
ar
X

iv
:c

on
d-

m
at

/9
70

61
41

v1
 [

co
nd

-m
at

.d
is

-n
n]

 1
3

Ju
n

19
97

LU TP 97-10
September 3, 2018

Airline Crew Scheduling Using

Potts Mean Field Techniques

Martin Lagerholm1, Carsten Peterson2 and Bo Söderberg3

Complex Systems Group, Department of Theoretical Physics

University of Lund, Sölvegatan 14A, S-223 62 Lund, Sweden

Submitted to Operations Research

Abstract:

A novel method is presented and explored within the framework of Potts neural networks for solving
optimization problems with a non-trivial topology, with the airline crew scheduling problem as a
target application. The key ingredient to handle the topological complications is a propagator
defined in terms of Potts neurons. The approach is tested on artificial problems generated with
two real-world problems as templates. The results are compared against the properties of the
corresponding unrestricted problems. The latter are subject to a detailed analysis in a companion
paper [1]. Very good results are obtained for a variety of problem sizes. The computer time demand

for the approach only grows like (number of flights)
3
. A realistic problem typically is solved within

minutes, partly due to a prior reduction of the problem size, based on an analysis of the local
arrival/departure structure at the single airports.

To facilitate the reading for audiences not familiar with Potts neurons and mean field techniques, a
brief review is given of recent advances in their application to resource allocation problems.

1martin@thep.lu.se
2carsten@thep.lu.se
3bs@thep.lu.se

http://arxiv.org/abs/cond-mat/9706141v1

1 Introduction

Artificial Neural Networks (ANN) have over the last decade emerged as powerful tools for “intelli-
gent” computing. Most attention has been paid to feed-forward architectures for pattern recognition
and prediction problems. Conceptually, these approaches tie nicely into existing statistical and in-
terpolation/extrapolation schemes. The application of feedback ANN methods to combinatorial
optimization problems [2, 3, 4, 5] also looks very promising. In contrast to most search and heuris-
tics methods, the ANN-based approach to optimization does not fully or partly explore the space
of possible configurations; rather, the ANN “feels” its way through a continuous space of fuzzy
configurations towards a good final solution. The intermediate fuzzy configurations have a natural
probabilistic interpretation.

Typically, two basic steps are involved when using ANN to find good solutions to combinatorial
optimization problems [6]: (1) map the problem onto a neural network (spin) system with a problem-
specific energy function, and (2) minimize the energy by means of a deterministic process based on
the iteration of mean field (MF) equations.

Initially, most applications concerned fairly artificial problems like the traveling salesman problem,
various graph partition problems [2, 3] and knapsack problems [7, 8]. In refs. [9, 10], a more realistic
problem (high school scheduling) was addressed. In all these applications, topological complication
was not an issue, and could be dealt with in a straightforward way using “standard” ANN energy
functions similar to those encountered in spin physics.

Recently, a formalism has been developed within the feedback ANN paradigm to handle applications
with more complicated topologies, like airline crew scheduling and telecommunication routing prob-
lems [11, 12]. This paper deals with airline crew scheduling using the techniques briefly reported in
ref. [11].

In airline crew scheduling, a given flight schedule is to be covered by a set of crew rotations, each
consisting in a connected sequence of flights (legs), that begins and ends at a distinguished airport,
the home base (HB). The total crew time is to be minimized, subject to a number of restrictions
on the rotations.

A commonly used approach to this problem proceeds in two steps. (1) First a large pool of feasible
crew rotations that conform with the restrictions is generated (this is often referred to as column
or matrix generation). (2) With such a set as a starting point, the problem is then reformulated as
finding the best subset of rotations such that each flight is covered precisely once. This transforms
the problem into a set partitioning problem (see e.g. [13] and references therein). Solutions to this
“standard” problem are then found by approximate methods based on e.g. linear programming;
more recently an exact branch-and-cut method has been used [13]. Even for moderate problem sizes,
feasible rotations exist in astronomical numbers, and the pool has to be incomplete; this approach
is therefore non-exhaustive.

Feedback ANN methods could be used to attack the resulting set partitioning problem. In fact,
ANN methods have been successfully applied to the similar knapsack and set covering problems
[7, 8, 14]. We will, however, follow a completely different pathway in approaching the airline crew
scheduling problem: First, the full solution space is narrowed down using a reduction technique that
removes a large part of the sub-optimal solutions. Then, an MF annealing approach based on a

1

Potts neuron encoding is applied. A key feature here is the use of a recently developed propagator
formalism [11] for handling topology, leg-counting, etc.

The method is explored on a set of synthetic problems, which are generated to resemble two real-
world problems representing long and medium distance services. The algorithm performs well with
respect to solution quality, with a computational requirement that at worst grows like N3

f , where
Nf is the number of flights.

The reduction technique employed, and the evaluation of the test problem results, rely heavily
upon exploiting the properties of the solutions to the corresponding unconstrained problem, which
decomposes into a local problem at each airport, and is solvable in polynomial time. A fairly
extensive analysis of these properties is given in a companion article [1].

This paper is organized as follows: In Section 2 we define the problems under study, and Section
3 contains a discussion of the properties of the unrestricted local problems. Our method for initial
reduction of the problem size is presented in Section 4. A generic brief review of the art of mapping
resource allocation problems onto spin (neuron) systems, and a description of the MF annealing
procedure, can be found in Section 5, and in Section 6 the Potts MF method for airline crew
scheduling is presented. Section 7 contains performance measurements on a set of test problems,
and finally in Section 8 we give a brief summary and outlook. Appendix A defines a toy problem
that is used throughout the paper for illustrating the different techniques, while details on the Potts
ANN algorithm and the problem generator can be found in Appendices B and C respectively.

2 Problem Definition

In a realistic airline crew scheduling problem one wants to minimize labour and other costs associated
with a schedule of flights with specified times and airports of departure and arrival, subject to a
number of safety and union constraints. Typically, a real-world flight schedule has a basic period of
one week.

The problem considered in this work is somewhat stripped. We limit ourselves to minimizing the
total crew waiting-time, subject to the constraints:

• The crews must follow connected flight sequences – rotations – starting and ending at the
home-base.

• The number of flight legs in a rotation must not exceed a given upper bound.

• The total duration (flight-time + waiting-time) of a rotation is similarly bounded.

We believe that these are the crucial and difficult constraints; additional real-world constraints we
have ignored do not constitute further challenges from an algorithmic point of view.

Throughout this paper, we will use a small toy problem, depicted in fig. 1, to illustrate our approach.
The underlying flight data can be found in Appendix A.

2

��
�

��
�

��
�

��
�

���� ����

���� ����

���� ������

B

4

5
HB

7
2 10

8 11

3C

D

E1

6
9

Figure 1: An illustration of the problem of table A1.

Prior to developing our artificial neural network method, we will describe a technique to simplify
the problem, based on an analysis of the local flight structure at each airport.

3 Properties of the Unrestricted Solutions

A solution to a given crew scheduling problem is specified by providing, at each airport (except
HB), a one-to-one mapping between the arriving and departing flights. This implicitly defines the
crew rotations.

It is the global constraints that make the crew scheduling problem a challenge. In the absence
of these, there will be no interaction between the mappings at different airports; accordingly, the
waiting-times can be minimized independently at each airport. This simplified problem will be
referred to as the corresponding unrestricted problem; it is solvable in polynomial time. A detailed
analysis of the statistical properties of such problems is presented in ref. [1]. Here we briefly describe
the results from [1] needed for our preprocessing and analysis of the results.

Summing the resulting minimal waiting-times over the airports defines the minimal unrestricted
waiting-time, denoted by T unr

wait. This provides a lower bound to the minimal waiting-time for the
full problem. Empirically, this bound is almost always saturated, i.e. among the minimal solutions
to the unrestricted problem, a solution to the full problem can be found. This can be understood
as follows.

At a single airport, the waiting-time for a given mapping is obtained by adding together the waiting-
times for each arrival-departure pair (ij), given by

t
(w)
ij =

(

t
(dep)
j − t

(arr)
i

)

mod period. (1)

Thus, the sum over pairs can only change by an integer number of periods. At a large airport,
the minimum often is highly degenerate: For a random problem, the local ground-state degeneracy
typically scales as (N/2e)

N
for an airport with N ≫ 1 departures per period [1]. Consequently,

the total number of minimal solutions to a complete unrestricted problem, defined as the product

3

of the individual airport degeneracies, will be very large, and it is not inconceivable that a solution
satisfying the constraints can be found among this set.

By insisting on ground-states, the state-space typically can be reduced by a factor of two for each
flight. Part of this reduction is due to airports being split into smaller parts, which on the average
gives a factor of two for each airport. This will be exploited in the next section, to reduce the
size of a restricted problem. The unrestricted ground-states will also be used when gauging the
performance of our Potts approach.

4 Reduction of Problem Size

By demanding a minimal waiting-time, the unrestricted local problem at each airport (excluding
the home-base) typically can be further split up into independent subproblems, each containing a
subset of the arrivals and an equally large subset of the departures. Some of these are trivial, forcing
the crew of an arrival to continue to a particular departure.

Similarly, by demanding a solution with T unr
wait also for the constrained global problem, this can be

reduced as follows:

• Airport fragmentation: Divide each airport into effective airports corresponding to the unre-
stricted local subproblems.

• Flight clustering: Join every forced sequence of flights into one effective composite flight, which
will thus represent more than one leg and have a formal duration defined as the sum of the
durations of its legs and the waiting-times between them.

Every problem will be preprocessed based on these two reduction methods, which will be explained
in more detail below. In instances where no solution obeying the global constraints is found within
the reduced solution space, one can attempt to solve the problem with no preprocessing. This was
not necessary for any of the probed problems.

4.1 Airport Fragmentation

Inspecting the local arrival and departure times reveals which airports can be fragmented (for a full
discussion, see ref. [1]). In the toy example of fig. 1, airports B and D can be split (see fig. 2).
For airport B there is only one possibility for connecting the flights without adding a period to the
local waiting-time, yielding three effective airports (B1, B2 and B3). Similarly, airport D can be
divided into two effective airports (D1 and D2). The structure that results from this fragmentation
is shown in fig. 3a.

4

6 3

10 11

8
4

D
Arr./Dep. time

1

9 10

7
2

B
Arr./Dep. time

7

Figure 2: Arrival and departure times for airports B and D in the toy example. The dotted ellipses
mark the fragments into which the airports can be divided.

����

����

����

��
�

��
�

��
�

��
�

����D1

4

5
HB

3C

D1
D2

E1

7

102
8 11

9
6

B1 B2 B3

1-2-3
9-10-11

6-7

8

4-5

HB

a b

Figure 3: (a) The effective airports resulting from airport fragmentation for the toy-problem, and
(b) the composite flights due to a subsequent flight clustering.

4.2 Flight Clustering

The airport fragmentation typically leads to several effective airports having only one arrival flight
and one departure flight. Hence we can combine these into effective composite flights (flight clus-
tering), with a formal duration obtained by adding together the flight duration times and the
embedded waiting-times, and an intrinsic leg-count given by the number of proper flights included.
The resulting structure for the toy problem is shown in fig. 3b and table A2.

The reduced problem thus obtained differs from the original problem only in an essential reduction
of the sub-optimal part of the solution space; the part with minimal waiting-time is unaffected. The
resulting information gain, taken as the natural logarithm of the decrease in size of the solution
space, empirically seems to scale approximately like 2× (number of flights), and ranges from 100 to
2000 for the problems probed. This is considerably more than for a completely random, unstructured
problem, where the gain is expected to scale like log 2× (number of airports) [1].

5

��
�

��
�

��
�

��
�

���� ����D1

1

3

4

2

HB

Figure 4: The kernel of the toy problem. The flights have been relabeled (see table A2).

4.3 The Kernel Problem

The reduced problem may in most cases be further separated into a set of independent subproblems,
connected only via the home-base; these can be solved one by one. Some of the composite flights
will formally arrive at the same effective airport they started from. This does not pose a problem;
indeed, if the airport in question is the home-base, such a single flight constitutes a separate (trivial)
subproblem, representing an entire forced rotation. Typically, one of the subproblems will be much
larger than the rest, and will be referred to as the kernel problem, while the remaining subproblems
will be essentially trivial.

In this way, our toy problem decomposes into two independent subproblems, one containing the
single composite flight 9-10-11, the other containing the flights 1-2-3, 4-5, 6-7, and 8. The latter
defines the kernel problem for our toy example. Relabeling the composite flights gives the structure
shown in fig. 4. In the formalism below, we allow for the possibility that the problem to be solved
has been reduced as described above, which means that flights may be composite. In what follows
we limit ourselves to the kernel problem.

5 Optimization with Feedback Neural Networks

In this section we give a mini-review of how to map resource allocation problems onto feedback
neural networks and the MF methodology for finding good solutions to such systems. Much of
the formalism here originates from spin models in physics. Hence we will initially denote the basic
degrees of freedom “spins”. After discussing the MF approximation the term “neuron” will be used.
We start out with a binary (Ising) system and then proceed to a multi-valued (Potts) system. The
latter is the most relevant for the crew scheduling problem.

5.1 The Ising System

The Ising system is defined by the energy function

E = −
1

2

∑

ij

wijsisj , (2)

6

where the binary spins si=±1 represent local magnetic properties of some material, and ωij how
these spins couple to each other. Minimizing E in eq. (2) yields the spin configuration of the system.

Feedback networks for resource allocation problems with binary variables have a similar form. One
such example is the graph bisection problem, where si encodes to what partition node i is assigned
and wij=0,1 defines the problem in terms of whether i and j are connected or not. To enforce equal
partition,

∑

si = 0, eq. (2) needs to be augmented with a soft penalty term. One gets:

E = −
1

2

∑

ij

wijsisj +
α

2

(

∑

i

si

)2

, (3)

equivalent to making the replacement wij → wij − α. The imbalance parameter α sets the relative
strength between the cutsize and the balancing term. The next step is to find an efficient procedure
for minimizing the energy in eqs. (2,3) aiming for the global minimum.

5.2 Ising Mean Field Equations

If one attempts to minimize the energy of eq. (3) according to a local optimization rule, the system
will very likely end up in a local minimum close to the starting point, which is not desired. A better
method is to use a stochastic algorithm that allows for uphill moves. One such method is simulated

annealing (SA) [15], in which a sequence of configurations is generated, emulating the Boltzmann
distribution

P [s] =
1

Z
e−E[s]/T , (4)

with neighbourhood search methods. In eq. (4), Z is the partition function,

Z =
∑

[s]

e−E[s]/T , (5)

needed for normalization, and the width or temperature T represents the noise level of the system.
For T → 0 the Boltzmann distribution collapses into a delta function around the configuration
minimizing E. By generating configurations at successively lower T (annealing) these are less likely
to get stuck in local minima than if T = 0 from the start. Needless to say, such a procedure can be
very CPU consuming.

The mean field (MF) approach aims at approximating the stochastic SA method with a deterministic
process. This can be derived in two steps. First Z in eq. (5) is rewritten in terms of an integral
over new continuous variables ui and vi. Then Z is approximated by the maximum value of its
integrand.

To this end, introduce a new set of real-valued variables vi, one for each spin, and set them equal to
the spins with a Dirac delta-function. Then we can express the energy in terms of the new variables,
and Z takes the form

Z =
∑

[s]

∫

d[v]e−E[v]/T
∏

i

δ(si − vi) =
∑

[s]

∫

d[v]

∫

d[u]e−E[v]/T
∏

i

eui(si−vi), (6)

7

where the delta-functions have been rewritten by introducing a new set of variables ui. Then carry
out the original sum over [s] and write the product as a sum in the exponent:

Z ∝

∫

d[v]

∫

d[u]e−E[v]/T−

∑

i
uivi+

∑

i
log coshui . (7)

The original partition function is now rewritten entirely in terms of the new variables [u, v], with
an effective energy in the exponent. So far no approximation has been made. We next approximate
Z in eq. (6) by the extremal value of the integrand obtained for

vi = tanh (ui) = tanh

(

−
∂E[v]

∂vi
/T

)

. (8)

The mean field variables (or neurons) vi can be seen as approximations to the thermal averages 〈si〉T
of the original binary spins. The MF equations (eq. (8)) are solved iteratively, either synchronously
or asynchronously, under annealing in T . This defines a feedback ANN.

The dynamics of such an ANN typically exhibits a behaviour with two phases: When the temper-
ature T is high, the sigmoid function, tanh(·/T) in eq. (8), becomes very smooth, and the system

relaxes into a trivial fixed point, v
(0)
i = 0. As the temperature is lowered a phase transition (bifurca-

tion) occurs at T = Tc, where v
(0)
i becomes unstable, and as T → 0, fixed points v

(∗)
i = ±1 emerge

representing a specific decision made as to the solution to the optimization problems in question.

The position of Tc depends upon wij and can be estimated by linearizing the sigmoid around v
(0)
i ,

i.e. linearizing eq. (8). Based on such an analysis, one can devise a reliable, parallelizable “black
box” algorithm for solving problems of this kind.

Very good numerical results have been obtained for the graph bisection problem (see ref. [3] for
references) for a wide range of problem sizes. The solutions are comparable in quality to those
of the SA method, but the CPU time consumption is lower than any other known method of
comparable performance. The approach of course becomes even more competitive with respect to
time consumption if the intrinsic parallelism is exploited on dedicated hardware.

The MF approach differs fundamentally from many other heuristics, in that the evolution of the
solutions starts outside the proper state space, and then gradually approaches the hypercube corners
in solution space. This feature indicates a relation to interior point methods [16]. Indeed, as was
pointed out in ref. [17], if the effective (or free) energy is convex, a variant of MF annealing can be
obtained, which is equivalent to the interior point method [16].

5.3 The Potts System

For graph bisection and many other optimization problems, an encoding in terms of binary elemen-
tary variables is natural. However, there are many problems where this is not the case. In many
cases it is more natural to replace the two-state Ising spins by multi-valued Potts spins, which have
K possible values (states). For our purposes, the best representation of a Potts spin is in terms
of a vector in the Euclidean space EK . Thus, denoting a spin variable by s = (s1, s2, . . . , sK), the
j:th possible state is given by the j:th principal unit vector, defined by sj = 1, sk = 0 for k 6= j.
These vectors point to the corners of a regular K-simplex. They are each normalized and fulfill the

8

condition
∑

k

sk = 1, (9)

and they are mutually orthogonal,

5.4 Potts Mean Field Equations

The MF equations for a system of K-state Potts spins si = (si1, si2, . . . , siK) with an energy E(s)
are derived following the same path as in the Ising case – rewrite the partition function as an integral
over vi and ui and approximate it with the maximum value of the integrand. One obtains

uij = −
∂E(v)

∂vij
/T, (10)

vij =
euij

∑

k e
uik

, (11)

from which it follows that the MF Potts neurons vi, which approximate the thermal average of si,
satisfy

vij > 0 ,
∑

j

vij = 1. (12)

One can think of the neuron component vij as the probability for the i:th Potts spin to be in state
j. For K = 2 one recovers the formalism of the Ising case in a slightly disguised form.

Supplying the Potts neurons with a dynamics based on iterating eqs. (10,11), yields a Potts ANN.
Again one can typically analyze the linearized dynamics in order to estimate the critical temperature
Tc. We refer the reader to ref. [3] for details.

It is often advantageous to replace the derivative in eq. (10) with the corresponding difference,

uij = −
(

E|vij=1 − E|vij=0

)

/T, (13)

which will be used in the airline crew problem below.

6 Potts Neural Approach to the Crew Scheduling Problem

6.1 Encoding

We are now ready to encode the airline crew problem in terms of Potts spins. A naive way to do this
would be to mimic what was done in the teachers-and-classes problem in refs. [9, 10], where each
event (lecture) was mapped onto a resource unit (lecture-room + time-slot). This would require a
Potts spin for each flight to handle the mapping onto crews.

Since the problem consists in linking together sequences of (composite) flights into rotations, it
appears more natural to choose an encoding where each flight i is mapped, via a Potts spin, onto

9

the flight j to follow it in the rotation:

sij =

{

1 if flight i precedes flight j in a rotation,
0 otherwise,

where it is understood that j be restricted to depart from the (effective) airport where i arrives.
In order to ensure that proper rotations are formed, each flight has to be mapped onto precisely
one other flight. This restriction is inherent in the Potts spin formulation, which is defined to have
precisely one component “on”, as is evident from eq. (9).

To start or terminate a rotation, we introduce dummy flights a and b of zero duration and intrinsic
leg count, available only at the home-base, representing the start/end of a rotation – at the home-
base, a is formally mapped onto every departure, and every arrival is mapped onto b.

We illustrate the Potts encoding by one particular solution to the toy kernel problem of fig. 4,
where flight 1 is connected to flight 2, and flight 3 to flight 4. In eq. (14) the “border” entries of s
corresponding to the dummy flights a (i, j = 0) and b (i, j = N + 1) are marked in bold face.

s =

0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

, (14)

Global topological properties, leg-counts and durations of rotations, etc., cannot be described in a
simple way by polynomial functions of the spins. Instead, they are conveniently handled by means
of a propagator matrix P, defined in terms of the Potts spin matrix s by

Pij =
(

(1− s)−1
)

ij
= δij + sij +

∑

k

sikskj +
∑

kl

siksklslj +
∑

klm

siksklslmsmj + . . . (15)

A pictorial expansion of the propagator is shown in fig. 5. The interpretation is obvious: Pij counts

= + + + + ...

Figure 5: Expansion of the propagator Pij (©) in terms of sij . A line represents a flight, and (•) a
landing.

the number of connecting paths from flight i to j. The P-matrix corresponding to the toy problem
solution of eq. (14) is given by

P =

1 1 1 1 1 2
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

, (16)

where one finds two paths from a to b (Pab = 2), as there should be – one via 1-2 and one via 3-4.

10

Similarly, an element of the matrix square of P,

(

P 2
)

ij
≡
∑

k

PikPkj = δij + 2sij + 3
∑

k

sikskj + . . . , (17)

counts the total number of composite legs in the connecting paths between i and j, while the number
of proper legs is given by

L̃ij ≡
∑

k

PikLkPkj = δijLi + sij (Li + Lj) +
∑

k

sikskj (Li + Lk + Lj) + . . . , (18)

where Lk is the intrinsic number of single legs in the composite flight k. For the toy model solution,
we get

P2 =

1 2 3 2 3 8
0 1 2 0 0 3
0 0 1 0 0 2
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 0 1

(19)

and

L̃ =

0 3 5 2 3 8
0 3 5 0 0 5
0 0 2 0 0 2
0 0 0 2 3 3
0 0 0 0 1 1
0 0 0 0 0 0

, (20)

based on the intrinsic leg counts 3, 2, 2, and 1, for the flights 1, 2, 3, and 4, respectively. The path
via 1-2 has 5 legs, and the one via 3-4 has 3 legs, making a total leg count of 8 for all paths from a
to b, as can be read off from the upper right corner (L̃ab = 8).

The average leg count of the connecting paths is then given by

Lij ≡
L̃ij

Pij
, (21)

and for the average duration (flight + waiting-time) of the paths from i to j one has

Tij ≡

∑

k Pikt
(f)
k Pkj +

∑

kl Pikt
(w)
kl sklPlj

Pij
, (22)

where t
(f)
i denotes the duration of the composite flight i, including the embedded waiting-time.

The averaging is accomplished by the division with Pij . In principle, this could lead to undefined
expressions in cases with Pij = 0. This will be no problem, since we will only be interested in cases
either with i = a, probing the path from a to j, i.e. the part up to j of the rotation containing j,
or j = b, probing the path from i to b, i.e. the part after and including i of the rotation to which i
belongs.

Furthermore, any improper loops (such as obtained e.g. if two flights are mapped onto each other)
will make P singular – for a proper set of rotations, detP = 1.

11

6.2 Mean Field Dynamics

In the MF formalism the basic dynamical variables are v rather than s; correspondingly, we will
use a probabilistic propagator P, defined as the matrix inverse of 1 − v, in analogy with eq. (15),
but with s replaced by v. The clearcut structure seen in the toy-model matrices in eqs. (14,16),
will only emerge as T → 0.

Rather than finding a suitable energy function in terms of the matrices v and P, we have chosen
a more pragmatic approach by directly writing down the local fields uij , bypassing eq. (10). The
corresponding mean fields vij are obtained from the MF equations (eq. (11)); they have an obvious
interpretation of probabilities (for flight i to be followed by j).

In the MF equations (eq. (11)) vij will be updated for one flight i at a time, by first zeroing the
i:th row of v (and updating P correspondingly), and then computing the relevant local fields uij

entering eq. (11) as

uij = −
c1
T
t
(w)
ij −

c2
T

∑

k

vkj −
c3
T

log

(

1

1− Pji

)

−
c4
T
Ψ
(

T
(ij)
rot − Tmax

rot

)

−
c5
T
Ψ
(

L
(ij)
rot − Lmax

rot

)

, (23)

where j is restricted to be a possible continuation flight to i. It is difficult, and not necessary from
the viewpoint of algorithmic performance, to find energy functions corresponding to the fourth and
fifth terms in eq. (23). In contrast, the first and second terms are straightforward in this respect,
and the third term originates from an energy term ∼ log detP. The five different terms in eq. (23)
serve the following purposes:

1. Cost term: The local waiting-time t
(w)
ij between flight i and j.

2. Penalizes solutions where two flights point to the same next flight.

3. Suppresses improper loops. Pji → 1 if a path j → i exists, i.e. if a loop is formed if i connects
with j. The penalty approaches ∞ when Pji → 1.

4. Prohibits violation of the bound Tmax
rot on total rotation time, where T

(ij)
rot stands for the

duration of the resulting rotation if i where to be mapped onto j.

5. Prohibits violation of the bound Lmax
rot on total number of legs, where L

(ij)
rot is the resulting

number of legs in the rotation if i where to be mapped onto j.

In eq. (23), the rotation time T
(ij)
rot and the leg count L

(ij)
rot are given as

T
(ij)
rot = Tai + t

(w)
ij + Tjb, (24)

L
(ij)
rot = Lai + Ljb, (25)

in terms of eqs. (22,21).

The penalty function Ψ, used to enforce the inequality constraints [7], is defined by Ψ(x) = xΘ(x)
where Θ is the Heaviside step function. It turns out, as will be discussed below, that the performance
of the algorithm is fairly insensitive to the choice of the relative strengths ci occurring in eq. (23).

12

After an initial computation of the propagator P from scratch, it is subsequently updated according
to the Sherman-Morrison algorithm for incremental matrix inversion [19]. An update of the i:th
row of v, vij → vij + δj , generates precisely the following change in the propagator P:

Pkl → Pkl +
Pki zl
1− zi

, (26)

with
zl =

∑

j

δj Pjl. (27)

Inverting the matrix from scratch would take O(N3) operations, while the (exact) scheme devised
above only requires O(N2) per row.

In principle, a proper value for an initial temperature can be estimated from linearizing the dynamics
of the MF equations. The neurons are initialized close to the trivial fixed point. A common annealing
schedule for the updating, based on iterating the MF eqs. (11,26), is to decrease T by a fixed factor
per iteration.

As the temperature goes to zero, a solution crystallizes in a winner-takes-all dynamics: for each
flight i, the largest uij determines the continuation flight j to be chosen.

Implementation details of the algorithm can be found in Appendix B.

6.2.1 Parallelizing the Algorithm

One obstacle, if one wants to parallelize the algorithm, is that the scheme above, eqs. (26,27), for
updating P is non-local, in that all matrix elements of P are updated due to a change in a single
neuron vi. An alternative method using only local information on v and P is to update row i of P
according to

Pim → δim +
∑

j

vijPjm, (28)

in connection with updating the corresponding row of v. If each flight keeps track of its own row of
P, all information needed can be obtained from the possible continuation flights j (“neighbours”)
to flight i. This scheme gives convergence towards the exact inverse; a similar method has been
successfully used in the context of communication routing [12].

The handling of the global time and leg constraints of a rotation could be tackled in a similar
manner, with each flight keeping track of the time and number of legs used both from a to itself
and from itself to b, where a and b are the dummy flights starting and terminating a rotation. The

information needed to calculate T
(ij)
rot and L

(ij)
rot then is local to i and its “neighbours” j.

7 Test Problems

In choosing test problems our aim has been to maintain a reasonable degree of realism, while
avoiding unnecessary complication and at the same time not limiting ourselves to a few real-world

13

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700

a

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

b

Figure 6: Flight time distributions in minutes for (a) LD and (b) SMD template problems.

problems, where one can always tune parameters and procedures to get a good performance. In
order to accomplish this we have analyzed two typical real-world template problems obtained from
a major airline: one consisting of long distance (LD), the other of short/medium distance (SMD)
flights. As can be seen from fig. 6, LD flight time distributions are centered around long times,
with a small hump for shorter times representing local continuations of long flights. The SMD flight
times have a more compact distribution.

For each template we have made a distinct problem generator producing random problems resem-
bling the template. For algorithm details see Appendix C.

Due to the excessive time consumption of the available exact methods, the performance of the
Potts approach cannot be tested against these – except for in this context quite small problems,
for which the Potts solution quality matches that of an exact algorithm. For artificial problems of
more realistic size we circumvent this obstacle in the following way: since problems are generated
by producing a legal set of rotations, we add in the generator a final check that the implied solution
yields T unr

wait; if not, a new problem is generated. Theoretically, this might introduce a bias in the
problem ensemble; empirically, however, no problems have had to be redone. Also the two template
problems turn out to be solvable at T unr

wait.

Each problem then is reduced as described above (using a negligible amount of computer time), and
the kernel problem is stored as a list of flights, with all traces of the generating rotations removed.

8 Results

We have tested the performance of the Potts MF approach for both LD and SMD kernel problems
of varying sizes.

The values used for the coefficients ci in eq. (23) are displayed in table 1. One should stress that
these parameter settings have been used for the entire range of problem sizes probed. For the LD

14

c1 c2 c3 c4 c5
period−1 1 1 〈T rot〉−1 〈Lrot〉−1

Table 1: The coefficients used in eq. (23). 〈T rot〉 is the average duration per rotation (based on
T unr
wait), and 〈Lrot〉 the average leg count, both of which can be computed beforehand.

problems the bounds on a rotation are chosen as

Tmax
rot = 10000, (29)

Lmax
rot = 15, (30)

and to

Tmax
rot = 6000, (31)

Lmax
rot = 25, (32)

for the SMD problems.

A typical evolution of the individual neuron components vij is shown in fig. 7. In fig. 8 the evolution
of the number of legs of all the rotations (defined by Lib where i is a departure flight from HB) for
two different values of the bound Lmax

rot .

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Figure 7: Evolution of neuron components vij as the temperature is lowered for the template LD
problem.

When evaluating a solution obtained with the Potts approach, a check is done as to whether it is
legal (if not, a simple post-processor tries to restores legality – this is only occasionally needed),

15

0 5 10 15
0

2

4

6

8

10

12

14

16

Iterations
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Iterations

Figure 8: Evolution of Lib for all departure flights from the home base, i, for the template LD
problem. The dotted lines denote Lmax

rot .

Nf Na < Neff
f > < Neff

a > < R > < CPU time >

75 5 23 8 0.0 0.0 sec
100 5 44 13 0.0 0.2 sec
150 10 46 14 0.0 0.1 sec
200 10 84 24 0.0 0.7 sec
225 15 74 22 0.0 0.4 sec
300 15 132 38 0.0 1.5 sec

Table 2: Average performance of the Potts algorithm for LD problems. The superscript “eff” refers
to the kernel problem, subscripts “f” and “a” refer to respectively flight and airport. The averages
are taken with 10 different problems for each Nf . R is the excess waiting-time, and the CPU time
refers to DEC Alpha 2000.

then the solution quality is probed by measuring the excess waiting-time R,

R =
Twait
Potts − T unr

wait

period
, (33)

which is a non-negative integer for a legal solution.

For a given problem size, as given by the desired number of airports Na and flights Nf , a set of
10 distinct problems is generated. Each problem is subsequently reduced, and the Potts algorithm
is applied to the resulting kernel problem. The solutions are evaluated, and the average R for the
set is computed. The results for a set of problem sizes ranging from Nf ≃ 75 to 1000 are shown in
tables 2 and 3; for the two template problems see table 4.

The results are quite impressive – the Potts algorithm has solved all problems, and with a very
modest CPU time consumption, of which the major part is used in updating the P matrix, using
the fast method of eqs. (26, 27). The iteration time scales like (Neff

f)3 ∝ N3
f with a small prefactor.

This should be multiplied by the number of iterations needed – empirically between 20 and 40,

16

Nf Na < Neff
f > < Neff

a > < R > < CPU time >

600 40 280 64 0.0 19 sec
675 45 327 72 0.0 35 sec
700 35 370 83 0.0 56 sec
750 50 414 87 0.0 90 sec
800 40 441 91 0.0 164 sec
900 45 535 101 0.0 390 sec
1000 50 614 109 0.0 656 sec

Table 3: Average performance of the Potts algorithm for SMD problems. The averages are taken
with 10 different problems for each size. Same notation as in table 2.

Nf Na < Neff
f > < Neff

a > < R > < CPU time > type

189 15 71 24 0.0 0.6 sec LD
948 64 383 98 0.0 184 sec SMD

Table 4: Average performance of the Potts algorithm for 10 runs on the two template problems.
Same notation as in table 2.

independently of problem size4.

9 Summary

We have developed a mean field Potts approach for finding good solutions to airline crew scheduling
problems resembling real-world situations.

A key feature is the handling of global entities, sensitive to the dynamically changing “fuzzy”
topology, by means of a propagator formalism. This is a novel ingredient in ANN-based approaches
to resource allocation problems. Another important ingredient is the problem size reduction achieved
by airport fragmentation and flight clustering, narrowing down the solution space by removing
much of the sub-optimal part. This is done by exploiting the local properties of the corresponding
unrestricted problems [1].

High quality solutions are consistently found throughout a range of problem sizes without having
to fine-tune the parameters, with a time consumption scaling as the cube of the problem size. The
performance of the Potts algorithm is probed by comparing to the unrestricted optimal solutions.

At first sight, the Potts algorithm appears difficult to implement in a parallel way with its global
quantities. A concurrent implementations can be facilitated, however, by localizing all information.

The basic approach presented here is easy to adapt to other applications, in particular in commu-
nication routing [12].

4The minor apparent deviation from the expected scaling in tables 2, 3 and 4 are due to an anomalous scaling of
the Digital DXML library routines employed; the number of elementary operations does scale like N

3

f
.

17

Acknowledgements:

We thank Richard Blankenbecler for valuable suggestions on the manuscript. This work was in part
supported by the Swedish Natural Science Research Council and the Swedish Board for Industrial
and Technical Development.

18

Appendix A. A Toy Example

In this Appendix we define and analyze a small toy example with five airports, that is used through-
out this paper to illustrate the various steps. When exploring the performance of the algorithm,
much larger problems are of course involved (see Section 7).

The toy problem is specified in table A1, where a period of 10080 is assumed. An illustration is

Flight Dep. airport Arr. airport Dep. time Arr. time
1 HB B 0 500
2 B C 1000 1300
3 C D 1500 1850
4 D E 4300 4870
5 E HB 5100 5500
6 HB B 1500 2000
7 B D 2200 2800
8 D HB 3500 4100
9 HB B 6000 6500
10 B D 7000 7500
11 D HB 8000 8250

Table A1: Toy problem specification.

shown in fig. 1.

Fragmentation and clustering with flight duration times and the number of legs added together
gives the structures shown in fig. 3b and table A2. The corresponding kernel problem is shown in
fig. 4 with the effective flights relabeled according to table A2. The total flight-time is 5070, and

Comp. flight Leg-count Legs Dep. airport Arr. airport Dep. time Arr. time
1 3 1-2-3 HB D1 0 1850
2 2 4-5 D1 HB 4300 5500
3 2 6-7 HB D1 1500 2800
4 1 8 D1 HB 3500 4100
5 3 9-10-11 HB HB 6000 8250

Table A2: Toy model description after fragmentation and clustering. The first column gives the
composite flight label.

without restrictions, there are two solutions with minimum waiting-time, 5280. One consists in the
rotations 1-2, 3-4, and 5 in terms of composite flights, i.e. 1-2-3-4-5, 6-7-8, and 9-10-11 in terms of
the original flights. The corresponding rotation times are 5500, 2600 and 2250, respectively. The
other has the rotations 1-4, 2-3, and 5 in terms of composite flights, i.e. 1-2-3-8, 6-7-4-5, and 9-10-11
in terms of proper flights, with the respective rotation times 4100, 4000, and 2250.

19

Appendix B. The Potts Algorithm

Initialization

The initial temperature T0 is assigned a tentative value of 1.0. If the averaged squared change of
the neurons,

(∆v)2 =
1

Ñf

∑

ij

(∆vij)
2 =

1

Ñf

∑

ij

(vij(t+ 1)− vij(t))
2, (B1)

is larger than 0.2 after the first iteration, then the system is reinitialized with T0 → 2T0. If, on the
other hand, it is smaller than 0.01 the system is reinitialized with T0 → T0/2. In eq. (B1) Ñf is the
number of flights minus those departing from HB,

Each neuron vi is initialized by assigning random values to its components vij in the interval 0.8/K
to 1.2/K, where K is the number of components of the Potts neuron. The neuron is then normalized
by dividing each component by the component sum.

Subsequently, Pij , Tij and Lij are initialized consistently with the neuron values.

The following iteration is repeated, until one of the termination criteria (see below) is fulfilled:

Iteration

• For each airport (in random order) do:

1. For each arrival flight i, do:

(a) Update vi (eqs. (11,23))

(b) Update P (eq. (26)

2. Correct the neuron matrix by doing the following Nnorm times:

(a) Normalize the columns of v, corresponding to local departures.

(b) Normalize the rows of v, corresponding to local arrivals.

• Decrease the temperature: T = kT .

We have consistently used k = 0.9 and Nnorm = 2.

Termination criteria

The updating process is terminated if

1/Ñf

∑

ij

v2ij > 0.99 and max
ij

(∆vij)
2 < 0.01 and min

ij
v2ij > 0.8, (B2)

or

1/Ñf

∑

ij

v2ij > 0.8 and (∆v)2 > 0.000001 and max
ij

(∆vij)
2 < 0.01 and min

ij
v2ij > 0.8, (B3)

or if the number of iterations exceeds 100.

20

Postprocessing

First, the final state of each neuron vi is analyzed with respect to its implied choice, defined by its
largest component. A check is done as to whether a proper rotation structure results. If this is not
the case (which never happened for the problems studied here), one may e.g. rerun the algorithm
with modified parameters.

Then, each rotation is checked for legality: If the rotation time or leg count exceeds the respective
bound, a simple algorithm is employed to attempt to restore legality, by swapping flights between
rotations. For the few cases (∼ 5 %) where such a correction was needed for the problems studied
here, this procedure always sufficed.

21

Appendix C. The Problem Generator

We have made two distinct problem generators, tuned to generate problems statistically resembling
the LD or SMD templates. In both generators, a random problem with a specified number of
airports and flights is generated as follows.

First, the flight-times between airports are chosen randomly from a distribution, based on the
relevant template problem. Then, a flight schedule is built up in the form of legal rotations starting
and ending at the home-base. The waiting-times between consecutively flights are chosen in a
random fashion in the neighbourhood of T unr

wait/Nf for the corresponding template problem.

For a specified number of airports Na and flights Nf , the key steps take the following form.

Generator steps

• The airports are assigned distinct probabilities, designed to match the traffic distribution
for the airports in the relevant template problem.

• For each pair of airports, a distance (flight-time) is drawn from a predefined distribution.

• While the number of generated flights is less than Nf :
Start a new rotation from HB, then for each leg do:

1. Choose its destination:

– If the number of legs is less than L0, draw the destination from a predefined
distribution, where HB is chosen with a probability PHB.

a b

– Else force the destination to be HB, and begin a new rotation.

2. Pick the waiting-time from the predefined distribution.

3. Set the flight time according to the distance table, with some random deviation.

• If any rotation time exceeds the limit, or if the solution does not end up at the unrestricted
minimal waiting-time, generate a new problem.

aCare is taken that the very last leg goes to HB.
bIf more than half of the flights are generated and some airports still are not visited, then if the destination

is not HB, change to an unvisited airport. Only one airport per rotation is allowed to be chosen in this way.

The probability PHB for choosing HB as a destination is for both problem types chosen to 0.25,
except for the first leg, giving on the average 5 legs per rotation. For LD-problems, the maximum
legcount L0 is set to 15, while for the SMD problems it is set to 25.

22

References

[1] M. Lagerholm, C. Peterson and B. Söderberg, “Statistical Properties of Unrestricted Crew
Scheduling Problems”, LU TP 97-11 (submitted to Operations Research).

[2] J.J. Hopfield and D.W. Tank, “Neural Computation of Decisions in Optimization Problems”,
Biological Cybernetics 52, 141 (1985).

[3] C. Peterson and B. Söderberg, “A New Method for Mapping Optimization Problems onto
Neural Networks”, International Journal of Neural Systems 1, 3 (1989).

[4] R. Durbin and D. Willshaw, “An Analog Approach to the Traveling Salesman Problem using
an Elastic Net Method”. Nature 326, 689 (1987).

[5] C. Peterson, “Parallel Distributed Approaches to Combinatorial Optimization Problems –
Benchmark Studies on TSP”, Neural Computation 2,261 (1990).

[6] C. Peterson and B. Söderberg, “Artificial Neural Networks and Combinatorial Optimization
Problems”, in Local Search in Combinatorial Optimization,
eds. E.H.L. Aarts and J.K. Lenstra. New York 1997: John Wiley & Sons.

[7] M. Ohlsson, C. Peterson and B. Söderberg, “Neural Networks for Optimization Problems with
Inequality Constraints - the Knapsack Problem”, Neural Computation 5, 331 (1993).

[8] M. Ohlsson and H.Pi, “A study of the Mean Field Approach to Knapsack Problems”, Neural
Networks 10, 263 (1997).

[9] L. Gislén, B. Söderberg and C. Peterson, “Teachers and Classes with Neural Networks”, Inter-
national Journal of Neural Systems 1, 167 (1989).

[10] L. Gislén, B. Söderberg and C. Peterson, “Complex Scheduling with Potts Neural Networks”,
Neural Computation 4, 805 (1992).

[11] M. Lagerholm, C. Peterson and B. Söderberg, “Airline Crew Scheduling with Potts Neurons”,
LU TP 96-6 (to appear in Neural Computation).

[12] J. Häkkinen, M. Lagerholm, C. Peterson and B. Söderberg, “A Potts Neuron Approach to
Communication Routing” LU TP 97-2 (submitted to Neural Computation).

[13] K.L. Hoffman and M. Padberg, “Solving Airline Crew Scheduling Problems by Branch-and-
Cut”, Management Science 39, 657 (1993).

[14] M. Ohlsson, C. Peterson and B. Söderberg, “A Mean Field Annealing Algorithm for the Set
Covering Problem”, in preparation.

[15] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Annealing”, Science
220, 671 (1983).

[16] N. Karmakar, “A New Polynomial-time Algorithm for Linear Programming”, Combinatorica

4, 373 (1984).

[17] A.L. Yuille, “Statistical Physics Algorithms that Converge”, Neural Computation 6, 341 (1994).

[18] L. Faybusovich, “Interior Point Methods and Entropy”, Proc. of the IEEE Conference on

Decision and Control, pp 2094.

23

[19] See e.g. W.P. Press, B.P Flannery, S.A. Teukolsky and W.T. Vettering, Numerical Recipes,

The Art of Scientific Computing, Cambridge University Press, Cambridge (1986).

24

