is given by the following two

formulas:

a∗(T ) = (−1)t+1
∑

K⊇T

a(K) (∅ 6= T ⊆ N), (5)

a(T ) = (−1)t+1
∑

K⊇T

a∗(K) (∅ 6= T ⊆ N); (6)

see [18, Prop. 4.2.3] (see also [12, §6]).
We now present some subclasses of Choquet integrals. Any vector ω ∈ [0, 1]n such that∑

i ωi = 1 will be called a weight vector as we go on.

2.1 The weighted arithmetic mean

Definition 2.3 For any weight vector ω ∈ [0, 1]n, the weighted arithmetic mean operator
WAMω associated to ω is defined by

WAMω(x) =
n∑

i=1

ωi xi.

We can easily see that WAMω is a Choquet integral Cv with respect to an additive fuzzy
measure:

v(S) =
∑

i∈S

ωi (S ⊆ N).

The corresponding Möbius representation is given by

{
a(i) = ωi, ∀i ∈ N ,
a(S) = 0, ∀S ⊆ N such that s ≥ 2.

Conversely, the weights associated to WAMω are given by

ωi = v(i) = a(i) (i ∈ N).

2.2 The ordered weighted averaging operator

Yager [29] defined in 1988 the ordered weighted averaging operators (OWA) as follows.

Definition 2.4 For any weight vector ω ∈ [0, 1]n, the ordered weighted averaging operator
OWAω associated to ω is defined by

OWAω(x) =
n∑

i=1

ωi x(i)

with convention that x(1) ≤ · · · ≤ x(n).

The following result, due to Grabisch [8] (see [21] for a shorter proof), shows that
any OWA operator is a Choquet integral w.r.t. a fuzzy measure that depends only on the
cardinality of subsets.
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Proposition 2.2 Let v ∈ FN . Then the following assertions are equivalent:
i) For any S, S ′ ⊆ N such that |S| = |S ′|, we have v(S) = v(S ′).
ii) There exists a weight vector ω such that Cv = OWAω.
iii) Cv is a symmetric function.

The fuzzy measure v associated to OWAω is given by

v(S) =
n∑

i=n−s+1

ωi (S ⊆ N, S 6= ∅),

and its Möbius representation by [11, Thm 1]

a(S) =
s−1∑

j=0

(
s− 1

j

)
(−1)s−1−j ωn−j (S ⊆ N, S 6= ∅).

Conversely, the weights associated to OWAω are given by

ωn−s = v(S ∪ i)− v(S) =
∑

T⊆S

a(T ∪ i) (i ∈ N, S ⊆ N \ i).

The class of ordered weighted averaging operators OWAω includes an important sub-
class, namely the order statistics

OSk(x) = x(k),

when ωk = 1 for some k ∈ N . In this case, we have, for any S ⊆ N ,

v(S) =
{

1, if s ≥ n− k + 1,
0, otherwise,

(7)

a(S) =

{
(−1)s−n+k−1

(
s−1
n−k

)
, if s ≥ n− k + 1,

0, otherwise.
(8)

Since, for any k ∈ N , we have

1−OSk(1− x1, . . . , 1− xn) = OSn−k+1(x1, . . . , xn) (x ∈ Rn),

from (1) it follows that, for any S ⊆ N ,

v∗(S) =
{

1, if s ≥ k,
0, otherwise,

(9)

a∗(S) =

{
(−1)s−k

(
s−1
k−1

)
, if s ≥ k,

0, otherwise.
(10)

2.3 The partial minimum and maximum operators

Definition 2.5 For any non-empty subset T ⊆ N , the partial minimum operator minT and
the partial maximum operator maxT , associated to T , are respectively defined by

minT (x) = min
i∈T

xi,

maxT (x) = max
i∈T

xi.
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For the operator minT , we have, for any S ⊆ N ,

v(S) =
{

1, if S ⊇ T ,
0, else,

a(S) =
{

1, if S = T ,
0, else.

To refer easily to these particular set functions, we will henceforth denote them by vT

and aT , respectively.
For the operator maxT , we have, for any S ⊆ N ,

v(S) =
{

1, if S ∩ T 6= ∅,
0, else,

a(S) =
{

(−1)s+1, if ∅ 6= S ⊆ T ,
0, else.

We will denote these latter set functions by vT and aT , respectively.
We can readily see that each of the fuzzy measures vT and vT is the dual of the other,

that is, vT = v∗T and vT = v∗T for any T 6= ∅. Thus, the expression of aT (S) follows
immediately from Eq. (5).

We also have the following interesting result:

Proposition 2.3 For any T ⊆ N , T 6= ∅, we have

vT =
∑

K⊆T
K 6=∅

(−1)k+1 vK (11)

vT =
∑

K⊆T
K 6=∅

(−1)k+1 vK (12)

Proof. We have, for any S ⊆ N ,

∑

K⊆T
K 6=∅

(−1)k+1 vK(S) =
∑

K⊆S∩T
K 6=∅

(−1)k+1

=





0, if S ∩ T = ∅,

|S∩T |∑

i=1

(|S ∩ T |
k

)
(−1)k+1 = 1, otherwise,

which proves (11). On the other hand, by (11), we have, for any S ⊆ N ,

∑

K⊆T
K 6=∅

(−1)k+1 vK(S) =
∑

K⊆T
K 6=∅

(−1)k+1
∑

J⊆K
J 6=∅

(−1)j+1 vJ(S)

=
∑

J⊆T
J 6=∅

vJ(S)
∑

K:J⊆K⊆T

(−1)k−j

= vT (S),

which proves (12). ¤
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Note that if ψ(v) is a function that is linear with respect to v then, from Eqs. (11) and
(12) we immediately have

ψ(vT ) =
∑

K⊆T
K 6=∅

(−1)k+1 ψ(vK)

ψ(vT ) =
∑

K⊆T
K 6=∅

(−1)k+1 ψ(vK)

For example, if ψ(v) = Cv then we have

maxT (x) =
∑

K⊆T
K 6=∅

(−1)k+1 minK(x) (x ∈ Rn)

minT (x) =
∑

K⊆T
K 6=∅

(−1)k+1 maxK(x) (x ∈ Rn)

3 Conjunction and disjunction degrees

Consider the cube [0, 1]n as a probability space with uniform distribution. Then the ex-
pected value of Cv(x), that is

E(Cv) :=
∫

[0,1]n
Cv(x) dx, (13)

represents the average value of the Choquet integral Cv over [0, 1]n. This expression gives
the average position of Cv within the interval [0, 1].

For example, from the identity

∫

[0,1]n

∧

i∈S

xi dx =
1

s + 1
(S ⊆ N) (14)

(see [13, §4]) and the obvious property

E(Cv∗) = 1− E(Cv)

(see Eq. (1)) we obtain

E(min) =
1

n + 1
and E(max) =

n

n + 1

Now, since the Choquet integral is always internal to the set of its arguments, that is

min xi ≤ Cv(x) ≤ max xi (x ∈ [0, 1]n),

from (13) it follows that

E(min) ≤ E(Cv) ≤ E(max) (v ∈ FN).

Based on these observations, the author defined in [18] (see also [19]) the conjunction degree
or the degree of andness of Cv as the relative position of E(Cv) with respect to the lower
bound of the interval [E(min), E(max)].
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Definition 3.1 The degree of andness of Cv is defined by

andness(Cv) :=
E(max)− E(Cv)

E(max)− E(min)

This value represents the degree to which the average value of Cv is close to that of
“min”. In some sense, it also reflects the extent to which Cv behaves like a minimum or has
a conjunctive behavior.

Similarly, the relative position of E(Cv) with respect to E(max) is called the disjunction
degree or the degree of orness of Cv. It measures the degree to which Cv behaves like a
maximum or has a disjunctive behavior.

Definition 3.2 The degree of orness of Cv, is defined by

orness(Cv) :=
E(Cv)− E(min)

E(max)− E(min)

It should be noted that, historically, these two concepts have been introduced as early
as 1974 by Dujmović [5, 6] in the particular case of the root-mean-power. Here we have
simply applied his definitions to the Choquet integral 1. Of course, these definitions can
be applied to any internal function which is integrable in [0, 1]n. Note also that similar
approaches have been proposed for some non-internal functions such as triangular norms
and conorms; see [17].

By definition, both andness(Cv) and orness(Cv) lie in the unit interval [0, 1]. Furthermore
they fulfill the following properties:

andness(Cv) + orness(Cv) = 1 (15)

andness(Cv∗) = orness(Cv) (16)

orness(Cv∗) = andness(Cv) (17)

The degree of orness is actually a measure of global tolerance of criteria or, equivalently,
a measure of the tolerance of the decision maker. In fact, tolerant decision makers can
accept that only some criteria are satisfied. This corresponds to a disjunctive behavior
(orness(Cv) > 0.5), whose extreme example is max. On the other hand, intolerant decision
makers demand that most criteria are satisfied. This corresponds to a conjunctive behavior
(orness(Cv) < 0.5), whose extreme example is min. When orness(Cv) = 0.5 the decision
maker is medium (neither tolerant nor intolerant).

Using Eqs. (4), (14), and (15), we easily obtain the following result:

Proposition 3.1 For any v ∈ FN , we have

orness(Cv) =
1

n− 1

∑

T⊆N

n− t

t + 1
a(T ) (18)

andness(Cv) =
1

n− 1

∑

T⊆N

nt− 1

t + 1
a(T ) (19)

where a is the Möbius representation of v.

1An alternative definition of these concepts was proposed very recently [7]. It consists in normalizing
the Choquet integral before calculating its expectation; that is,

andness′(Cv) = E
[ max(x)− Cv(x)
max(x)−min(x)

]
and orness′(Cv) = E

[ Cv(x)−min(x)
max(x)−min(x)

]
.
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In terms of the fuzzy measure v the degree of orness takes the following form.

Proposition 3.2 For any v ∈ FN , we have

orness(Cv) =
1

n− 1

∑

T N

(n− t)! t!

n!
v(T ) ,

or equivalently,

orness(Cv) =
1

n− 1

n−1∑

t=1

1(
n
t

)
∑

T⊆N
|T |=t

v(T ) . (20)

Proof. The result follows from the conversion formulas between the Shapley interaction
index ISh(∅) and v (see Table 3 in [13]) and the fact that

E(Cv) =
∑

T⊆N

1

t + 1
a(T ) ,

where a is the Möbius representation of v. ¤

Corollary 3.1 Let v ∈ FN . Then

orness(Cv) = 0 ⇔ Cv = min

orness(Cv) = 1 ⇔ Cv = max

Proof. If Cv = min then orness(Cv) = 0 trivially. Conversely, if orness(Cv) = 0 then, by
(20), we have v(T ) = 0 for all T ⊂ N , with T 6= ∅ and T 6= N , which proves the first
equivalence.

By (1) and (15)–(17) we merely have

orness(Cv) = 1 ⇔ orness(Cv∗) = 0

⇔ Cv∗ = min

⇔ Cv = max

which proves the second equivalence. ¤

The concept of orness was defined independently by Yager [29] in the particular case
of OWA operators; see also [1, 30]. His definition is based on the use of the so-called
regular increasing monotone quantifiers, that is, increasing functions Q : [0, 1] → [0, 1],
with Q(0) = 0 and Q(1) = 1, which represent linguistic quantifiers such as all, most, many,
at least k. For any k ∈ N , Q(k/n) indicates the lowest global evaluation of an alternative
that fully satisfies k criteria, that is,

Q(k/n) := OWAω(1{1,...,k}) =
k∑

i=1

ωn−i+1 .

Yager then defined

orness(OWAω) :=
1

n− 1

n−1∑

k=1

Q(k/n) =
1

n− 1

n∑

k=1

(k − 1) ωk .
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Cv andness(Cv) orness(Cv)

WAMω 1/2 1/2

OWAω
1

n− 1

n∑

i=1

(n− i) ωi
1

n− 1

n∑

i=1

(i− 1) ωi

OSk
n− k

n− 1

k − 1

n− 1

minT
n t− 1

(n− 1)(t + 1)

n− t

(n− 1)(t + 1)

maxT
n− t

(n− 1)(t + 1)

n t− 1

(n− 1)(t + 1)

Table 1: Degrees of andness and orness for various Choquet integrals

These definitions can be adapted to the more general case of the Choquet integrals. The
average value of the lowest global evaluation over all the alternatives that fully satisfy k
criteria is given by

Q(k/n) :=
1(
n
k

)
∑

K⊆N
|K|=k

Cv(1K) (k ∈ N).

The orness of Cv can then be defined by

orness(Cv) :=
1

n− 1

n−1∑

k=1

Q(k/n),

and we retrieve (20).
Table 1 gives the degrees of andness and orness for particular Choquet integrals.
It could also be interesting to appraise the dispersion of Cv around its typical value by

calculating its variance, that is,

σ2(Cv) :=
∫

[0,1]n
[Cv(x)− E(Cv)]

2 dx

or equivalently,
σ2(Cv) = E(C2

v)− E(Cv)
2. (21)

From this definition it follows that

σ2(Cv∗) = σ2(Cv).

The following result gives the expression of σ2(Cv) in terms of the Möbius representation
of v.
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Proposition 3.3 For any v ∈ FN , we have

σ2(Cv) =
∑

S,T⊆N

a(S) a(T )
s + t− |S ∪ T |

(s + 1)(t + 1)(|S ∪ T |+ 2)
.

Proof. It has been proved in [18, §7.2] that, for any S, T ⊆ N , there holds

∫

[0,1]n
(
∧

i∈S

xi)(
∧

j∈T

xj) dx =
s + t + 2

(s + 1)(t + 1)(|S ∪ T |+ 2)
.

We then have

E(C2
v) =

∑

S,T⊆N

a(S) a(T )
∫

[0,1]n
(
∧

i∈S

xi)(
∧

j∈T

xj) dx

=
∑

S,T⊆N

a(S) a(T )
s + t + 2

(s + 1)(t + 1)(|S ∪ T |+ 2)

and

E(Cv)
2 =

∑

S,T⊆N

a(S) a(T )
1

(s + 1)(t + 1)
.

Eq. (21) then allows us to conclude. ¤

For example, we have

σ2(WAMω) =
1

12

n∑

i=1

ω2
i ,

σ2(minT ) =
t

(t + 1)2 (t + 2)
,

σ2(maxT ) =
t

(t + 1)2 (t + 2)
.

4 Veto and favor effects

Interesting behavioral phenomena in aggregation of criteria are the veto and favor effects.
Both were introduced recently in multi-criteria decision-making by Grabisch [10] 2.

A criterion k ∈ N is said to be a veto or a blocker for Cv if

Cv(x) ≤ xk (x ∈ [0, 1]n). (22)

This definition is motivated by the fact that the non satisfaction of a veto criterion should
entail a low global score.

Similarly, the criterion k is a favor or a pusher for Cv if

Cv(x) ≥ xk (x ∈ [0, 1]n). (23)

In this case, the satisfaction of criterion k entails necessarily a high global score.

2The concepts of veto and favor actually predate their use by Grabisch. Historically, these concepts
were already proposed in 1991 by Dubois and Koning [4] in the context of social choice functions, where
“favor” was called “dictator”.
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It is easy to see that k is a veto (resp. favor) for Cv if and only if it is a favor (resp. veto)
for Cv∗ .

A consequence of these definitions is that no Choquet integral can model simultaneously
a veto on a criterion and a favor on another one. Indeed we clearly have

xi ≤ Cv(x) ≤ xj ∀x ∈ [0, 1]n ⇒ i = j.

We can also see that if the same criterion k is simultaneously a veto and a favor, then
it is a dictator. Indeed, we then have

Cv(x) = xk (x ∈ [0, 1]n).

Note that if the decision maker considers that a given criterion must absolutely be
satisfied (veto criterion), then (s)he is conjunctive oriented. Indeed, by integrating both
sides of Eq. (22) we clearly have orness(Cv) ≤ 0.5. Similarly, if the decision maker considers
that the satisfaction of a given criterion is sufficient (favor criteria) then (s)he is disjunctive
oriented. From Eq. (23) we have orness(Cv) ≥ 0.5.

The following result provides equivalent conditions for k to be a veto for Cv. The third
one is due to Grabisch [10].

Proposition 4.1 Let k ∈ N and v ∈ FN . Then the following eight assertions are equiva-
lent:

i) k is a veto for Cv

ii) Cv(x) ≤ xk ∀x ∈ {0, 1}n

iii) v(T ) = 0 whenever T 63 k
iv) v(N \ k) = 0
v) ∀λ ∈ [0, 1], ∀x ∈ [0, 1]n, xk ≤ λ ⇒ Cv(x) ≤ λ

vi) ∀λ ∈ [0, 1], Cv(1N\k + λ1k) = λ
vii) ∃λ ∈ [0, 1) such that ∀x ∈ [0, 1]n we have xk ≤ λ ⇒ Cv(x) ≤ λ

viii) ∃λ ∈ [0, 1) such that Cv(1N\k + λ1k) = λ

Proof. We shall prove the equivalence by establishing the chain of implications:

i) ⇒ ii) ⇒ iii) ⇒ iv) ⇒ vi) ⇒ i) ⇒ v) ⇒ vii) ⇒ viii) ⇒ iv)

which seems to provide the shortest proof.
i) ⇒ ii) Trivial.
ii) ⇒ iii) If T 63 k then v(T ) = Cv(1T ) ≤ (1T )k = 0.
iii) ⇒ iv) Trivial.
iv) ⇒ vi) By the stability property of Cv, we have

Cv(1N\k + λ1k) = λ + (1− λ) Cv(1N\k) = λ + (1− λ) v(N \ k) = λ.

vi) ⇒ i) By increasing monotonicity of Cv, we have

Cv(x) ≤ Cv(1N\k + xk 1k) = xk

for all x ∈ [0, 1]n.
i) ⇒ v) We merely have Cv(x) ≤ xk ≤ λ.
v) ⇒ vii) ⇒ viii) Trivial.

13



viii) ⇒ iv) We have

λ = Cv(1N\k + λ1k) = λ + (1− λ) Cv(1N\k)

and hence 0 = Cv(1N\k) = v(N \ k). ¤

The equivalence between i) and vii) in Proposition 4.1 is surprising. By imposing that
Cv(x) ≤ λ whenever xk ≤ λ for a given threshold λ ∈ [0, 1), we necessarily consider k as a
veto for Cv. For instance, consider again the problem of evaluating students with respect
to different subjects (courses) and suppose that the teacher of course k decides that if a
student gets a mark less than 18/20 for course k then the global mark over all courses must
be less than 18/20. In this case, this teacher has a veto behavior with respect to his/her
colleagues.

More surprising is the following phenomenon. Suppose that a student gets x = 11/20
for course k and y = 12/20 everywhere else and that it is decided that the global mark is
x = 11/20. Then k is a veto. Indeed, we simply have

x = Cv(y 1N\k + x1k) = x + (y − x) Cv(1N\k)

= x + (y − x) v(N \ k),

retrieving condition iv). Thus, increasing the marks on courses N \ k has no effect on the
global evaluation. This clearly indicates a form of interaction among courses.

Proposition 4.1 can be easily rewritten for favor criteria as follows:

Proposition 4.2 Let k ∈ N and v ∈ FN . Then the following eight assertions are equiva-
lent:

i) k is a favor for Cv

ii) Cv(x) ≥ xk ∀x ∈ {0, 1}n

iii) v(T ) = 1 whenever T 3 k
iv) v(k) = 1
v) ∀λ ∈ [0, 1], ∀x ∈ [0, 1]n, xk ≥ λ ⇒ Cv(x) ≥ λ

vi) ∀λ ∈ [0, 1], Cv(λ1k) = λ
vii) ∃λ ∈ (0, 1] such that ∀x ∈ [0, 1]n we have xk ≥ λ ⇒ Cv(x) ≥ λ

viii) ∃λ ∈ (0, 1] such that Cv(λ1k) = λ

Now, it seems sensible to define indices that measure the degree of veto or favor of a
given criterion j ∈ N . A natural definition of a degree of veto (resp. favor) consists in
considering the probability

Pr[Cv(x) ≤ xj] (resp. Pr[Cv(x) ≥ xj])

where x ∈ [0, 1]n is a multi-dimensional random variable uniformly distributed. Unfortu-
nately, such an index does not depend always continuously on v. For example, one can
easily show that (see Appendix A)

Pr[WAMω(x) ≤ xj] =
{

1, if ωj = 1,
1/2, otherwise.

Thinking of condition ii) above we could as well consider the same probability but with
x ∈ {0, 1}n. However this leads to the same drawback (see Appendix A).
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An alternative approach consists in defining such indices axiomatically. In [18] the
author introduced the following indices, based on an axiomatic characterization:

veto(Cv, j) := 1− 1

n− 1

∑

T⊆N\j

(n− t− 1)! t!

(n− 1)!
v(T )

favor(Cv, j) :=
1

n− 1

∑

T⊆N\j

(n− t− 1)! t!

(n− 1)!
v(T ∪ j)− 1

n− 1

In terms of the Möbius representation of v, these indices are written:

veto(Cv, j) = 1− n

n− 1

∑

T⊆N\j

1

t + 1
a(T )

favor(Cv, j) =
n

n− 1

∑

T⊆N\j

1

t + 1
[a(T ∪ j) + a(T )]− 1

n− 1

Moreover, we can easily prove that

veto(Cv∗ , j) = favor(Cv, j)

favor(Cv∗ , j) = veto(Cv, j)

Although the form of these indices seems not very informative, the axiomatic that
supports them is rather natural. We present it in the following theorem. The proof is given
in Appendix B.

Theorem 4.1 The numbers ψ(Cv, j) (j ∈ N, v ∈ FN)

• are linear w.r.t. the fuzzy measures, that is, there exist real constants pj
T (T ⊆ N)

such that
ψ(Cv, j) =

∑

T⊆N

pj
T v(T ) (j ∈ N, v ∈ FN)

• fulfill the “symmetry” axiom, that is, for any permutation π ∈ ΠN , we have

ψ(Cv, j) = ψ(Cπv, π(j)) (j ∈ N, v ∈ FN)

• fulfill the “boundary” axiom, that is, for any T ⊆ N , T 6= ∅, and any j ∈ T , we have

ψ(minT , j) = 1, (resp. ψ(maxT , j) = 1)

• fulfill the “normalization” axiom, that is, for any v ∈ FN ,

ψ(Cv, i) = ψ(Cv, j) ∀i, j ∈ N

⇓
ψ(Cv, j) = andness(Cv) (resp. orness(Cv)) ∀j ∈ N

if and only if ψ(Cv, j) = veto(Cv, j) (resp. favor(Cv, j)) for all j ∈ N and all v ∈ FN .
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Let us comment on the axioms presented in this characterization. As for Choquet
integral, we ask the veto and favor indices to be linear with respect to the fuzzy measures.
We also require that these indices be independent of the numbering of criteria. Next, the
boundary axiom is motivated by the observation that any j ∈ T is a veto (resp. favor)
criterion for minT (resp. maxT ). Finally, the normalization axiom says that if the degree of
veto (resp. favor) does not depend on criteria, then it identifies with the degree of intolerance
(resp. tolerance) of the decision maker.

Thus defined, we see that veto(Cv, j) is more or less the degree to which the decision
maker demands that criterion j is satisfied. Similarly, favor(Cv, j) is the degree to which
the decision maker considers that a good score along criterion j is sufficient to be satisfied.

It is easy to observe that veto(Cv, j) ∈ [0, 1] and favor(Cv, j) ∈ [0, 1]. Furthermore, we
have, for any v ∈ FN ,

1

n

n∑

j=1

veto(Cv, j) = andness(Cv),

1

n

n∑

j=1

favor(Cv, j) = orness(Cv).

We also have

veto(Cv, j) + favor(Cv, j) = 1 +
nφ(v, j)− 1

n− 1
(j ∈ N, v ∈ FN), (24)

where φ(v, j) is the Shapley importance index of criterion j with respect to v [27] (see also
[20]), that is

φ(v, i) :=
∑

T⊆N\i

(n− t− 1)! t!

n!
[v(T ∪ i)− v(T )].

Eq. (24) shows that if both veto(Cv, j) and favor(Cv, j) increase then so does the impor-
tance φ(v, j).

Table 2 gives the veto and favor indices for particular Choquet integrals.

5 An illustrative example

In this final section we give an example, borrowed from Grabisch [9]. Let us consider the
problem of evaluating students in a high school with respect to three subjects: mathematics
(M), physics (P), and literature (L). Usually, this is done by a simple weighted arithmetic
mean, whose weights are the coefficients of importance of the different subjects. Suppose
that the school is more scientifically than literary oriented, so that weights could be for
example proportional to 3, 3, and 2, respectively. Then the weighted arithmetic mean will
give the following results for three students a, b, and c (marks are given on a scale from 0
to 20):

Student M P L Global
a 18 16 10 15.25
b 10 12 18 12.75
c 14 15 15 14.625
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Cv veto(Cv, j) favor(Cv, j)

WAMω
1

2
+

n(ωj − 1/n)

2(n− 1)

1

2
+

n(ωj − 1/n)

2(n− 1)

OWAω
1

n− 1

n∑

i=1

(n− i) ωi
1

n− 1

n∑

i=1

(i− 1) ωi

OSk
n− k

n− 1

k − 1

n− 1

minT





1, if j ∈ T ,

n t− t− 1

(n− 1)(t + 1)
, otherwise,





n− t

(n− 1)t
, if j ∈ T ,

n− t− 1

(n− 1)(t + 1)
, otherwise,

maxT





n− t

(n− 1)t
, if j ∈ T ,

n− t− 1

(n− 1)(t + 1)
, otherwise,





1, if j ∈ T ,

n t− t− 1

(n− 1)(t + 1)
, otherwise.

Table 2: Veto and favor indices for various Choquet integrals

If the school wants to favor well equilibrated students without weak points then student
c should be considered better than student a, who has a severe weakness in literature.
Unfortunately, no weight vector (ωM, ωP, ωL) satisfying ωM = ωP > ωL is able to favor
student c. Indeed, we have:

c Â a ⇔ ωL > ωM.

The reason of this problem is that too much importance is given to mathematics and physics,
which present some overlap effect since, usually, students good at mathematics are also good
at physics (and vice versa), so that the evaluation is overestimated (resp. underestimated)
for students good (resp. bad) at mathematics and/or physics. This problem can be solved
by using a suitable fuzzy measure v and the Choquet integral.

• Since scientific subjects are more important than literature, the following weights can
be put on subjects taken individually: v(M) = v(P) = 0.45 and v(L) = 0.3. Note
that the initial ratio of weights (3, 3, 2) is kept unchanged.

• Since mathematics and physics overlap, the weights attributed to the pair {M, P}
should be less than the sum of the weights of mathematics and physics: v(MP) = 0.5.

• Since students equally good at scientific subjects and literature must be favored, the
weight attributed to the pair {L, M} should be greater than the sum of individual
weights (the same for physics and literature): v(ML) = v(PL) = 0.9.
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• v(∅) = 0 and v(MPL) = 1 by definition.

The Möbius representation is then given by

a(∅) = 0 a(M) = 0.45 a(MP) = −0.40 a(MPL) = −0.10
a(P) = 0.45 a(ML) = 0.15
a(L) = 0.30 a(PL) = 0.15

Applying Choquet integral with the above fuzzy measure leads to the following new
global evaluations:

Student M P L Global
a 18 16 10 13.9
b 10 12 18 13.6
c 14 15 15 14.6

The expected result is then obtained. Also remark that student b has still the lowest
rank, as requested by the scientific tendency of this high school.

Now, let us turn to a deeper analysis of the orientation of the school or its director.
From the fuzzy measure proposed, we obtain the following Shapley indices and degrees of
veto and favor:

M P L
veto(Cv, i) 0.362 0.362 0.525
favor(Cv, i) 0.575 0.575 0.600

φ(v, i) 0.292 0.292 0.417
veto(Cv, i)/andness(Cv) 0.868 0.868 1.259
favor(Cv, i)/orness(Cv) 0.986 0.986 1.029

n ∗ φ(v, i) 0.875 0.875 1.250

Looking at the veto and favor degrees, we observe that the school seems to favor slightly
the students (disjunctive oriented). This is in accordance with the degree of orness

orness(Cv) = 0.583.

As we can see, it is convenient to scale the veto degrees (resp. the favor degrees, the
Shapley indices) by the factor andness(Cv)

−1 (resp. the factor orness(Cv)
−1, the factor n),

so that a value greater than one indicates a veto degree (resp. a favor degree, a Shapley
index) more important than the average.

We also have E(Cv) = 0.542 and σ(Cv) = 0.180, showing that the global evaluation is
rather dispersed around its typical value 0.542.

Remark that all these behavioral parameters have been obtained from a given fuzzy
measure. In many practical situations, the fuzzy measure is not completely available. We
might then fix its values from information on behavioral parameters; see [22, 23].

18



Concluding remarks

In this paper we have mainly investigated the tolerance of interacting criteria when ag-
gregated by the Choquet integral. More precisely, we have introduced global tolerance
indices, called andness and orness, measuring the degree to which the Choquet integral has
a conjunctive or disjunctive character. Then, we have proposed and axiomatized individual
indices, called veto and favor, measuring the degree to which each criterion behaves like a
blocker or a pusher. These indices make it possible to identify and measure the “dictatorial”
tendency of criteria, which is a particular interaction phenomenon.

A The veto index as a probability

Proposition A.1 i) If x ∈ [0, 1]n is a multi-dimensional random variable uniformly dis-
tributed, then

Pr[WAMω(x) ≤ xj] =
{

1, if ωj = 1,
1/2, otherwise.

ii) If x ∈ {0, 1}n is a multi-dimensional random variable uniformly distributed, then

Pr[WAMω(x) ≤ xj] =
1

2
+ (

1

2
)1+r,

where r = |{i ∈ N \ j : ωi 6= 0}|.
Proof. i) The case ωj = 1 is trivial. If ωj < 1 then we have

Pr
[ n∑

i=1

ωi xi ≤ xj

]
= Pr

[ n∑

i=1
i6=j

ωi xi ≤ xj(1− ωj)
]

= Pr
[ 1

1− ωj

n∑

i=1
i6=j

ωi xi ≤ xj

]
= 1− Pr

[ 1

1− ωj

n∑

i=1
i6=j

ωi xi > xj

]

= 1−
∫ 1

0
· · ·

∫ 1

0

1

1− ωj

n∑

i=1
i6=j

ωi xi dx1 · · · dxj−1dxj+1 · · · dxn

= 1− 1

2(1− ωj)

n∑

i=1
i6=j

ωi

= 1/2.

ii) We have

Pr
[ n∑

i=1

ωi xi ≤ xj

]

=
1

2
Pr

[ n∑

i=1

ωi xi ≤ xj

∣∣∣ xj = 1
]
+

1

2
Pr

[ n∑

i=1

ωi xi ≤ xj

∣∣∣ xj = 0
]

=
1

2
+

1

2
Pr[ωi 6= 0 ⇒ xi = 0 ∀i ∈ N \ j)] =

1

2
+

1

2

∏

i∈N\j
ωi 6=0

1

2

=
1

2
+ (

1

2
)1+r,
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where r = |{i ∈ N \ j : ωi 6= 0}|. ¤

B Proof of Theorem 4.1

(Sufficiency) Easy.
(Necessity) Consider first the case of veto indices. Let ψ(Cv, j) (j ∈ N, v ∈ FN) be numbers
fulfilling the assumptions of the statement. By linearity and since the conversion formulas
between v and a are linear (see Eqs. (2) and (3)), there exists n2n coefficients qj

T (j ∈
N, T ⊆ N) such that

ψ(Cv, j) =
∑

T⊆N

qj
T a(T ) (j ∈ N, v ∈ FN).

Therefore, for any T ⊆ N , with T 6= ∅, and any j ∈ N , we have ψ(minT , j) = qj
T and hence

ψ(Cv, j) =
∑

T⊆N
T 6=∅

a(T ) ψ(minT , j) (j ∈ N, v ∈ FN). (25)

Now, for any T ⊂ N , with T 6= ∅ and T 6= N , and any π ∈ ΠN , we can easily show that

vπ(T ) = π(vT ).

Hence, by the symmetry axiom, we have

ψ(minT , j) = ψ(minπ(T ), π(j)) (j ∈ N \ T )

and we can set
ψt := ψ(minT , j) (j ∈ N \ T ).

But then, by the boundary axiom, Eq. (25) becomes

ψ(Cv, j) =
∑

T3j

a(T ) +
∑

T 63j

a(T ) ψt (j ∈ N, v ∈ FN) (26)

where we can set ψ0 = 0 since a(∅) = 0.
Now, let k ∈ {2, . . . , n} and denote by vOSk

the fuzzy measure associated to OSk. Since

vOSk
= π(vOSk

) (π ∈ ΠN),

it follows, by the symmetry axiom, that

ψ(OSk, i) = ψ(OSk, j) (i, j ∈ N).

Therefore, combining the normalization axiom with Eq. (26), we obtain

n
n− k

n− 1
= n andness(OSk) = nψ(OSk, j) =

∑

j∈N

ψ(OSk, j)

=
∑

j∈N

[ ∑

T3j

a(T ) +
∑

T 63j

a(T ) ψt

]
,
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that is,

n
n− k

n− 1
=

∑

T⊆N

a(T ) [t + (n− t) ψt] (27)

where a is the Möbius representation (8) of vOSk
.

Considering this latter identity for k = 2, . . . , n, we obtain the following triangular linear
system

n−1∑

t=n−k+1

(
n

t

)
(−1)t−n+k−1

(
t− 1

n− k

)
(n− t) ψt

= n
n− k

n− 1
−

n∑

t=n−k+1

(
n

t

)
(−1)t−n+k−1

(
t− 1

n− k

)
t (k = 2, . . . , n),

that is,

k

(
n

k

)
n−1∑

t=n−k+1

(−1)t−n+k−1

(
k − 1

n− t

)
n− t

t
ψt = n

n− k

n− 1
(k = 2, . . . , n). (28)

The unique solution of this system is given by

ψt =
n t− t− 1

(n− 1)(t + 1)
(t = 1, . . . , n− 1).

Indeed, this solution solves Eq. (27) since

∑

T⊆N

a(T ) [t + (n− t) ψt] =
∑

T⊆N

a(T )
n(n t− 1)

(n− 1)(t + 1)

= n
1

n− 1

∑

T⊆N

a(T )
n t− 1

t + 1

= n andness(OSk) (cf. (19))

= n
n− k

n− 1
.

The proof for favor indices is almost similar. Let ψ(Cv, j) (j ∈ N, v ∈ FN) be numbers
fulfilling the assumptions of the statement. By linearity and since the conversion formulas
between v and v∗ and hence between v and a∗ are linear, there exists n2n coefficients qj

T

(j ∈ N, T ⊆ N) such that

ψ(Cv, j) =
∑

T⊆N

qj
T a∗(T ) (j ∈ N, v ∈ FN).

Therefore, for any T ⊆ N , with T 6= ∅, and any j ∈ N , we have ψ(maxT , j) = qj
T and

hence
ψ(Cv, j) =

∑

T⊆N
T 6=∅

a∗(T ) ψ(maxT , j) (j ∈ N, v ∈ FN). (29)

Now, as for the veto indices, Eq. (29) becomes

ψ(Cv, j) =
∑

T3j

a∗(T ) +
∑

T 63j

a∗(T ) ψt (j ∈ N, v ∈ FN)
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where we can set ψ0 = 0 since a∗(∅) = 0.
Now, let k ∈ {1, . . . , n− 1}. Similarly to the previous case, we have

n
k − 1

n− 1
= n orness(OSk) = nψ(OSk, j) =

∑

j∈N

ψ(OSk, j)

=
∑

j∈N

[ ∑

T3j

a∗(T ) +
∑

T 63j

a∗(T ) ψt

]
,

that is,

n
k − 1

n− 1
=

∑

T⊆N

a∗(T ) [t + (n− t) ψt]

where a∗ is the Möbius representation (10) of v∗OSk
.

Considering this latter identity for k = 1, . . . , n−1, we actually obtain the linear system
(28) in which k is replaced with n − k + 1, and we have seen that the unique solution is
given by

ψt =
n t− t− 1

(n− 1)(t + 1)
(t = 1, . . . , n− 1).

¤
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[12] M. Grabisch, The interaction and Möbius representations of fuzzy measures on finite
spaces, k-additive measures: a survey, in: M. Grabisch, T. Murofushi, and M. Sugeno
(eds.), Fuzzy Measures and Integrals - Theory and Applications. Studies in Fuzziness
and Soft Computing Vol. 40 (Physica Verlag, Heidelberg, 2000) 70–93.

[13] M. Grabisch, J.-L. Marichal, and M. Roubens, Equivalent representations of set func-
tions, Mathematics of Operations Research 25 (2000) 157–178.

[14] M. Grabisch, T. Murofushi, and M. Sugeno, Fuzzy measure of fuzzy events defined by
fuzzy integrals, Fuzzy Sets and Systems 50 (1992) 293–313.
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