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Abstract

The goal of this paper is to explore solution concepts for set-valued TU-games. Several stability conditions can be

defined since one can have various interpretations of an improvement within the multicriteria framework. We present

two different core solution concepts and explore the relationships among them. These concepts generalize the classic

core solution for scalar games and can be considered under different preference structures. We give characterizations for

the non-emptiness of these core sets and apply the results to four multiobjective operational research games.

� 2003 Published by Elsevier B.V.

Keywords: Multiobjective analysis; Game theory; Core
CORREC1. Introduction

It is currently accepted that real-world decision processes are multivalued. This assertion means that

decision-making is actually based on several (more than one) criteria. Obviously, using several criteria

implies the non-existence of a total order among the evaluation of the different alternatives. Thus, regarding

the scalar case, where all the optimal decisions share the same evaluation, in multicriteria decision-making

the above property does not make sense. In the latter case, the decision-maker may accept many different
alternatives provided that their evaluations are non-dominated componentwise.

Modelling conflict situations where several criteria must be considered simultaneously leads in a natural

way to multiobjective game theory (see e.g. Bergstresser and Yu, 1977; Blackwell, 1956; Hwang and Lin,

1987; Shapley, 1959). In this framework the evaluation given to the alternatives considered by the agents is

not a unique value but a set of non-dominated vectors (see Fern�aandez et al., 1998; Fern�aandez and Puerto,
1996; Puerto and Fern�aandez, 1995).
The discussion above leads us to consider the class of the multiobjective cooperative TU-games. Within

this class any coalition S of player is given a characteristic set of vectors. These vectors represent the non-
UN
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dominated payoffs that the members of a coalition can ensure by themselves. Notice that different from the
classic scalar case, in this framework, coalitions may support any of their admissible payoffs in their

characteristic set of vectors. Hence, in this class of TU-games one looks not only for fair allocations of the

grand coalition�s payoffs but for which of the grand coalition�s payoffs the above question can be answered
in an affirmative way.

When the characteristic set of vectors are singletons, we obtain the class of vector-valued games (see

Fern�aandez et al., 2002). In addition, if the number of criteria considered by the agents is only one we obtain
the standard theory of cooperative TU-games.

It is also worth noting that with this class we can model any game whose characteristic set of vectors is
given implicitly as the set of non-dominated vectors of a multiobjective program. In particular Operation

Research games (see Borm et al., 2001) may be analyzed within this new framework when more than one

objective is simultaneously considered in the optimization process. Examples are multiobjective flow games,

multiobjective minimum spanning tree games, multiobjective combinatorial optimization games, etc.

In order to illustrate the discussion above, we describe in detail three different classes of set-valued TU-

games: the multiobjective linear production game, the multiobjective continuous single facility location

game and the multiobjective minimum cost spanning tree game. It is worth noting that the two former

games come from a continuous multiobjective OR problem (the scalar version of these games were in-
troduced by Owen (1975) and Puerto et al. (2001), respectively) while the latter does from a combinatorial

one (the scalar version of this game was introduced by Bird, 1976).

1.1. The multiobjective linear production game

Consider the multiobjective linear production problem:
 E½P � v-max Cx
s:t: : x 2 F ðP Þ :¼ fx 2 Rp : Ax6 b; xP 0g;
CTwhere C 2 Rk	p is the matrix whose rows represent the k different objectives of the problem; A 2 Rm	p is the

technological matrix; b 2 Rm is the resource vector; x is the production vector and F ðP Þ is the decision set
for the problem [P ].
The solution concept for this problem is the set of efficient solutions:
EðP Þ ¼ fx 2 Rp : 9= y 2 F ðP Þ verifying Cy PCx;Cy 6¼ Cxg
E

and the set of values of the efficient solutions is:
ZðP Þ ¼ fzðxÞ : zðxÞ ¼ Cx; x 2 EðP Þg:
RR

This model can be considered as a game when the pool of resources is controlled by n different agents
(players). Let us assume that player i holds a resource vector bi ¼ ðbi1; bi2; . . . ; bimÞ

t
, i ¼ 1; 2; . . . ; n. Thus, if

coalition S of players is to form it controls a bundle of resources bðSÞ ¼
P

i2S b
i. This vector of resources

makes possible for the coalition S to produce goods according to the following linear production problem:
O

½PS �
v-max Cx
s:t: : x 2 F ðPSÞ :¼ fx 2 Rp : Ax6 bðSÞ; xP 0g:
NCFinding the set of efficient solutions EðPSÞ of this problem, coalition S obtains payoff vectors in the set

ZðPSÞ ¼ fz 2 Rk : z ¼ Cx; x 2 EðPSÞg.
This framework leads naturally to introduce the multiobjective linear production game with n players

(agents) and where each coalition, S, can guarantee vectors in ZðPSÞ.
U
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1.2. The multiobjective continuous single facility location game

A continuous single facility location problem is a set of n users of a certain facility, placed in n different
points in the space Rm with mP 1. The problem consists of finding a location for the facility which min-

imizes the transportation cost (which depends on the distances from the users to the facility) plus the setup

cost. Formally, a continuous single facility location problem is a 4-tuplet ðN ;U; d;KÞ where:

• N ¼ fa1; . . . ; ang is a set of n different points in Rm (with nP 2).
• U : Rn ! R is a lower semicontinuous globalizing function satisfying that: (1) U is definite, i.e. UðxÞ ¼ 0 if

and only if x ¼ 0; (2) U is monotone, i.e. UðxÞ6UðyÞ whenever x6 y.
• d : Rm 	 Rm ! R is a measure of distance, satisfying that, for every r; s 2 Rm, dðr; sÞ ¼ f ðkr � skÞ, where
f is a lower semicontinuous, non-decreasing and non-negative map from R to R with f ð0Þ ¼ 0, and kk is
a norm on Rm.

• K is the setup cost. This cost is independent of the number of users and of the location of the facility; it is

mostly installation cost.

Solving the continuous single facility location problem ðN ;U; d;KÞ for S � N means to find an �xx 2 Rm

minimizing UðdSðxÞÞ, where dSðxÞ is the vector in Rn whose ith component is equal to dðx; aiÞ if ai 2 S, and
equal to zero otherwise. We denote LðSÞ ¼ minx2Rm UðdSðxÞÞ. We impose to simplify the analysis that the

setup cost must be greater than or equal to the total transportation cost, i.e. K P LðNÞ.
This is the classical version of the continuous single facility location problem. Here we consider a natural

variant of this problem in which the users in N are interested not only in finding an optimal location of the

facility, but also in sharing the corresponding total costs.

Therefore we can associate with ðN ;U; d;KÞ a cost TU-game ðN ; vÞ whose characteristic function v is
defined, for every S � N ¼ fa1; . . . ; ang, by:
 TvðSÞ ¼ K þ LðSÞ if S 6¼ ;;

0 if S ¼ ;:

�

NCORRECEvery cost TU-game defined in this way is what we call a continuous single facility location game. If several

(more than one) globalizing functions Uj, j ¼ 1; . . . ; k are simultaneously considered then we get a set-

valued TU-game. It is worth noting that in this situation LðSÞ ¼ v-minx2RmðU1ðdSðxÞÞ; . . . ;UkðdSðxÞÞÞ. Thus
the set-valued TU game ðN ; V Þ is given by V ðSÞ ¼ K þ LðSÞ for any S � N , and V ð;Þ ¼ f0g.

1.3. The multiobjective minimum spanning tree game

Consider a set of N users of some good that is supplied by a common supplier 0 (N0 ¼ N [ f0g). There is
a multiobjective cost associated to the distribution system that has to be divided among the users. This

situation can be formulated as a set-valued game with N players and a characteristic function that asso-

ciates to each coalition S a set V ðSÞ that represent the Pareto-minimum cost of constructing a distribution

system among the users in S from the source 0.

Let G ¼ ðN0;EÞ be the complete graph with set of nodes N0 and set of edges (links) denoted by E. There is
a vector of costs associated with the use of each link. Let eij ¼ eji ¼ ðeij1 ; e

ij
2 ; . . . ; e

ij
k Þ denote the vector-valued

cost of using the link fi; jg 2 E. A tree is a connected graph which contains no cycles. A Pareto-minimum
cost spanning tree for a given connected graph, with costs on the edges, is a spanning tree which has Pareto-

minimum costs among all spanning trees (see Ehrgott, 2000).

A Pareto-minimum cost spanning tree game, associated to the complete graph G ¼ ðN0;EÞ, is a pair
ðN ; V Þ where N is the set of player and V is the characteristic function defined by:
U
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1. V ð;Þ ¼ f0g.
2. For each non-empty coalition S � N ,

V ðSÞ ¼ v-min
P

fi;jg2ETS0
eij

TS0 : spanning tree
;

1 where ETS0
is the set of edges of the spanning tree, TS0 , that contains S0 ¼ S [ f0g; and v-min stands for

2 Pareto-minimization.

Remark that the resulting spanning tree TS0 must contain S0 but it may also contain some additional nodes.
To analyze multiobjective games we extend the classical individual and collective rationality principles

using two different orderings in the payoff space. The first one corresponds with a compromise attitude

towards negotiation where coalitions admit payoffs that are not worse in all the components than any

payoffs that they can ensure by themselves. The second one, is a more restrictive ordering that only accept

payoffs that get more in all the components than all payoffs that they can guarantee by themselves. Similar
approaches to these two analysis have been done in Fern�aandez et al. (2002), J€oornsten et al. (1995) and

Nouweland et al. (1989) and an application can be seen in Fern�aandez et al. (2001).
The paper is organized as follows. In the second section we introduce the definition of set-valued TU-

game and the concept of allocation for those games. Moreover, we analyze two different domination re-

lationships that extend the classic domination concept in the scalar case. In Section 3, we introduce the non-

dominated allocations sets, NDA sets, and we show the relationship with the core concepts. In Section 2 we

study existence theorems for these solution concepts. All the results are illustrated with three different

classes of games.
 D
RRECTE2. Basic concepts

A set-valued TU-game is a pair ðN ; V Þ, where N ¼ f1; 2; . . . ; ng is the set of players and V is a function

which assigns to each coalition S � N a compact subset V ðSÞ of Rk, the characteristic set of coalition S, such
that V ð;Þ ¼ 0.

Vectors in V ðSÞ represent the worths that the members of coalition S can guarantee by themselves.
Notice that the characteristic function in these games are set-to-set maps instead of the usual set-to-point

maps.

We denote by GV the family of all the set-valued TU-games, by Gv the class of vector-valued TU-games

and by gv the family of all the scalar TU-games.

Example 2.1. Consider the following two-objective linear production problem with three decision makers

(players) in which the matrix that represents the two objectives is
OC ¼ 2 4

1:5 1

� �
and the technological matrix is
C

A ¼ 1 7 7

4 8 8

� �t

:
NThe resource vectors for each player are b1 ¼ ð14; 14; 13Þt, b2 ¼ ð18; 9; 22Þt and b3 ¼ ð11; 18; 22Þt. Then,
the characteristic sets for every coalition S (S � N ) are V ðSÞ ¼ ZðPSÞ ¼ convðzS1 ; zS2Þ (convðAÞ means the
U
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convex hull of the set A):

Example 2.2. Let N ¼ fa1; a2; a3g be a set of players located at the points 0, 1, 2 on the real line and assume
that 0 < e. We consider two globalizing functions U1, U2 given by:

S {1} {2} {3} {1,2} {1,3} {2,3} N

zS1 (6.5,1.625) (9,2.225) (8.25,3.89) (16.75,4,68) (15,5.41) (17.38,6.27) (25,8.58)

zS2 (3.71,2.78) (9,2.25) (8,4) (15.14,5.35) (11.28,6.96) (17.38,6.27) (28.14,9.36)
OU1ðdN ðxÞÞ ¼ 1
2

�
� e

�
jx� 0j þ 1

4

�
þ e

�
jx� 1j þ 1

4
jx� 2j;

U2ðdN ðxÞÞ ¼ 1
4
jx� 0j þ 1

4

�
� e

�
jx� 1j þ ð1

2
þ eÞjx� 2j:
UNCORRECTED
PROThe multiobjective continuous single facility location game is given by the characteristic set

V ðSÞ ¼ K þ LðSÞ, for any S � N where:

The reader may notice that LðSÞ are the non-dominated values of the corresponding bicriteria location

problems, i.e. LðSÞ ¼ v�minðU1ðdSðxÞÞ;U2ðdSðxÞÞÞ.

Example 2.3. Consider the complete graph below.

2

The bi-criteria Pareto-minimum cost spanning tree game associated to the graph is:

S {1}, {2}, {3} {1,2} {1,3}

LðSÞ 0
0

� �� �
1
4
þ e

1
4
� e

� �� �
1
4
� e

� �
xþ 1

2

� 1
4
� e

� �
xþ 1þ 2e

� �� �
for all x 2 ½0; 2�

S {2,3} N

ðSÞ exþ 1
4
� e

� 1
4
� 2e

� �
xþ 3

4
þ 3e

� �� �
for all x 2 ½1; 2� 1

2
xþ 1

4
� e2exþ 3

4
þ 3e

� �� 	
for all x 2 ½1; 2�

S {1} {2} {3} {2,3} {1,2} {1,3} N

V ðSÞ 1
3

� �� �
1
2

� �� �
1
5

� �� �
2
3

� �� �
3
5

� �
;

2
6

� �� �
2
6

� �
;

4
5

� �� �
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If a set-valued TU-game is played then an interesting question is how an achievable vector vN 2 V ðNÞ
should be divided among the players. It is worth noting that this is the same situation that appears in scalar
TU-games, where the worth of vðNÞ 2 R has to be allocated among the players. Nevertheless, in the set-

valued case there are many elements that can be considered to be divided among the players.

The extension of the idea of allocation used in scalar games to set-valued TU-games consists of using a

payoff matrix (an element of Rk	n) whose rows are allocations of the criteria. Since the payoffs are vectors,

the allocations in these games are matrices X with k rows (criteria) and n columns (players). The ith column,
X i, in matrix X represents the payoffs of ith player for each criteria; therefore X i ¼ ðxi1; xi2; . . . ; xikÞ

t
are the

payoffs for player i. The jth row, Xj, in matrix X is an allocation among the players of the total amount

obtained in each criteria; Xj ¼ ðx1j ; x2j ; . . . ; xnj Þ are the payoffs corresponding to criteria j for each player. The
sum XS ¼

P
i2S X

i is the overall payoff obtained by coalition S.
Matrix X is an allocation of the game ðN ; V Þ 2 GV if XN ¼

P
i2N X

i 2 V ðNÞ. The set of the allocations of
the game is denoted by I�ðN ; V Þ.
 O
NCORRECTED
PR3. Dominance and core concepts

An important point in the development of set-valued TU-games is the use of the new orderings defined in
the set of allocations. To this end, we must replace the complete order ‘‘6 ’’ in R, for the comparison

between allocations and the characteristic sets, by the considered orderings in Rk, that is, ‘‘be better or equal

componentwise’’, denoted by ‘‘=’’, and ‘‘not be worse’’, denoted by ‘‘i’’.

To simplify the presentation in the following, XSiV ðSÞ means XSivS 8vS 2 V ðSÞ, that is, there does not
exist vS 2 V ðSÞ such that XS

5 vS , XS 6¼ vS . Analogously XS
= V ðSÞ means XS

= vS 8vS 2 V ðSÞ, that is,
XS
j P vSj 8j ¼ 1; 2; . . . ; k; 8vS 2 V ðSÞ.
These orderings, above defined, lead us to two different core concepts in set-valued TU-games. When the

ordering is defined as ‘‘i’’, we have the following definition of core:

Definition 3.1. The dominance core of a game ðN ; V Þ 2 GV is the set of allocations, X 2 I�ðN ; V Þ, such that
XSiV ðSÞ 8S � N . We will denote this set as CðN ; V ;iÞ.

Nevertheless, it may happen that in some situations the preference structure assumed by the agents is

stronger, and coalitions only accept allocations if they get more than the worth given by the characteristic

set. This assumption modifies the rationale of the decision process under the game and, therefore, the core

concept will be modified accordingly. Proceeding similarly, we introduce now the concept of core with
respect to the strong ordering, that we will call the preference core.

Definition 3.2. The preference core of a game ðN ; V Þ 2 GV is the set of allocations, X 2 I�ðN ; V Þ, such that
XS

= V ðSÞ 8S � N . We will denote this set as CðN ; v;=Þ.

The preference core is always included in the dominance core. Thus, it may happen that the former set is

empty while the latter set is not. Nevertheless, if the preference core is non-empty then the players will only

agree on allocations within this set because all the players will be better off without assuming any com-
promise. Therefore, this solution concept must be considered in any set-valued game provided that we are

given tools to check whether it is non-empty.

The dominance core defined above coincides with the set of stable outcomes (SO) introduced by van den

Nouweland et al. (1989). Thus, our treatment is similar to that of these authors although our character-
U
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ization is different. In addition, we characterize the preference core, a concept not considered in the above
mentioned paper.

Example 3.1. Let us assume a production situation where three agents can produce, using three different

technologies A, B, C, two types of goods. The characteristic set of any coalition S is given by the production
levels of each good using the existing technologies, i.e. V ðSÞ is a set of three vectors (technologies) with two
components each one (goods). The following table defines the characteristic set-valued map of the game

ðN ; V Þ.

If the agents decide to cooperate and to produce with the technology A they must allocate the vector

of goods (5,4), the allocation

S {1} {2} {3} {1,2} {1,3} {2,3} N

A (1/2,1) (5/2,3/2) (1,2) (5,4)

B (1,1/2) (2,2) (2,1) (6,3)

C (4/5,3/4) (3,1) (3/2,4/3) (3,6)
P
X ¼ 2 2 1

1 1 2

� �
is in the preference core, while
 D
Y ¼ 1 3=2 5=2

3=2 3=2 1

� �
NCORRECTE

is in the dominance core and not in the preference core since Y f1;2g ¼ ð5=2; 3Þjð3; 1Þ, the third element of
the characteristic set V ðf1; 2gÞ.

Imputations in the core (any of them) will be acceptable if no coalition can argue against its allocated

amount XS . To this end, we use the following dominance concepts, where Rk
=
stands for fx 2 Rk : xP 0g.

Definition 3.3. Let us consider two matrices X , Y 2 Rk	n and a coalition S 2 N .

1. Y dominates X through S according to i, and we will denote Y dom
S

iX , if:
(a) Y SiXS , Y S 6¼ XS ,

(b) Y S 2 V ðSÞ � Rk
=
.

2. Y dominates X through S according to =, and we will denote Y dom
S

PX , if:
(a) Y S

= XS , Y S 6¼ XS ,

(b) Y S 2 V ðSÞ � Rk
=
.

In scalar TU-games the set of non-dominated imputations has been widely considered (see Driessen, 1988

and the references therein). Nevertheless, in set-valued TU-games the concept which plays the important
role is the NDA set. These sets are defined by:

1. NDAðN ; V ;iÞ ¼ fX 2 I�ðN ; V Þsuch that 9= S � N , Y 2 I�ðN ; V Þ, Y dom
S

iXg,
2. NDAðN ; V ;=Þ ¼ fX 2 I�ðN ; V Þsuch that 9= S 2 N , Y 2 I�ðN ; V Þ, Y dom

S

PXg.
U
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Our following result proves that both core sets are sets of non-dominated allocations.

Theorem 3.1. The core sets hold the following properties:

1. CðN ; V ;=Þ ¼ NDAðN ; V ;iÞ,
2. CðN ; V ;iÞ ¼ NDAðN ; V ;=Þ.
OOFProof. We only prove 1. the proof of 2. being similar.
1. ) Suppose that X 2 CðN ; V ;=Þ and that X 62 NDAðN ; V ;iÞ. Then there exists S � N and

Y 2 I�ðN ; V Þ, such that Y dom
S

iX , that is, Y SiXS , Y S 6¼ XS and Y S 2 V ðSÞ � Rk
=
, but it is not possible

because XS
= V ðSÞ.

( Suppose that X 2 NDAðN ; V ;iÞ and that X 62 CðN ; V ;=Þ. Then, there exists S � N and vS 2 V ðSÞ,
such that XS is not better componentwise then vS , that is, vSiXS . Now let us construct an allocation, Y , of
vS as follows:
 R

Y i ¼
vS

jSj 8i 2 S;
0 8i 62 S:

�
 P
Allocation Y of vS 2 V ðSÞ dominates allocation X through coalition S according toi because Y S ¼ vSiXS

and Y S 2 V ðSÞ. Hence, it contradicts that X 2 NDAðN ; V ;iÞ. �
CTED
4. Existence theorems

Once, we have defined the two core concepts and their relationships it is important to give conditions

that ensure non-emptiness of these cores.

4.1. Dominance core

For each scalarized vector k 2 K,
 E

K ¼ k 2 Rk; kj

(
> 0; j ¼ 1; . . . ; k such that

Xk

j¼1
kj ¼ 1

)

Rand any game ðN ; V Þ 2 GV , we define the scalar game ðN ; vkÞ 2 gv as:
Rvkð;Þ ¼ 0; vkðSÞ ¼ max
vS2V ðSÞ�Rk

=

ktvS ; 8S � N ; S 6¼ ;: ð1Þ
UNCOUsing the game defined in (1) we establish a sufficient condition for the non-emptiness of the dominance
core.

Theorem 4.1. The core CðN ; V ;iÞ of the game ðN ; V Þ 2 GV is non-empty if there exists k̂k 2 K such that the
scalar game ðN ; vk̂kÞ 2 gv is balanced and it satisfies vk̂kðNÞ 6¼ 0.

Proof. Let it k̂k be a weight in K such that the scalar game ðN ; vk̂kÞ 2 gv, defined in (1), is balanced and verify
vk̂kðNÞ 6¼ 0. Consider zS 2 ðV ðSÞ � Rk

=
Þ such that k̂ktzS ¼ vk̂kðSÞ 8S � N . Notice that zS 2 V ðSÞ, otherwise it is

possible to find another vector vS 2 V ðSÞ such that zS 5 vS , zS 6¼ vS, and then k̂ktzS < k̂ktvS. By Bondareva and
Shapley theorem (see Bondareva, 1963) there exists an allocation x 2 CðN ; vk̂kÞ.
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Now consider the matrix X 2 Rk	n whose columns are:
X i ¼ xi

vk̂kðNÞ z
N 8i 2 N :
Since vk̂kðNÞ 6¼ 0, we prove that X 2 CðN ; V ;iÞ. Indeed,
XN ¼
Xn

i¼1

xi

vk̂kðNÞ z
N ¼ zN
 Fand then X 2 I�ðN ; V Þ. Assume that X 62 CðN ; V ;iÞ. Then, there exists a coalition S � N and a vector

wS 2 V ðSÞ such that XS
6wS , XS 6¼ wS , that is, k̂ktX S < k̂ktwS . Then:
 Omax

vS2V ðSÞ�Rk
=

k̂ktvS P k̂ktwS > k̂ktX S ¼
X
i2S

k̂ktX i ¼
P

i2S x
i

vk̂kðNÞ k̂ktzN ¼ xS P vk̂kðSÞ ¼ max
vS2V ðSÞ�Rk

=

k̂ktvS :
D
PROThis is a contradiction. �

This results is useful in finding elements in the dominance core of different set-valued games.

4.1.1. Multiobjective linear programming games

The set-valued characteristic function is usually defined through the set of non-dominated values of a

multiobjective programming problem. A particular case of these games are the Multiobjective Linear

Production Games. These games are characterized because the objective functions of the multiobjective

program are linear. In this situation we can obtain an allocation of the dominance core for any

z ¼ Cx 2 V ðNÞ. Indeed, given z� ¼ Cx� 2 V ðNÞ, it is well-known that there exists a vector of weights k̂k 2 Rk,

k̂k > 0, such that x� is the solution of the scalar problem:
 E½PN ðk̂kÞ�max k̂ktCx
s:t: : x 2 F ðPNÞ:
RECTLet u� be an optimal solution of the dual problem of ½PN ðk̂kÞ�. The matrix X � ¼ ðX 1;X 2; . . . ;XnÞ whose
columns are X i ¼ ðu�bi=k̂ktz�Þz� belongs to the dominance core. This follows from Theorem 4.1. Notice that

X � is an allocation of z�.
We note in passing that the choice of z 2 V ðNÞ can be done taking a weighting vector k > 0. Procedures

guiding the agents to the choice of weighting vectors are described in Marmol et al. (2002) and the ref-

erences therein.

Example 2.1 (continued). Let us take k̂k ¼ ð0:8; 0:2Þ. The problem PNðk̂kÞ is:
Rmax 1:9x1 þ 3:4x2
s:a: : x1 þ 8x26 43; 7x1 þ 4x26 41; 7x1 þ 8x26 57; x1; x2 P 0:
OAn optimal solution of PNðk̂kÞ is x1 ¼ ð2:3̂3; 5:083̂3Þ with objective value z1 ¼ ð25; 8:583̂3Þ. An the optimal so-

lution of the dual of PN ðk̂kÞ is u� ¼ ð0:179167; 0; 0:245833Þ. The allocation in the dominance core obtained by
the above method, is:
 C

X � ¼ 6:567 9:938 8:495
2:254 3:412 2:917

� �
:

UN

4.1.2. Multiobjective continuous single facility location games

For this class of games we can provide a method to construct allocations in the dominance core. The

approach consists of applying Theorem 4.1 transforming the multiobjective game into a scalar continuous
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single facility location game. Conditions for the non-emptiness of the corresponding core set are given in
Puerto et al. (2001).

Example 2.2 (continued). We apply Theorem 4.1 with k ¼ 1=2. Thus, we obtain the corresponding scalar
game whose characteristic function vkðSÞ ¼ K þ LðSÞ where LðSÞ is given by:

According to Puerto et al. (2001) the egalitarian allocation ðK=3þ 1=4;K=3þ 1=4;K=3þ 1=4Þ belongs to
the core of this scalar game. Therefore, the egalitarian allocation of the vector

S {1},{2},{3} {1,2} {1,3} {2,3} N

LðSÞ 0 1/4 3=4� e 1/4 3/4
K þ 5=4� e
K þ 3=4� e

� �
;
 O
D
PRthat corresponds to the non-dominated value in V ðNÞ for x ¼ 2, belongs to the dominance core.

4.1.3. Multiobjective minimum cost spanning tree games

We can provide a method to obtain allocations in the dominance core. A way to deal with this problem is

using topological orders in Rk. As was shown in Ehrgott (2000), every Pareto optimal spanning tree of a

graph is a conventional mcst using the appropriate topological order. Restricting to topological orders

induced by an increasing linear utility function, the mcst obtained from the weighted graph is a Pareto

optimal tree.
In order to find a condition that permits to divide among the players a total cost zN 2 V ðNÞ accordingly

with a given strictly increasing linear utility function, u, we will define the following scalar game ðN ; vuÞ:
Evuð;Þ ¼ 0; vuðSÞ ¼ min
zS2V ðSÞ

uðzSÞ; 8S � N ; S 6¼ ;:
CTUsing any allocation in the core of the game ðN ; vuÞ, we can construct dominance core allocations for
some zN 2 V ðNÞ.
Let x ¼ ðx1; . . . ; xnÞ be the Bird�s allocation of the game ðN ; vuÞ (see Bird, 1976). This vector allows us to

give a proportional allocation of zN 2 V ðNÞ defined by:
EX ¼ ðX 1; . . . ;XnÞ; where X i ¼ xi

uðzN Þ z
N 8i 2 N :
NCORRThis allocation belongs to the dominance core by Theorem 4.1.

Example 2.3 (continued). Suppose that the strictly increasing linear utility function, u, used to compare the
worth of the coalitions consists of giving triple importance to the second criterion, that is, the utility of
vector a is uðaÞ ¼ a1 þ 3a2. Then, the scalar game ðN ; vuÞ is:

In this case, vuðNÞ ¼ uðð4; 5ÞtÞ, the mcst for the weighted graph is the Pareto-optimal tree associated to

zN ¼ ð4; 5Þt and ðN ; vuÞ is the mcst-game associated to the weighted graph.

S {1} {2} {3} {1,2} {1,3} {2,3} N

vuðSÞ 10 7 6 11 18 16 19
U
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Therefore Bird�s cost allocation x ¼ ð4; 7; 8Þ is in the core of ðN ; vuÞ. Then the proportional allocation
OX ¼

16

19

28

19

32

19
20

19

35

19

40

19

0
BB@

1
CCA 2 CðN ; V ;jÞ:
 R
P4.2. Preference core

This section is devoted to characterize the non-emptiness of the preference core. Associated with a

coalition S in the game ðN ; V Þ 2 GV we consider k different scalar problems:
D½PSðjÞ�
max vSj
s:t: : vS 2 V ðSÞ � Rk

=
;

ECTEwhere vSj , j ¼ 1; 2; . . . ; k, is the jth component of vector vS . The reader may notice that for cost games the
corresponding problems ½PSðjÞ� would be minimization problems.
Let us denote by z�ðS; jÞ the value associated with an optimal solution of problem ½PSðjÞ� and by z�ðSÞ the

k-dimensional vector z�ðSÞ ¼ ðz�ðS; 1Þ; z�ðS; 2Þ; . . . ; z�ðS; kÞÞ.
Notice that for a fixed coalition S if an allocation X of the set-valued TU-game, ðN ; V Þ 2 GV , satisfies

XS
= V ðSÞ then XS

= z�ðSÞ and conversely.
For each ẑz ¼ ðẑz1; . . . ; ẑzkÞ 2 V ðNÞ, we introduce ðN ; vẑzjÞ, the scalar j-component game, j ¼ 1; 2; . . . ; k,

defined as follows:
vẑzjð;Þ ¼ 0; vẑzjðSÞ ¼ z�ðS; jÞ 8S � N and vẑzjðNÞ ¼ ẑzj: ð2Þ
NCORR

A necessary and sufficient condition for the non-emptiness of the preference core is given in the next

result.

Theorem 4.2. The preference core is non-empty if and only if there exists at least one ẑz 2 V ðNÞ such that all
the scalar j-component games ðN ; vẑzjÞ are balanced.

Proof. If every scalar j-component game ðN ; vẑzjÞ is balanced, consider any allocation, Xj, in the core of

ðN ; vẑzjÞ, j ¼ 1; 2; . . . ; k. Then, the k 	 n-matrix X whose rows are Xj, j ¼ 1; 2; . . . ; k, is an allocation asso-

ciated with ẑz. Moreover, for each S � N , XS
= z�ðSÞ and XS

= V ðSÞ.
Conversely, let X be an allocation in the preference core such that XN ¼ ẑz 2 V ðNÞ. Then XS

= V ðSÞ,
8S � N and XS P z�ðSÞ, 8S � N . Therefore, Xj is an allocation in the core ðN ; vẑzjÞ. �
U
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We can also give a similar but refined sufficient condition. Let �zz be a k-dimensional vector not necessarily
in V ðNÞ and consider the scalar game ðN ; v�zzjÞ as defined above.

Corollary 4.1. If ðN ; v�zzjÞ is balanced for any j ¼ 1; 2; . . . ; k and there exists ẑz 2 V ðNÞ such that ẑz = �zz, then
there exist allocations associated with ẑz in the preference core.

Example 4.1. Consider the following bi-objective linear production game with three players in which the

matrix that represents the two objectives is
 F

C ¼ 2:5 5

3 2

� �
 O

the technological matrix is
 OA ¼
2 9

6 4

8 9

0
@

1
A
 Rand the resource vectors for the players are:
 Pb1 ¼ ð400; 5; 35Þt;

b2 ¼ ð15; 400; 35Þt;

b3 ¼ ð15; 5; 500Þt:
UNCORRECTED
In this case all the vectors in V ðNÞ can be allocated within the preference core. Let us consider the vector

z ¼ ð192; 155:2Þ that is a vector less or equal than all the vectors in V ðNÞ. It is easy to prove that the game
ðN ; vz1Þ defined as:

and the game ðN ; vz2Þ is defined as:

are balanced. Therefore, since z ¼ ð192; 155:2Þ6 ẑz 8ẑz 2 V ðNÞ we can obtain allocations in the preference
core for all vectors in V ðNÞ, using Corollary 4.1.
In order to obtain an allocation, for instance, of vector ẑz ¼ ð192; 205Þ 2 V ðNÞ, we search for vectors in

the core of the corresponding component games.

Vector X1 ¼ ð60; 60; 72Þ is in the core of the game ðN ; vẑz1Þ:

S {1} {2} {3} {1,2} {1,3} {2,3} N

vz1ðSÞ 6.3 13 6.25 38.9 12.5 37.5 192

S {1} {2} {3} {1,2} {1,3} {2,3} N

vz2ðSÞ 2.5 13 2.5 26.3 5 45 155.2

S {1} {2} {3} {1,2} {1,3} {2,3} N

vz1ðSÞ 6.3 13 6.25 38.9 12.5 37.5 192
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Vector X2 ¼ ð70; 70; 65Þ is in the core of the game ðN ; vẑz1Þ:

Therefore, the matrix

S {1} {2} {3} {1,2} {1,3} {2,3} N

vz2ðSÞ 2.5 13 2.5 26.3 5 45 205
FY ¼ 60 60 72

70 70 65

� �
ECTED
PROOis an allocation of the vector ð192; 205Þ in the preference core.

Although the example above shows that every z 2 V ðNÞ can be allocated within the preference core,

there are also cases where this is not possible.

Example 2.1 (continued). Consider the two scalar 1,2-component games defined in (2):
The scalar 1-component game is:

The scalar 2-component game is:

It is easy to see that the first scalar component games is not balanced for any ẑz 2 V ðNÞ. Therefore the
preference core in this game is empty by Theorem 4.2.

Example 2.2 (continued). Let us fix the setup cost K ¼ 3. Consider the two component games obtained for

the non-dominated value V ðNÞ with x ¼ 2:

S {1} {2} {3} {1,2} {1,3} {2,3} N

vðSÞ 6.5 9 8.25 16.75 15 17.38 vẑz1

S {1} {2} {3} {1,2} {1,3} {2,3} N

vðSÞ 2.786 2.25 4 5.357 6.964 6.269 vẑz2
R17=4� e
15=4� e

� �
:

UNCORThe scalar 1-component game is:

The scalar 2-component game is:

S {1} {2} {3} {1,2} {1,3} {2,3} N

vðSÞ 3 3 3 13
4
þ e 7

2
13
4

17
4
� e

S {1} {2} {3} {1,2} {1,3} {2,3} N

vðSÞ 3 3 3 13
4
� e 7

2
13
4
� e 15

4
� e
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The reader can check that the scalar component games are balanced and the allocation
17
12

17
12
� e 17

12

1 7
4
� e 1

� �
belongs to the preference core.

Example 2.3 (continued). In this example, we can allocate ð2; 6Þt 2 V ðNÞ by the matrix
 F1 1 0

1 2 3

� �
CTED
PROOthat is in the preference core. This allocation has been obtained applying Bird�s rule to the Pareto-minimum

tree given in the following figure.

It is worth noting that there are classes of OR games for which the preference core is always non-empty.

This is the case of the so calledMultiobjective maintenance games (see Borm et al., 2001 for the definition of
the scalar game). These games consist of a multiobjective minimum cost spanning tree game where the

underline graph G is a tree. In this case any proportional allocation rule, as for instance Bird�s rule, always
belongs to the preference core.
 E
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