

Available online at www.sciencedirect.com

European Journal of Operational Research xxx (2003) xxx-xxx

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

www.elsevier.com/locate/dsw

Set-valued TU-games

F.R. Fernández ^a, M.A. Hinojosa ^b, J. Puerto ^{a,*}

^a Facultad de Mathematicas Dept., Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, 41012 Sevilla, Spain

^b Departamento de Economía y Empresa, Universidad Pablo de Olavide, Sevilla, Spain

Received 6 May 2002; accepted 3 March 2003

8 Abstract

2

3

5

6

7

- The goal of this paper is to explore solution concepts for set-valued TU-games. Several stability conditions can be
- 10 defined since one can have various interpretations of an improvement within the multicriteria framework. We present
- 11 two different core solution concepts and explore the relationships among them. These concepts generalize the classic
- 12 core solution for scalar games and can be considered under different preference structures. We give characterizations for
- 13 the non-emptiness of these core sets and apply the results to four multiobjective operational research games.
- 14 © 2003 Published by Elsevier B.V.
- 15 Keywords: Multiobjective analysis; Game theory; Core

6 1. Introduction

- It is currently accepted that real-world decision processes are multivalued. This assertion means that decision-making is actually based on several (more than one) criteria. Obviously, using several criteria
- 19 implies the non-existence of a total order among the evaluation of the different alternatives. Thus, regarding
- implies the non-existence of a total order among the evaluation of the different alternatives. Thus, regarding
- 20 the scalar case, where all the optimal decisions share the same evaluation, in multicriteria decision-making
- 21 the above property does not make sense. In the latter case, the decision-maker may accept many different
- 22 alternatives provided that their evaluations are non-dominated componentwise.
- 23 Modelling conflict situations where several criteria must be considered simultaneously leads in a natural
- 24 way to multiobjective game theory (see e.g. Bergstresser and Yu, 1977; Blackwell, 1956; Hwang and Lin,
- 25 1987; Shapley, 1959). In this framework the evaluation given to the alternatives considered by the agents is
- 26 not a unique value but a set of non-dominated vectors (see Fernández et al., 1998; Fernández and Puerto,
- 27 1996; Puerto and Fernández, 1995).
- 28 The discussion above leads us to consider the class of the multiobjective cooperative TU-games. Within
- 29 this class any coalition S of player is given a characteristic set of vectors. These vectors represent the non-

E-mail addresses: fernande@us.es (F.R. Fernández), mahinram@dee.upo.es (M.A. Hinojosa), puerto@us.es (J. Puerto).

^{*}Corresponding author. Tel.: +954557940; fax: 954622800.

35

37

38

39 40

41

42 43

44 45 7 July 2003 Disk used

ARTICLE IN PRESS

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

dominated payoffs that the members of a coalition can ensure by themselves. Notice that different from the classic scalar case, in this framework, coalitions may support any of their admissible payoffs in their characteristic set of vectors. Hence, in this class of TU-games one looks not only for fair allocations of the grand coalition's payoffs but for which of the grand coalition's payoffs the above question can be answered 34 in an affirmative way.

When the characteristic set of vectors are singletons, we obtain the class of vector-valued games (see 36 Fernández et al., 2002). In addition, if the number of criteria considered by the agents is only one we obtain the standard theory of cooperative TU-games.

It is also worth noting that with this class we can model any game whose characteristic set of vectors is given implicitly as the set of non-dominated vectors of a multiobjective program. In particular Operation Research games (see Borm et al., 2001) may be analyzed within this new framework when more than one objective is simultaneously considered in the optimization process. Examples are multiobjective flow games, multiobjective minimum spanning tree games, multiobjective combinatorial optimization games, etc.

In order to illustrate the discussion above, we describe in detail three different classes of set-valued TUgames: the multiobjective linear production game, the multiobjective continuous single facility location game and the multiobjective minimum cost spanning tree game. It is worth noting that the two former games come from a continuous multiobjective OR problem (the scalar version of these games were introduced by Owen (1975) and Puerto et al. (2001), respectively) while the latter does from a combinatorial one (the scalar version of this game was introduced by Bird, 1976).

- 1.1. The multiobjective linear production game
- 50 Consider the multiobjective linear production problem:

$$[P] \begin{tabular}{ll} v-max & Cx \\ {\rm s.t.:} & $x \in F(P) := \{x \in \mathbb{R}^p : Ax \leqslant b, x \geqslant 0\}, \end{tabular}$$

- 52 where $C \in \mathbb{R}^{k \times p}$ is the matrix whose rows represent the k different objectives of the problem; $A \in \mathbb{R}^{m \times p}$ is the
- technological matrix; $b \in \mathbb{R}^m$ is the resource vector; x is the production vector and F(P) is the decision set
- 54 for the problem [P].
- 55 The solution concept for this problem is the set of efficient solutions:

$$\mathscr{E}(P) = \{ x \in \mathbb{R}^p : \nexists y \in F(P) \text{ verifying } Cy \geqslant Cx, Cy \neq Cx \}$$

57 and the set of values of the efficient solutions is:

$$Z(P) = \{z(x) : z(x) = Cx, x \in \mathscr{E}(P)\}.$$

- This model can be considered as a game when the pool of resources is controlled by n different agents 59
- (players). Let us assume that player i holds a resource vector $b^i = (b_1^i, b_2^i, \dots, b_m^i)^i$, $i = 1, 2, \dots, n$. Thus, if 60
- 61 coalition S of players is to form it controls a bundle of resources $b(S) = \sum_{i \in S} b^i$. This vector of resources
- 62 makes possible for the coalition S to produce goods according to the following linear production problem:

$$[P_S] \begin{tabular}{ll} v-max & Cx \\ $s.t.: & $x \in F(P_S) := \{x \in \mathbb{R}^p : Ax \leqslant b(S), x \geqslant 0\}. \end{tabular}$$

- 64 Finding the set of efficient solutions $\mathscr{E}(P_S)$ of this problem, coalition S obtains payoff vectors in the set
- $Z(P_S) = \{z \in \mathbb{R}^k : z = Cx, x \in \mathscr{E}(P_S)\}.$
- 66 This framework leads naturally to introduce the multiobjective linear production game with n players
- 67 (agents) and where each coalition, S, can guarantee vectors in $Z(P_S)$.

77

78

80

3

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

1.2. The multiobjective continuous single facility location game

- 69 A continuous single facility location problem is a set of n users of a certain facility, placed in n different 70 points in the space \mathbb{R}^m with $m \ge 1$. The problem consists of finding a location for the facility which min-
- imizes the transportation cost (which depends on the distances from the users to the facility) plus the setup 71
- cost. Formally, a continuous single facility location problem is a 4-tuplet (N, Φ, d, K) where:
- 73 $N = \{a_1, \dots, a_n\}$ is a set of *n* different points in \mathbb{R}^m (with $n \ge 2$).
- 74 $\Phi: \mathbb{R}^n \to \mathbb{R}$ is a lower semicontinuous globalizing function satisfying that: (1) Φ is definite, i.e. $\Phi(x) = 0$ if and only if x = 0; (2) Φ is monotone, i.e. $\Phi(x) \leq \Phi(y)$ whenever $x \leq y$.
- 76 $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is a measure of distance, satisfying that, for every $r, s \in \mathbb{R}^m$, d(r, s) = f(||r s||), where f is a lower semicontinuous, non-decreasing and non-negative map from \mathbb{R} to \mathbb{R} with f(0) = 0, and $\| \|$ is a norm on \mathbb{R}^m .
- 79 K is the setup cost. This cost is independent of the number of users and of the location of the facility; it is mostly installation cost.
- Solving the continuous single facility location problem (N, Φ, d, K) for $S \subset N$ means to find an $\bar{x} \in \mathbb{R}^m$
- 82 minimizing $\Phi(d^S(x))$, where $d^S(x)$ is the vector in \mathbb{R}^n whose ith component is equal to $d(x, a_i)$ if $a_i \in S$, and
- equal to zero otherwise. We denote $L(S) = \min_{x \in \mathbb{R}^m} \Phi(d^S(x))$. We impose to simplify the analysis that the
- setup cost must be greater than or equal to the total transportation cost, i.e. $K \ge L(N)$.
- 85 This is the classical version of the continuous single facility location problem. Here we consider a natural
- 86 variant of this problem in which the users in N are interested not only in finding an optimal location of the
- 87 facility, but also in sharing the corresponding total costs.
- Therefore we can associate with (N, Φ, d, K) a cost TU-game (N, v) whose characteristic function v is 88 defined, for every $S \subset N = \{a_1, \dots, a_n\}$, by: 89

$$v(S) = \begin{cases} K + L(S) & \text{if } S \neq \emptyset, \\ 0 & \text{if } S = \emptyset. \end{cases}$$

- 91 Every cost TU-game defined in this way is what we call a continuous single facility location game. If several
- 92 (more than one) globalizing functions Φ_i , $j=1,\ldots,k$ are simultaneously considered then we get a set-
- valued TU-game. It is worth noting that in this situation $L(S) = v \min_{x \in \mathbb{R}^m} (\Phi_1(d^S(x)), \dots, \Phi_k(d^S(x)))$. Thus
- the set-valued TU game (N, V) is given by V(S) = K + L(S) for any $S \subset N$, and $V(\emptyset) = \{0\}$.
- 1.3. The multiobjective minimum spanning tree game
- Consider a set of N users of some good that is supplied by a common supplier $0 (N_0 = N \cup \{0\})$. There is 96 97 a multiobjective cost associated to the distribution system that has to be divided among the users. This
- situation can be formulated as a set-valued game with N players and a characteristic function that asso-
- 98
- ciates to each coalition S a set V(S) that represent the Pareto-minimum cost of constructing a distribution 99
- 100 system among the users in S from the source 0.
- Let $G = (N_0, E)$ be the complete graph with set of nodes N_0 and set of edges (links) denoted by E. There is 101 102 a vector of costs associated with the use of each link. Let $e^{ij} = e^{ji} = (e_1^{ij}, e_2^{ij}, \dots, e_k^{ij})$ denote the vector-valued
- cost of using the link $\{i, j\} \in E$. A tree is a connected graph which contains no cycles. A Pareto-minimum
- cost spanning tree for a given connected graph, with costs on the edges, is a spanning tree which has Pareto-105 minimum costs among all spanning trees (see Ehrgott, 2000).
- A Pareto-minimum cost spanning tree game, associated to the complete graph $G = (N_0, E)$, is a pair 106 107 (N, V) where N is the set of player and V is the characteristic function defined by:

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx 4

- 108 1. $V(\emptyset) = \{0\}.$
- 109 2. For each non-empty coalition $S \subseteq N$,

$$V(S) = v - \min \sum_{\{i,j\} \in E_{T_{S_0}}} e^{ij},$$
 $T_{S_0} : \text{spanning tree},$

- 111 where $E_{T_{S_0}}$ is the set of edges of the spanning tree, T_{S_0} , that contains $S_0 = S \cup \{0\}$; and v-min stands for
- 112 Pareto-minimization.
- Remark that the resulting spanning tree T_{S_0} must contain S_0 but it may also contain some additional nodes.
- To analyze multiobjective games we extend the classical individual and collective rationality principles 114
- using two different orderings in the payoff space. The first one corresponds with a compromise attitude 115
- towards negotiation where coalitions admit payoffs that are not worse in all the components than any 116
- payoffs that they can ensure by themselves. The second one, is a more restrictive ordering that only accept 117
- payoffs that get more in all the components than all payoffs that they can guarantee by themselves. Similar
- approaches to these two analysis have been done in Fernández et al. (2002), Jörnsten et al. (1995) and 119
- 120 Nouweland et al. (1989) and an application can be seen in Fernández et al. (2001).
- The paper is organized as follows. In the second section we introduce the definition of set-valued TU-121
- 122 game and the concept of allocation for those games. Moreover, we analyze two different domination re-
- 123 lationships that extend the classic domination concept in the scalar case. In Section 3, we introduce the non-
- 124 dominated allocations sets, NDA sets, and we show the relationship with the core concepts. In Section 2 we
- 125 study existence theorems for these solution concepts. All the results are illustrated with three different
- 126 classes of games.

127 **2. Basic concepts**

- A set-valued TU-game is a pair (N, V), where $N = \{1, 2, \dots, n\}$ is the set of players and V is a function 128
- which assigns to each coalition $S \subseteq N$ a compact subset V(S) of \mathbb{R}^k , the *characteristic set* of coalition S, such 129
- 130 that $V(\emptyset) = 0$.
- 131 Vectors in V(S) represent the worths that the members of coalition S can guarantee by themselves.
- Notice that the characteristic function in these games are set-to-set maps instead of the usual set-to-point 132
- 133
- We denote by G^{V} the family of all the set-valued TU-games, by G^{v} the class of vector-valued TU-games 134
- and by g^v the family of all the scalar TU-games.
- **Example 2.1.** Consider the following two-objective linear production problem with three decision makers
- (players) in which the matrix that represents the two objectives is 137

$$C = \begin{pmatrix} 2 & 4 \\ 1.5 & 1 \end{pmatrix}$$

and the technological matrix is

$$A = \begin{pmatrix} 1 & 7 & 7 \\ 4 & 8 & 8 \end{pmatrix}^t.$$

- The resource vectors for each player are $b^1 = (14, 14, 13)^t$, $b^2 = (18, 9, 22)^t$ and $b^3 = (11, 18, 22)^t$. Then, 141
- 142 the characteristic sets for every coalition $S(S \subset N)$ are $V(S) = Z(P_S) = \operatorname{conv}(z_1^S, z_2^S)$ (conv(A) means the

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

143 convex hull of the set *A*):

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N
z_1^S z_2^S	(6.5,1.625) (3.71,2.78)	(9,2.225) (9,2.25)	(8.25,3.89) (8,4)	(16.75,4,68) (15.14.5.35)	(15,5.41) (11.28,6.96)		` ' '

Example 2.2. Let $N = \{a_1, a_2, a_3\}$ be a set of players located at the points 0, 1, 2 on the real line and assume that $0 < \varepsilon$. We consider two globalizing functions Φ_1 , Φ_2 given by:

$$\Phi_1(d^N(x)) = \left(\frac{1}{2} - \varepsilon\right)|x - 0| + \left(\frac{1}{4} + \varepsilon\right)|x - 1| + \frac{1}{4}|x - 2|,
\Phi_2(d^N(x)) = \frac{1}{4}|x - 0| + \left(\frac{1}{4} - \varepsilon\right)|x - 1| + \left(\frac{1}{2} + \varepsilon\right)|x - 2|.$$

148 The multiobjective continuous single facility location game is given by the characteristic set

149 V(S) = K + L(S), for any $S \subseteq N$ where:

S	{1}, {2}, {3}	{1,2}	{1,3}
L(S)	$\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} \frac{1}{4} + \varepsilon \\ \frac{1}{4} - \varepsilon \end{pmatrix} \right\}$	$\left\{ \left(\frac{\left(\frac{1}{4} - \varepsilon\right)x + \frac{1}{2}}{\left(-\frac{1}{4} - \varepsilon\right)x + 1 + 2\varepsilon} \right) \right\} \text{ for all } x \in [0, 2]$

S {2,3}

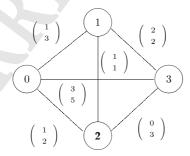
151

N

(S)
$$\left\{ \begin{pmatrix} \varepsilon x + \frac{1}{4} - \varepsilon \\ (-\frac{1}{2} - 2\varepsilon)x + \frac{3}{2} + 3\varepsilon \end{pmatrix} \right\} \text{ for all } x \in [1, 2]$$

The reader may notice that L(S) are the non-dominated values of the corresponding bicriteria location problems, i.e. $L(S) = v - \min(\Phi_1(d^S(x)), \Phi_2(d^S(x)))$.

155 **Example 2.3.** Consider the complete graph below.



157 The bi-criteria Pareto-minimum cost spanning tree game associated to the graph is:

S {1}	{2}	{3}	{2,3} {1,2}	{1,3}	N
$V(S) \qquad \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 1\\5 \end{pmatrix} \right.$	$\left\{ \begin{pmatrix} 2\\3 \end{pmatrix} \right\}$	$\left\{ \binom{3}{5}, \binom{2}{6} \right\}$	$\left\{ \begin{pmatrix} 2\\6 \end{pmatrix}, \begin{pmatrix} 4\\5 \end{pmatrix} \right\}$

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

159 If a set-valued TU-game is played then an interesting question is how an achievable vector $v_N \in V(N)$ 160 should be divided among the players. It is worth noting that this is the same situation that appears in scalar TU-games, where the worth of $v(N) \in \mathbb{R}$ has to be allocated among the players. Nevertheless, in the set-162 valued case there are many elements that can be considered to be divided among the players.

163 The extension of the idea of allocation used in scalar games to set-valued TU-games consists of using a payoff matrix (an element of $\mathbb{R}^{k \times n}$) whose rows are allocations of the criteria. Since the payoffs are vectors, 164 the allocations in these games are matrices X with k rows (criteria) and n columns (players). The ith column, 165 X^i , in matrix X represents the payoffs of ith player for each criteria; therefore $X^i = (x_1^i, x_2^i, \dots, x_k^i)^i$ are the 166 payoffs for player i. The jth row, X_i , in matrix X is an allocation among the players of the total amount obtained in each criteria; $X_j = (x_j^1, x_j^2, \dots, x_j^n)$ are the payoffs corresponding to criteria j for each player. The sum $X^S = \sum_{i \in S} X^i$ is the overall payoff obtained by coalition S.

Matrix X is an allocation of the game $(N, V) \in G^V$ if $X^N = \sum_{i \in N} X^i \in V(N)$. The set of the allocations of 169

170 171 the game is denoted by $I^*(N, V)$.

172 3. Dominance and core concepts

- 173 An important point in the development of set-valued TU-games is the use of the new orderings defined in 174 the set of allocations. To this end, we must replace the complete order " \leq " in \mathbb{R} , for the comparison between allocations and the characteristic sets, by the considered orderings in \mathbb{R}^k , that is, "be better or equal
- componentwise", denoted by "\geq", and "not be worse", denoted by "\xets".
- To simplify the presentation in the following, $X^S \nleq V(S)$ means $X^S \nleq v^S \ \forall v^S \in V(S)$, that is, there does not 177 178 exist $v^S \in V(S)$ such that $X^S \leq v^S$, $X^S \neq v^S$. Analogously $X^S \geq V(S)$ means $X^S \geq v^S \ \forall v^S \in V(S)$, that is,
- $X_i^S \geqslant v_i^S \ \forall j = 1, 2, \dots, k, \ \forall v^S \in V(S).$ 179
- These orderings, above defined, lead us to two different core concepts in set-valued TU-games. When the 180 181 ordering is defined as "≰", we have the following definition of core:
- 182 **Definition 3.1.** The dominance core of a game $(N, V) \in G^V$ is the set of allocations, $X \in I^*(N, V)$, such that 183 $X^S \nleq V(S) \ \forall S \subset N$. We will denote this set as $C(N, V; \nleq)$.
- 184 Nevertheless, it may happen that in some situations the preference structure assumed by the agents is
- 185 stronger, and coalitions only accept allocations if they get more than the worth given by the characteristic
- 186 set. This assumption modifies the rationale of the decision process under the game and, therefore, the core
- concept will be modified accordingly. Proceeding similarly, we introduce now the concept of core with
- respect to the strong ordering, that we will call the preference core.
- 189 **Definition 3.2.** The preference core of a game $(N, V) \in G^V$ is the set of allocations, $X \in I^*(N, V)$, such that 190 $X^S \ge V(S) \ \forall S \subset N$. We will denote this set as $C(N, v; \ge)$.
- 191 The preference core is always included in the dominance core. Thus, it may happen that the former set is
- empty while the latter set is not. Nevertheless, if the preference core is non-empty then the players will only 192
- agree on allocations within this set because all the players will be better off without assuming any com-
- 194 promise. Therefore, this solution concept must be considered in any set-valued game provided that we are
- 195 given tools to check whether it is non-empty.
- 196 The dominance core defined above coincides with the set of stable outcomes (SO) introduced by van den
- 197 Nouweland et al. (1989). Thus, our treatment is similar to that of these authors although our character-

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

198 ization is different. In addition, we characterize the preference core, a concept not considered in the above mentioned paper.

Example 3.1. Let us assume a production situation where three agents can produce, using three different 201 technologies A, B, C, two types of goods. The characteristic set of any coalition S is given by the production 202 levels of each good using the existing technologies, i.e. V(S) is a set of three vectors (technologies) with two components each one (goods). The following table defines the characteristic set-valued map of the game 204 (N, V).

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N
A		(1/2,1)		(5/2,3/2)	(1,2	2)	(5,4)
B		(1,1/2)		(2,2)	(2,1	1)	(6,3)
C		(4/5,3/4)		(3,1)	(3/2,4/		(3,6)

206 If the agents decide to cooperate and to produce with the technology A they must allocate the vector 207 of goods (5,4), the allocation

$$X = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

is in the preference core, while

$$Y = \begin{pmatrix} 1 & 3/2 & 5/2 \\ 3/2 & 3/2 & 1 \end{pmatrix}$$

- is in the dominance core and not in the preference core since $Y^{\{1,2\}} = (5/2,3) \not \geq (3,1)$, the third element of
- the characteristic set $V(\{1,2\})$. 212
- Imputations in the core (any of them) will be acceptable if no coalition can argue against its allocated 213
- amount X^{S} . To this end, we use the following dominance concepts, where \mathbb{R}^{k}_{\geq} stands for $\{x \in \mathbb{R}^{k} : x \geq 0\}$. 214
- **Definition 3.3.** Let us consider two matrices $X, Y \in \mathbb{R}^{k \times n}$ and a coalition $S \in N$.
- 1. Y dominates X through S according to \nleq , and we will denote $Y \operatorname{dom}_{\nleq} X$, if:
 - (a) $Y^S \not\leq X^S$, $Y^S \neq X^S$,
 - 218 (b) $Y^{S} \in V(S) \mathbb{R}^{k}$.
- 2.19 2. Y dominates X through S according to \geq , and we will denote $Y \operatorname{dom}_{\geq} X$, if:

 - (a) $Y^S \ge X^S$, $Y^S \ne X^S$, 221 (b) $Y^S \in V(S) \mathbb{R}^k_\ge$.
- 222 In scalar TU-games the set of non-dominated imputations has been widely considered (see Driessen, 1988
- and the references therein). Nevertheless, in set-valued TU-games the concept which plays the important
- role is the NDA set. These sets are defined by:
- 225 1. $NDA(N, V; \nleq) = \{X \in I^*(N, V) \text{ such that } \nexists S \subset N, Y \in I^*(N, V), Y \text{dom}_{\nleq} X\},$
- 226 2. $NDA(N, V; \ge) = \{X \in I^*(N, V) \text{ such that } \exists S \in N, Y \in I^*(N, V), Y \text{ dom } \ge X\}.$

ARTICLE IN PRESS

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

- Our following result proves that both core sets are sets of non-dominated allocations.
- 228 **Theorem 3.1.** The core sets hold the following properties:
- 229 1. $C(N, V; \geq) = NDA(N, V; \leq)$,
- 230 2. $C(N, V; \leq) = NDA(N, V; \geq)$.
- 231 **Proof.** We only prove 1. the proof of 2. being similar.
- 232 1. \Rightarrow Suppose that $X \in C(N, V; \geq)$ and that $X \notin NDA(N, V; \leq)$. Then there exists $S \subset N$ and
- 233 $Y \in I^*(N, V)$, such that $Y \stackrel{s}{\text{dom}}_{\nleq} X$, that is, $Y^S \nleq X^S$, $Y^S \neq X^S$ and $Y^S \in V(S) \mathbb{R}^k_{\geq}$, but it is not possible
- 234 because $X^S \ge V(S)$.
- \neq Suppose that $X \in NDA(N, V; \nleq)$ and that $X \notin C(N, V; \geqq)$. Then, there exists $S \subset N$ and $v^S \in V(S)$,
- 236 such that X^S is not better componentwise then v^S , that is, $v^S \nleq X^S$. Now let us construct an allocation, Y, of
- 237 v^S as follows:

$$Y^i = \begin{cases} rac{v^S}{|S|} & orall i \in S, \\ \mathbf{0} & orall i
otin S. \end{cases}$$

- Allocation Y of $v^S \in V(S)$ dominates allocation X through coalition S according to \nleq because $Y^S = v^S \nleq X^S$
- 240 and $Y^S \in V(S)$. Hence, it contradicts that $X \in NDA(N, V; \nleq)$. \square

241 4. Existence theorems

- Once, we have defined the two core concepts and their relationships it is important to give conditions
- 243 that ensure non-emptiness of these cores.
- 244 4.1. Dominance core
- For each scalarized vector $\lambda \in \Lambda$,

$$\Lambda = \left\{\lambda \in \mathbb{R}^k, \lambda_j > 0, j = 1, \dots, k \text{ such that } \sum_{j=1}^k \lambda_j = 1\right\}$$

247 and any game $(N, V) \in G^V$, we define the scalar game $(N, v_{\lambda}) \in g^v$ as:

$$v_{\lambda}(\emptyset) = 0, \quad v_{\lambda}(S) = \max_{v^{S} \in V(S) - \mathbb{R}^{k}_{\geq}} \lambda^{t} v^{S}, \ \forall S \subseteq N, \quad S \neq \emptyset.$$
 (1)

- 249 Using the game defined in (1) we establish a sufficient condition for the non-emptiness of the dominance
- 250 core.
- **Theorem 4.1.** The core $C(N, V; \nleq)$ of the game $(N, V) \in G^V$ is non-empty if there exists $\hat{\lambda} \in \Lambda$ such that the
- 252 scalar game $(N, v_{\hat{i}}) \in g^v$ is balanced and it satisfies $v_{\hat{i}}(N) \neq 0$.
- **Proof.** Let it $\hat{\lambda}$ be a weight in Λ such that the scalar game $(N, v_{\hat{\lambda}}) \in g^v$, defined in (1), is balanced and verify
- 254 $v_{\hat{i}}(N) \neq 0$. Consider $z^S \in (V(S) \mathbb{R}^k)$ such that $\hat{\lambda}^t z^S = v_{\hat{i}}(S) \ \forall S \subseteq N$. Notice that $z^S \in V(S)$, otherwise it is
- 255 possible to find another vector $v^S \in \overline{V}(S)$ such that $z^S \leq \hat{v^S}$, $z^S \neq \overline{v^S}$, and then $\hat{\lambda}^t z^S < \hat{\lambda}^t v^S$. By Bondareva and
- 256 Shapley theorem (see Bondareva, 1963) there exists an allocation $x \in C(N, v_{\hat{i}})$.

No. of Pages 15, DTD = 4.3.1

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

Now consider the matrix $X \in \mathbb{R}^{k \times n}$ whose columns are:

$$X^{i} = \frac{x^{i}}{v_{\hat{\imath}}(N)} z^{N} \quad \forall i \in N.$$

259 Since $v_{\hat{i}}(N) \neq 0$, we prove that $X \in C(N, V; \nleq)$. Indeed,

$$X^{N} = \sum_{i=1}^{n} \frac{x^{i}}{v_{\hat{\lambda}}(N)} z^{N} = z^{N}$$

- 261 and then $X \in I^*(N, V)$. Assume that $X \notin C(N, V; \nleq)$. Then, there exists a coalition $S \subset N$ and a vector
- 262 $w^S \in V(S)$ such that $X^S \leq w^S$, $X^S \neq w^S$, that is, $\hat{\lambda}^t X^S < \hat{\lambda}^t w^S$. Then:

$$\max_{v^S \in V(S) - \mathbb{R}_{>}^k} \hat{\lambda}^t v^S \geqslant \hat{\lambda}^t w^S > \hat{\lambda}^t X^S = \sum_{i \in S} \hat{\lambda}^t X^i = \frac{\sum_{i \in S} x^i}{v_{\hat{\lambda}}^i(N)} \hat{\lambda}^t z^N = x^S \geqslant v_{\hat{\lambda}}(S) = \max_{v^S \in V(S) - \mathbb{R}_{>}^k} \hat{\lambda}^t v^S.$$

- 264 This is a contradiction. \Box
- This results is useful in finding elements in the dominance core of different set-valued games.
- 266 4.1.1. Multiobjective linear programming games
- The set-valued characteristic function is usually defined through the set of non-dominated values of a
- 268 multiobjective programming problem. A particular case of these games are the Multiobjective Linear
- 269 Production Games. These games are characterized because the objective functions of the multiobjective
- 270 program are linear. In this situation we can obtain an allocation of the dominance core for any
- 271 $z = Cx \in V(N)$. Indeed, given $z^* = Cx^* \in V(N)$, it is well-known that there exists a vector of weights $\hat{\lambda} \in \mathbb{R}^k$,
- 272 $\hat{\lambda} > 0$, such that x^* is the solution of the scalar problem:

$$[P_N(\hat{\lambda})] \frac{\max}{\text{s.t.}} \quad \frac{\hat{\lambda}^t Cx}{x \in F(P_N)}$$

- 274 Let u^* be an optimal solution of the dual problem of $[P_N(\hat{\lambda})]$. The matrix $X^* = (X^1, X^2, \dots, X^n)$ whose
- 275 columns are $X^i = (u^*b^i/\hat{\lambda}^iz^*)z^*$ belongs to the dominance core. This follows from Theorem 4.1. Notice that
- 276 X^* is an allocation of z^* .
- We note in passing that the choice of $z \in V(N)$ can be done taking a weighting vector $\lambda > 0$. Procedures
- 278 guiding the agents to the choice of weighting vectors are described in Marmol et al. (2002) and the ref-
- 279 erences therein.
- 280 **Example 2.1** (continued). Let us take $\hat{\lambda} = (0.8, 0.2)$. The problem $P_N(\hat{\lambda})$ is:

max
$$1.9x_1 + 3.4x_2$$

s.a.: $x_1 + 8x_2 \le 43$; $7x_1 + 4x_2 \le 41$; $7x_1 + 8x_2 \le 57$; $x_1, x_2 \ge 0$.

- 282 An optimal solution of $P_N(\lambda)$ is $x_1 = (2.3, 5.083)$ with objective value $z_1 = (25, 8.583)$. An the optimal so-
- lution of the dual of $P_N(\hat{\lambda})$ is $u^* = (0.179167, 0, 0.245833)$. The allocation in the dominance core obtained by
- 284 the above method, is:

$$X^* = \begin{pmatrix} 6.567 & 9.938 & 8.495 \\ 2.254 & 3.412 & 2.917 \end{pmatrix}.$$

- 286 4.1.2. Multiobjective continuous single facility location games
- For this class of games we can provide a method to construct allocations in the dominance core. The
- 288 approach consists of applying Theorem 4.1 transforming the multiobjective game into a scalar continuous

^

No. of Pages 15, DTD = 4.3.1

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

289 single facility location game. Conditions for the non-emptiness of the corresponding core set are given in 290 Puerto et al. (2001).

291 **Example 2.2** (continued). We apply Theorem 4.1 with $\lambda = 1/2$. Thus, we obtain the corresponding scalar 292 game whose characteristic function $v_{\lambda}(S) = K + L(S)$ where L(S) is given by:

S	{1},{2},{3}	{1,2}	{1,3}	{2,3}	N
L(S)	0	1/4	$3/4 - \varepsilon$	1/4	3/4

294 According to Puerto et al. (2001) the egalitarian allocation (K/3 + 1/4, K/3 + 1/4, K/3 + 1/4) belongs to 295 the core of this scalar game. Therefore, the egalitarian allocation of the vector

$$\binom{K+5/4-\varepsilon}{K+3/4-\varepsilon}$$
,

297 that corresponds to the non-dominated value in V(N) for x=2, belongs to the dominance core.

4.1.3. Multiobjective minimum cost spanning tree games

299 We can provide a method to obtain allocations in the dominance core. A way to deal with this problem is 300 using topological orders in \mathbb{R}^k . As was shown in Ehrgott (2000), every Pareto optimal spanning tree of a graph is a conventional most using the appropriate topological order. Restricting to topological orders induced by an increasing linear utility function, the most obtained from the weighted graph is a Pareto 302 303 optimal tree.

304 In order to find a condition that permits to divide among the players a total cost $z^N \in V(N)$ accordingly 305 with a given strictly increasing linear utility function, u, we will define the following scalar game (N, v_u) :

$$v_u(\emptyset) = 0, \quad v_u(S) = \min_{z^S \in V(S)} u(z^S), \quad \forall S \subseteq N, S \neq \emptyset.$$

Using any allocation in the core of the game (N, v_u) , we can construct dominance core allocations for 308 some $z^N \in V(N)$. 309

Let $x = (x^1, \dots, x^n)$ be the Bird's allocation of the game (N, v_u) (see Bird, 1976). This vector allows us to 310 give a proportional allocation of $z^N \in V(N)$ defined by: 311

$$X = (X^1, \dots, X^n), \text{ where } X^i = \frac{x^i}{u(z^N)} z^N \ \forall i \in \mathbb{N}.$$

313 This allocation belongs to the dominance core by Theorem 4.1.

314 Example 2.3 (continued). Suppose that the strictly increasing linear utility function, u, used to compare the

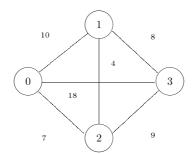
315 worth of the coalitions consists of giving triple importance to the second criterion, that is, the utility of

316 vector a is $u(a) = a_1 + 3a_2$. Then, the scalar game (N, v_u) is:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
$v_u(S)$	10	7	6	11	18	16	19	

318 In this case, $v_u(N) = u((4,5)^t)$, the most for the weighted graph is the Pareto-optimal tree associated to 319 $z^N = (4,5)^t$ and (N, v_u) is the mest-game associated to the weighted graph.

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx



Therefore Bird's cost allocation x = (4, 7, 8) is in the core of (N, v_u) . Then the proportional allocation

$$X = \begin{pmatrix} \frac{16}{19} & \frac{28}{19} & \frac{32}{19} \\ \frac{20}{19} & \frac{35}{19} & \frac{40}{19} \end{pmatrix} \in C(N, V, \not\geqslant).$$

- 323 4.2. Preference core
- This section is devoted to characterize the non-emptiness of the preference core. Associated with a coalition S in the game $(N, V) \in G^V$ we consider k different scalar problems:

$$[P_S(j)] \max_{\text{s.t.:}} v_j^S$$

s.t.: $v^S \in V(S) - \mathbb{R}_{\geq}^k$,

- where v_j^S , j = 1, 2, ..., k, is the *j*th component of vector v^S . The reader may notice that for cost games the corresponding problems $[P_S(j)]$ would be minimization problems.
- Let us denote by $z^*(S, j)$ the value associated with an optimal solution of problem $[P_S(j)]$ and by $z^*(S)$ the
- 330 *k*-dimensional vector $z^*(S) = (z^*(S, 1), z^*(S, 2), \dots, z^*(S, k)).$
- Notice that for a fixed coalition S if an allocation X of the set-valued TU-game, $(N, V) \in G^V$, satisfies
- 332 $X^S \ge V(S)$ then $X^S \ge z^*(S)$ and conversely.
- For each $\hat{z} = (\hat{z}_1, \dots, \hat{z}_k) \in V(N)$, we introduce (N, v_i^2) , the scalar j-component game, $j = 1, 2, \dots, k$,
- 334 defined as follows:

$$v_i^{\hat{z}}(\emptyset) = 0, \quad v_i^{\hat{z}}(S) = z^*(S, j) \quad \forall S \subset N \text{ and } v_i^{\hat{z}}(N) = \hat{z}_j.$$
 (2)

- A necessary and sufficient condition for the non-emptiness of the preference core is given in the next result.
- **Theorem 4.2.** The preference core is non-empty if and only if there exists at least one $\hat{z} \in V(N)$ such that all
- 339 the scalar j-component games (N, v_i^2) are balanced.
- 340 **Proof.** If every scalar j-component game (N, v_i^2) is balanced, consider any allocation, X_j , in the core of
- 341 $(N, v_i^{\sharp}), j = 1, 2, \dots, k$. Then, the $k \times n$ -matrix X whose rows are $X_i, j = 1, 2, \dots, k$, is an allocation asso-
- 342 ciated with \hat{z} . Moreover, for each $S \subset N$, $X^S \ge z^*(S)$ and $X^S \ge V(S)$.
- Conversely, let X be an allocation in the preference core such that $X^N = \hat{z} \in V(N)$. Then $X^S \ge V(S)$,
- 344 $\forall S \subset N$ and $X^S \geqslant z^*(S), \forall S \subset N$. Therefore, X_i is an allocation in the core (N, v_i^2) . \square

No. of Pages 15, DTD = 4.3.1

7 July 2003 Disk used

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

- We can also give a similar but refined sufficient condition. Let \bar{z} be a k-dimensional vector not necessarily in V(N) and consider the scalar game $(N, v_i^{\bar{z}})$ as defined above.
- **Corollary 4.1.** If $(N, v_j^{\bar{z}})$ is balanced for any j = 1, 2, ..., k and there exists $\hat{z} \in V(N)$ such that $\hat{z} \geq \bar{z}$, then there exist allocations associated with \hat{z} in the preference core.
- 349 **Example 4.1.** Consider the following bi-objective linear production game with three players in which the 350 matrix that represents the two objectives is

$$C = \begin{pmatrix} 2.5 & 5 \\ 3 & 2 \end{pmatrix}$$

352 the technological matrix is

$$A = \begin{pmatrix} 2 & 9 \\ 6 & 4 \\ 8 & 9 \end{pmatrix}$$

354 and the resource vectors for the players are:

$$b^1 = (400, 5, 35)^t$$

$$b^2 = (15, 400, 35)^t$$

$$b^3 = (15, 5, 500)^t$$
.

In this case all the vectors in V(N) can be allocated within the preference core. Let us consider the vector z = (192, 155.2) that is a vector less or equal than all the vectors in V(N). It is easy to prove that the game (N, v_1^2) defined as:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
$v_1^z(S)$	6.3	13	6.25	38.9	12.5	37.5	192	

362 and the game (N, v_2^z) is defined as:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
$v_2^z(S)$	2.5	13	2.5	26.3	5	45	155.2	

364 are balanced. Therefore, since $z = (192, 155.2) \leqslant \hat{z} \ \forall \hat{z} \in V(N)$ we can obtain allocations in the preference 365 core for all vectors in V(N), using Corollary 4.1.

In order to obtain an allocation, for instance, of vector $\hat{z} = (192, 205) \in V(N)$, we search for vectors in the core of the corresponding component games.

368 Vector $X_1 = (60, 60, 72)$ is in the core of the game (N, v_1^2) :

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
$v_1^z(S)$	6.3	13	6.25	38.9	12.5	37.5	192	

ARTICLE IN PRESS

No. of Pages 15, DTD = 4.3.1

13

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

370 Vector $X_2 = (70, 70, 65)$ is in the core of the game (N, v_1^2) :

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
$v_2^z(S)$	2.5	13	2.5	26.3	5	45	205	

372 Therefore, the matrix

$$Y = \begin{pmatrix} 60 & 60 & 72 \\ 70 & 70 & 65 \end{pmatrix}$$

- 374 is an allocation of the vector (192, 205) in the preference core.
- Although the example above shows that every $z \in V(N)$ can be allocated within the preference core, there are also cases where this is not possible.
- 377 Example 2.1 (continued). Consider the two scalar 1,2-component games defined in (2):

378 The scalar 1-component game is:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
v(S)	6.5	9	8.25	16.75	15	17.38	$v_1^{\hat{z}}$	

380 The scalar 2-component game is:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N	
v(S)	2.786	2.25	4	5.357	6.964	6.269	$v_2^{\hat{z}}$	

- 382 It is easy to see that the first scalar component games is not balanced for any $\hat{z} \in V(N)$. Therefore the 383 preference core in this game is empty by Theorem 4.2.
- 384 **Example 2.2** (*continued*). Let us fix the setup cost K = 3. Consider the two component games obtained for the non-dominated value V(N) with x = 2:

$$\begin{pmatrix} 17/4 - \varepsilon \\ 15/4 - \varepsilon \end{pmatrix}$$
.

387 The scalar 1-component game is:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N
v(S)	3	3	3	$\frac{13}{4} + \varepsilon$	$\frac{7}{2}$	<u>13</u> 4	$\frac{17}{4} - \varepsilon$

389 The scalar 2-component game is:

S	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	N
v(S)	3	3	3	$\frac{13}{4} - \varepsilon$	$\frac{7}{2}$	$\frac{13}{4} - \varepsilon$	$\frac{15}{4} - \varepsilon$

7 July 2003 Disk used

F.R. Fernández et al. / European Journal of Operational Research xxx (2003) xxx-xxx

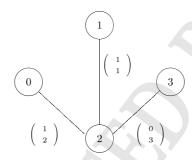
The reader can check that the scalar component games are balanced and the allocation

$$\begin{pmatrix} \frac{17}{12} & \frac{17}{12} - \varepsilon & \frac{17}{12} \\ 1 & \frac{7}{4} - \varepsilon & 1 \end{pmatrix}$$

- 393 belongs to the preference core.
- 394 **Example 2.3** (continued). In this example, we can allocate $(2,6)^t \in V(N)$ by the matrix

$$\begin{pmatrix}
1 & 1 & 0 \\
1 & 2 & 3
\end{pmatrix}$$

- 396 that is in the preference core. This allocation has been obtained applying Bird's rule to the Pareto-minimum
- 397 tree given in the following figure.



- 399
- 400 It is worth noting that there are classes of OR games for which the preference core is always non-empty.
- 401 This is the case of the so called *Multiobjective maintenance games* (see Borm et al., 2001 for the definition of
- 402 the scalar game). These games consist of a multiobjective minimum cost spanning tree game where the
- 403 underline graph G is a tree. In this case any proportional allocation rule, as for instance Bird's rule, always
- 404 belongs to the preference core.

405 Acknowledgements

The research of the authors is partially supported by Spanish DGICYT grant no. BFM2001-2378.

407 References

- 408 Bergstresser, K., Yu, P.L., 1977. Domination structures and multicriteria problems in N-person games. Theory and Decision 8, 5-48.
- 409 Bird, C.G., 1976. On cost allocation for a spanning tree: A game theoretic approach. Networks 6, 335–350.
- 410 Blackwell, O., 1956. An analog of the minimax theorem for vector payoff. Pacific Journal of Mathematics 6, 1–8.
- Bondareva, O.N., 1963. Some applications of the methods of linear programming to the theory of cooperative games. Problemy Kubernetiki 10, 119–139.
 - 413 Borm, P., Hamers, H., Hendrickx, R., 2001. Operations research games: A survey. TOP 9, 139–216.
 - 414 Driessen, T.S.H., 1988. Cooperative Games, Solutions and Aplications. Kluwer Academic Publishers.
 - 415 Ehrgott, M., 2000. Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems n. 491, Springer.
- Fernández, F.R., Hinojosa, M.A., Puerto, J., 2001. Multi-objective Linear Production Games. In: Petrosjan, L.A., Mazalov, V.V. (Eds.), Game Theory and Applications VII. Nova Science Publishers, pp. 44–54.

ARTICLE IN PRESS

No. of Pages 15, DTD = 4.3.1

15

F.R. Fernández et al. | European Journal of Operational Research xxx (2003) xxx-xxx

Fernández, F.R., Hinojosa, M.A., Puerto, J., 2002. Core concepts in vector-valued games. Journal of Optimization Theory and Applications 112, 331–360.

420 Fernández, F.R., Monroy, L., Puerto, J., 1998. Multicriteria goal games. Journal of Optimization Theory and Applications 99, 195–421 208.

Fernández, F.R., Puerto, J., 1996. Vector linear programming in zero-sum multicriteria matrix games. Journal of Optimization Theory and Applications 89, 115–127.

Hwang, C.L., Lin, M.J., 1987. Group Decision Making Under Multiple Criteria. Lecture Notes in Economics and Mathematical Sciences 281, Springer-Verlag, Berlin.

Jörnsten, K., Lind, M., Tind, J., 1995. Stable Payment Schemes of TU-Games with Multiple Criteria. Revised version of Publication
 No. 93/3, Department of Operations Research, University of Aarhus, Arhus, Demmark.

428 Marmol, A.M., Puerto, J., Fernández, F.J., 2002. Secuential incorporation of imprecise information in multiple criteria decision processes. European Journal of Operation Research 137, 123–133.

430 Nouweland, A., van den Aarts, H., Borm, P., 1989. Multi-commodity games. Methods of Operations Research 63, 329-338.

431 Owen, G., 1975. On the core of linear production games. Mathematical Programming 9, 358–370.

Puerto, J., García-Jurado, I., Fernández, F.R., 2001. On the core of a class of location games. Mathematical Methods of Operations
 Research 54, 373–385.

Puerto, J., Fernández, F.R., 1995. Solution concepts based on security levels in constrained multicriteria convex games. Opsearch 32, 16–30.

436 Shapley, L.S., 1959. Equilibrium points in games with vector payoff. Naval Research Logistics Quarterly 6, 57–61.