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Abstract

Generalized semi-in®nite optimization problems (GSIP) are considered. The di�erence between GSIP and standard

semi-in®nite problems (SIP) is illustrated by examples. By applying the `Reduction Ansatz', optimality conditions for

GSIP are derived. Numerical methods for solving GSIP are considered in comparison with methods for SIP. From a

theoretical and a practical point of view it is investigated, under which assumptions a GSIP can be transformed into an

SIP. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We are concerned with generalized semi-in®nite optimization problems GSIP of the following form:

GSIP :
min f �x�
subject to x 2 M � fx 2 Rn j g�x; y�P 0; y 2 Y �x�g
with Y �x� � fy 2 Rr j vl�x; y�P 0; l 2 Lg

and L, a ®nite index set. If not stated otherwise, we assume, that the functions f ; g; vl are C2-functions and
that the set valued mapping Y satis®es

Y : Rn ! 2Rr
; Y �x� � C0; for all x 2 Rn with C0 � Rr compact: �1�

For the special case that the set Y � Y �x� does not depend on x, i.e. vl�x; y� � vl�y�; l 2 L, the problem
GSIP is a common semi-in®nite problem and will be abbreviated by SIP. If moreover Y is a ®nite set then
GSIP reduces to a ®nite optimization problem.

For a function f(x) the derivative will be denoted by Df(x) and for a function h�x; y; t� by Dxh; Dyh; Dth
(row vectors) we denote the partial derivatives w.r.t. the variables x, y, t.

For brevity we omit equality constraints in M and Y(x). The paper is organized as follows. In Section 2
we give some examples of GSIP and try to illustrate the di�erence between GSIP and SIP. Optimality
conditions for GSIP are derived in Section 3 by reducing GSIP to a ®nite problem. Section 4 treats nu-
merical methods. We show that the numerical solution of GSIP can be much more di�cult than the
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solution of SIP. This leads to the question, under which conditions a GSIP can be transformed into an SIP.
We answer this question from a theoretical and a practical viewpoint. It is shown that a transformation of
GSIP to SIP is possible if in all points of Y �x� the Mangasarian Fromovitz Constraint Quali®cation
(MFCQ) is satis®ed.

2. Examples

In this section we give some examples of GSIP. Chebyshev approximation problems lead to semi-in®nite
problems (cf. e.g. [4]) but also to GSIP. We give an illustrative example.

Example 1 (Chebyshev approximation and reverse Chebyshev approximation). Let f �y� 2 C2�R2;R� be given
and a space of approximating functions p�x; y�, p 2 C2�Rn � R2;R�, parametrized by x 2 Rn. We want to
approximate f by functions p�x; �� in the max-norm (Chebyshev-norm) on a compact set Y � R2. To
minimize the approximation error �, leads to the problem

min
x;�

�

s:t: g��x; y� :� � f �y�� ÿ p�x; y��6 � for all y 2 Y :
�2�

This is an SIP, since Y does not depend on �x; ��. The so-called reverse Chebyshev problem consists of
®xing the approximation error � and making the region Y as large as possible (see [8] for such problems).
Suppose, the set Y � Y �d� is parametrized by d 2 R2 and v�d� denotes the volume of Y �d� (e.g.
Y �d� � �ÿd1; d1� � �ÿd2; d2�). The reverse Chebyshev problem then leads to the GSIP (� ®xed).

max
d;x

v�d�
s:t: g��x; y� :� � f �y�� ÿ p�x; y��6 � for all y 2 Y �d�:

�3�

Many control problems in robotics lead to semi-in®nite problems (cf. [5]). We give an example.

Example 2 (Maneuverability problem). Let H � H�t� 2 Rm denote the position of the so-called tool center
point of the robot (in robot coordinates). Let _H; �H be the corresponding velocities, accelerations
(derivatives w.r.t. t). The dynamical equation has (often) the form

g�H; _H; �H� :� A�H� �H� F � _H; �H� � K;

with (external) forces K 2 Rm. Here, A�H� is the inertia matrix and F describes the friction, gravity, cen-
trifugal forces, etc. The forces K are bounded by

Kÿ6K 6K�:

For ®xed H; _H, the set of feasible (possible) accelerations is given by

Z�H; _H� � f �H j Kÿ6 g�H; _H; �H�6K�g:
Note that, since g is linear in �H, for ®xed �H; _H�, the set Z�H; _H� is convex (intersection of half-spaces).

Let an `operating region' Q be given, e.g.

Q � f�H; _H� 2 R2m j �Hÿ; _H
ÿ�6 �H; _H�6 �H�; _H

��g
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with bounds �Hÿ; _H
ÿ� and �H�; _H

��. Then, the set of feasible accelerations �H (accelerations which can be
realized in every point �H; _H� 2 Q) becomes

Z0 �
\

�H; _H�2Q

Z�H; _H� � f �H j Kÿ6 g�H; _H; �H�6K� for all �H; _H� 2 Qg:

The set Z0 is convex (as an intersection of the convex sets Z). For the steering of the robot one has to
check whether a desired acceleration �H is possible, i.e. whether �H 2 Z0. Often, this check takes to much time
due to the complicated description of Z0. Then, one is interested in a simple body Y (e.g. a ball) as large as
possible, which is contained in Z0. Instead of the test �H 2 Z0 one performs the (quicker) check �H 2 Y .
Suppose the body Y �d� depends on the parameter d 2 Rq and v�d� is the volume of Y �d�. Then, to maximize
the volume of the body gives the following GSIP called the maneuverability problem:

max
d

v�d�
s:t: Kÿ6 g�H; _H; �H�6K� for all �H; _H� 2 Q; �H 2 Y �d�:

�4�

Both examples are problems of the following type. The geometrical interpretation is:

Given a family of sets S�x� � Rp depending on x 2 Rn, ®nd a `body' Y of a given form and a value x such
that Y is contained in S�x� and Y is as large as possible.

The mathematical formulation is as follows. Suppose S�x� is de®ned by

S�x� � fy 2 Rp j g�x; y; t�P 0 for all t 2 Qg;
where Q is a given compact set in Rs and g 2 C2�Rn � Rp � Rs;R�. Let the body Y �d� � Rp be parametrized
by d 2 Rq (by ®nitely many inequalities). Let v�d� be a measure of the size of Y �d� (e.g. the volume). To
maximize v�d� for Y �d� � S�x� becomes:

max
d;x

v�d�
s:t: g�x; y; t�P 0 for all y 2 Y �d�; t 2 Q:

�5�

This problem `contains' the maneuverability problem (4) (choose n � 0, i.e. no variable x,
t � �H; _H�; y � �H) and the reverse Chebyshev problem (no t-variable).

We give some illustrative theoretical examples to point out the di�erence between GSIP and SIP.
The feasible set M � fx 2 Rn j g�x; y�P 0; y 2 Y g of SIP is always closed. This need not be the case for

GSIP. Consider the problem with x; y 2 R,

min
x

x2

s:t: x6 y for all y 2 Y �x� � fy j v�x; y� � �y � 1�2 � x26 0g:
Then

Y �x� � ; for x 6� 0;
ÿ1 for x � 0;

�
and M � R n f0g:

Note that since f �x� � x2 is minimal at x � 0, this GSIP does not have a solution. This behavior, that M is
not closed, can only occur if the MFCQ (cf. Section 5) is not satis®ed for some point y 2 Y �x� (the mapping
Y is not lower semi-continuous). In our example, this happens for x � 0; y � ÿ1, where we have v�x; y� � 0
and Dyv�x; y� � 2�y � 1� � 0. See also ([9], Section 2) for this phenomenon.

Another di�erence between SIP and GSIP is, roughly speaking, that for GSIP the feasible set may have
re-entrant corners. For SIP this is excluded in the general (generic) case (see [10] for a discussion of this
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phenomenon called disjunctive problems). We give an example of a GSIP with M having re-entrant corners:
(x 2 R2; y 2 R)

M � fx j g�x; y� :� y ÿ x2 P 0; y 2 Y �x�g; Y �x� � fy j y P x1; y P ÿ x1g: �6�
The feasible set becomes

M � fx 2 R2 j jx1jP x2g:
Here at the re-entrant corner point x � �0; 0� the MFCQ is ful®lled for the (active) point y � 0 of Y �x�.

Such a re-entrant corner is excluded, if Linear Independency Constraint Quali®cation (LICQ) is satis®ed
on Y �x�. (This follows from Theorem 3a below; under LICQ on Y �x� GSIP is equivalent to a `smooth'
SIP).

We ®nally point out that, in contrast to SIP, even if all problem functions of GSIP are linear, the feasible
set need not be convex. The following is well-known for SIP (e.g. [4]):

If for any ®xed y, the function ÿg�x; y� is convex in x, then the feasible set M of SIP is convex.
This follows directly from the fact: Given x1; x2 2 M ; a 2 �0; 1� then

g�ax1 � �1ÿ a�x2; y�P ag�x1; y� � �1ÿ a�g�x2; y�P 0 for all y 2 Y ;

i.e. ax1 � �1ÿ a�x2 2 M .
For GSIP the situation is more complicated. Consider for example the feasible set M (of a GSIP) in

Eq. (6). M is not convex although all functions involved are linear.

3. Reduction Ansatz and optimality conditions

In this section we brie¯y review the `Reduction Ansatz' to obtain optimality conditions for GSIP. For
x 2 M we de®ne the set of active points

Y0�x� � fy 2 Y �x� j g�x; y� � 0g:
Obviously, for feasible x 2 M , any point y 2 Y0�x� is a (global) minimum of the following parametric

optimization problem (the so-called lower level problem):

Q�x�:
min

y
g�x; y�

s:t: y 2 Y �x�:
�7�

Given x 2 M , for y 2 Y �x� we de®ne the active index set L0�x; y� w.r.t. Q�x�,
L0�x; y� � fl 2 L j vl�x; y� � 0g

and the Lagrange function with c 2 RjL0�x;y�j,

Ly�x; y; c� � g�x; y� ÿ
X

l2L0�x;y�
clvl�x; y�: �8�

By assumption (1), the sets Y �x� are compact. Thus, for any x, a global minimizer of Q�x� exists. We will
assume, that the following conditions are satis®ed for the lower level problem.

Ared: We have for any y 2 Y0�x�:
1. LICQ: Dyvl�x; y�; l 2 L0�x; y� are linearly independent.
2. Kuhn±Tucker condition: There exists a multiplier c 2 RjL0�x;y�j such that

304 G. Still / European Journal of Operational Research 119 (1999) 301±313



DyL
y�x; y; c� � 0

and cl > 0; l 2 L0�x; y� (strict complementary slackness).
3. The second order condition (SOC): With c in 2.,

gTD2
yL

y�x; y; c�g > 0 for all g 2 T �x; y� n f0g;
where

T �x; y� � fg 2 Rr j Dyvl�x; y�g � 0; l 2 L0�x; y�g:
We obtain the following stability result.

Theorem 1. Suppose, for x 2 M , that the assumption Ared is satis®ed. Then, the set Y0�x� (possibly empty)
contains only ®nitely many points,

Y0�x� � fy1; . . . ; ypg
and for any yj 2 Y0�x� (i.e. yj is a minimizer of Q�x�), the following holds:

There exist a neighborhood U of x and C1-functions yj: U ! Rr; yj�x� � yj; cj
l: U ! R;

cj
l�x� � cj

l; l 2 L0�x; y�; j � 1; . . . ; p, such that for any x 2 U the value yj�x� is a local minimizer of Q�x�
(locally unique near yj) with corresponding multipliers cj

l�x�. The value functions gj�x� � g�x; yj�x�� are
C2-functions satisfying for x 2 U with the Lagrange functions Lj :�Lyj

in Eq. (8) the relations,

Dgj�x� � DxL
j�x; yj�x�; cj�x��;

D2gj�x� � D2
xL

j�x; yj�x�; cj�x�� ÿ DTyj�x�D2
yL

j�x; yj�x�; cj�x��Dyj�x�
ÿ

X
l2L0�x;yj�

DTcj
l�x�Dxvl�x; yj�x�� � DT

x vl�x; yj�x��Dcj
l�x�:

Proof. The proof is done by applying the implicit function theorem to the following Karush±Kuhn±Tucker
equations for Q�x�, near �x; yj; cj�, with Lagrange functions Lj �Lyj

(cf. Eq. (8)):

F �x; y; c� :� DyL
j�x; y; c� � 0;

vl�x; y� � 0; l 2 L0�x; yj�:
Under assumption Ared the Jacobian D�y;c�F �x; yj; cj� is regular and the formula for Dgj�x�; D2gj�x� can

be obtained by implicitly di�erentiating the equation F �x; yj�x�; cj�x�� � 0. For more details we refer to
[7]. �

Let the assumptions of Theorem 1 hold. Then, in a neighborhood U of x the feasible set M of GSIP can
be described by ®nitely many constraints: For any x 2 U we have

x 2 M () gj�x� :� g�x; yj�x��P 0; j � 1; . . . ; p: �9�
Consequently, x is a local minimizer of GSIP if and only if x is a solution of the following reduced

problem:

GSIPred�x�:
min

x
f �x�

s:t: gj�x� :� g�x; yj�x��P 0; j � 1; . . . ; p:

�10�
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GSIPred�x� is a common ®nite optimization problem. Thus, the standard optimality conditions of ®nite
optimization can be applied to obtain optimality conditions for GSIP. To that end we de®ne the cone

C�x� � fn 2 Rn j Df �x�n6 0; Dgj�x�nP 0; j � 1; . . . ; pg
and the Lagrange function (of the upper level)

~L�x; l� � l0f �x� ÿ
Xp

j�1

ljgj�x�:

The following Theorem gives necessary and su�cient optimality conditions of F. John type for GSIP. For
more details, necessary conditions and su�cient conditions under weaker assumptions, see [7] but also [9].

Theorem 2. Suppose, for x 2 M , that the assumption Ared is satis®ed such that by Theorem 1, in a neighborhood
U of x, GSIP can be locally reduced to GSIPred�x� according to Eq. (10). Then the following holds.

(a) Suppose, x is a local minimizer of GSIP. Then, to any n 2 C�x� there exists a multiplier lP 0 such that
(with Dx

~L; D2
x

~L given below)

Dx
~L�x; l� � 0 and nTD2

x
~L�x; l�nP 0:

(b) Suppose, for any n 2 C�x� n f0g, that there exists a multiplier lP 0 such that

Dx
~L�x; l� � 0 and nTD2

x
~L�x; l�n > 0:

Then x is a (strict) local minimizer of GSIP.
The expressions for Dx

~L�x; l� and D2
x

~L�x; l� read:

Dx
~L�x; l� � l0Df �x� ÿ

Xp

j�1

ljDxg�x; yj� �
Xp

j�1

lj

X
l2L0�x;yj�

cj
lDxvl�x; yj�

0@ 1A;
D2

x
~L�x; l� � l0D2f �x� ÿ

Xp

j�1

ljD
2
xg�x; yj� �

Xp

j�1

ljD
Tyj�x�D2

yL
j�x; yj; cj�Dyj�x�

�
Xp

j�1

lj

X
l2L0�x;yj�

cj
lD

2
xvl�x; yj�ÿ � DTcj

l�x�Dxvl�x; yj� � DT
x vl�x; yj�Dcj

l�x�
�

(the ®rst and second terms in Dx
~L�x; l� and D2

x
~L�x; l� are present in ®nite optimization, the third term in

D2
x

~L�x; l� is the additional term for SIP and the third term in Dx
~L�x; l� and the fourth term in D2

x
~L�x; l� are

typical for GSIP, containing the dependence of vl (and Y) on x.)

Proof. The formulas for Dx
~L and D2

x
~L follow immediately by using the formulas for Dgj; D2gj in Theorem

1. �

4. Numerical methods

In this section we brie¯y discuss the question of how to compute a solution of GSIP numerically. For a
review of methods for SIP we refer to [6,2] (see also [1]). Below, it will be shown that the numerical solution
of GSIP might be much more di�cult than the solution of SIP.
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Note that with the lower level problem Q�x� (cf. Eq. (7)) the GSIP can equivalently be stated as:

GSIP: min f �x� s:t: g�x; y�x��P 0; where y�x� is a global solution of Q�x�:
In this form, GSIP has the form of a so-called bi-level problem.

We ®rstly turn to a method based on local reduction as described in Theorems 1 and 2. This method can
directly be generalized from SIP to GSIP. We give a conceptual description (see ([6], Section 7.3)).

Algorithm

Step k: Given xk (not necessarily feasible)
1. Determine the local minima y1; . . . ; ypk of Q�xk�.
2. Apply Nk steps (of a ®nite programming algorithm) to the locally reduced problem (cf. Eq. (10)) with

yj�x� the local solutions of Q�x� (cf. Eq. (7)),

GSIPred�xk�:
min

x
f �x�

s:t: gj�x� :� g�x; yj�x��P 0 j � 1; . . . ; pk;

leading to iterates xk;i; i � 1; . . . ;Nk.
3. Put xk�1 � xk;Nk and k � k � 1.

The iteration in sub-step 2 can be done by performing `sequential quadratic programming Newton' steps
applied to the Karush±Kuhn±Tucker system of GSIPred�xk�. For a discussion of such a method combining
global convergence and locally super-linear convergence we refer to [6].

Unfortunately, there arise serious di�culties when trying to generalize the so-called exchange or dis-
cretization methods from SIP to GSIP. A detailed description of these methods for SIP can be found in ([6],
Sections 7.1 and 7.2). For brevity we will only point out the di�culty. Both methods make use of a dis-
cretization of the set Y.

For SIP, this results in a ®nite problem

SIPd :

min
x

f �x�
s:t: g�x; y�P 0 for all y 2 Yd ;

where Yd � Y is a ®nite discretization of the compact set Y. For GSIP we would have to choose ®nite
discretizations Yd�x� of Y �x� and to solve

GSIPd :

min
x

f �x�
s:t: x 2 Md :� fx 2 Rn j g�x; y�P 0 for all y 2 Yd�x�g:

This problem represents a (®nite) optimization problem of which the number (and quality) of the con-
straints may change with x. There are no standard procedures for solving such problems GSIPd .

Problems GSIPd may have all undesirable properties of a GSIP. Even if for the corresponding GSIP the
feasible set M is closed, this need not to be the case for the set Md of GSIPd . Consider an illustrative ex-
ample of a set Md :

Md � fx 2 R j g�x; y� � xÿ y P 0; y 2 Yd�x�g; Yd�x� � fÿ1; 1g if x P 0;
fÿ1g if x < 0:

�
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We ®nd

Md � �ÿ1; 0� [ �1;1�:
In view of these di�culties it is important to investigate which type of GSIP can be transformed to a

problem of simpler structure. In [12] a class of GSIP is investigated which can be solved approximately by
solving a ®nite number of convex problems.

5. Transformation of GSIP into SIP

In this section we ask under which conditions a GSIP can be transformed into an SIP. In [14] it has been
pointed out that this transformation can be done (at least theoretically) under appropriate compactness
assumptions and the assumption that LICQ is satis®ed on Y �x�. On the other hand, in [3] it has been shown
that if the MFCQ is satis®ed on Y �x�, for x near x, the feasible sets Y �x� of the lower level problem are
homeomorphic to Y �x�. Thus, a transformation of GSIP into SIP should be possible under MFCQ. Before
stating the results we introduce two assumptions.

AMFCQ: Suppose, g; vl 2 C1�Rn � Rr;R�; l 2 L. The following is valid with a compact set K � Rn, such
that M \ K 6� ;.
1. The mapping Y satis®es condition (1).
2. For all x; y; x 2 K; y 2 Y �x� the MFCQ holds:

there exists n �� n�x; y�� such that Dyvl�x; y�n > 0; l 2 L0�x; y�: �11�
ALICQ: The following is valid with a compact set K � Rn, such that the condition AMFCQ holds with

MFCQ (cf. Eq. (11)) replaced by the stronger LICQ:

the vectors Dyvl�x; y�; l 2 L0�x; y� are linearly independent:

Let in the sequel Sr denote the unit sphere, Sr � fb 2 Rr j jjbjj � 1g, and Bj�y�; j > 0, the ball
Bj�y� � fy 2 Rr j jjy ÿ yjj < jg.

Theorem 3 (Transformation of GSIP into SIP).
(a) Let be given GSIP such that ALICQ is satis®ed. Then, there are ®nitely many C1-functions Gj�x; z� and
sets Zj � �aj

1; b
j
1� � � � � � �aj

r; b
j
r� in Rr, j � 1; . . . ; P , such that

x 2 M \ K () Gj�x; z�P 0 for all z 2 Zj; j � 1; . . . ; P :

(b) Let be given GSIP such that AMFCQ is satis®ed. Then, there are ®nitely many Lipschitz continuous func-
tions gj�x; b; s�, j � 1; . . . ;N , such that

x 2 M \ K () gj�x; b; s�P 0 for all b 2 Sr; s 2 �0; 1�; j � 1; . . . ;N :

Proof.

(a) A detailed proof can be found in [14]. The proof is based on so-called standard-di�eomorphism which
by using coordinate-transformations, locally near a given point �x; y�; x 2 K; x 2 Y �x� transforms the set
Y �x� to canonical form.
(b) Let be given xj 2 K; yj 2 Y �xj�. Let n0 be an MFCQ-vector satisfying for �xj; yj� the conditions (11)
and jjn0jj � 1. De®ne the point

yj
� � yj � qn0 �12�

308 G. Still / European Journal of Operational Research 119 (1999) 301±313



with q > 0 (which will be chosen later). Taylor expansion of vl�xj; yj � qn0� around �xj; yj� shows that for
small q > 0 we have yj

� 2 int Y �yj�. For ®xed l 2 L0�xj; yj� we de®ne

nl � Dyvl�xj; yj�
jjDyvl�xj; yj�jj :

The MFCQ implies ÿnT
0 nl < 0. Now, consider a vector b 2 Sr such that b

T
nl < 0. By choosing q > 0

small enough (cf. Eq. (12)), there exists a minimum value t � t such that for b � b the ray

yj
� � tb; t > 0;

intersects the solution set of vl�xj; y� � 0 near yj. We apply the implicit function theorem to the equation

F �x; b; t� :� vl�x; yj
� � tb� � 0

(for �x; b; t� near �xj; b; t�). This is possible since by b
T
nl < 0 we have DtF �xj; b; t� � Dyvl�xj; yj

� � tb�b 6� 0
(here we use yj

� � tb � yj and Dyvl�xj; yj�b 6� 0). Consequently, there exist neighborhoods U � V of �xj; b�
and W of t and a C1-function t: U � V ! W such that t�xj; b� � t and the value t�x; b� is the unique solution
in W of

vl�x; yj
� � t�x; b�b� � 0; �x; b� 2 U � V :

Consider, with � > 0 (small) such that ÿnT
0 nl �:ÿ�0 < ÿ�, the compact set

C� � fb 2 Sr j bTnl6 ÿ �g:
By standard arguments using the partition of unity we can glue together ®nitely many of the functions

t�x; b� constructed above, which were de®ned locally near points �xj; b�; b 2 C� such that the following
holds: There exist q > 0 and a neighborhood U l of xj and a C1-function tl: Ul � C� ! R, tl�xj;ÿn0� � q
such that for �x; b� 2 U l � C�,

vl�x; yj
� � stl�x; b�b�P 0�� 0� () s 2 �0; 1� �s � 1�:

Using the formula ÿbTnl � cosu, for the angle u between b and ÿnl, we ®nd for b 2 C� (small q (cf.
Eq. (12)),

tl�xj; b� � tl�xj; nl�
ÿbTnl � O�q�:

By continuity, in view of tl�xj;ÿn0� � q; ÿnT
0 nl � ÿ�0 < 0 we can choose �1; �2; �3 such that �0 > �1 >

�2 > �3 > 0 and such that for all x 2 U l it follows:

tl�x; b� :� 6 2q if bTnl6 ÿ �1;
P 2q if ÿ �26 bTnl6 ÿ �3:

�
By de®ning for x 2 U l

~tl�x; b� :� minf2q; tl�x; b�g for b 2 C�2

2q for b 2 Sr n C�2 ;

�
we obtain a Lipschitz function ~tl

. By construction, for �x; y� in a neighborhood U l � B2q�yj
�� of �xj; yj�, we

have

vl�x; y�P 0() y � yj
� � s~tl�x; b�b with s 2 �0; 1�; b 2 Sr: �13�

This construction can be done for any l 2 L0�xj; yj� (with a common choice of a small q for all l). Then,
we put
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tj�x; b� :� min
l2L0�xj;yj�

~tl�x; b� and Uj :�
\

l2L0�xj;yj�
U l: �14�

As the `minimum' of Lipschitz functions, this function tj is also Lipschitz continuous. Using Eq. (13), for
x in the neighborhood Uj of xj, we have

Y �x� \ B2q�yj
�� � fy � yj

� � stj�x; b�b j s 2 �0; 1�; b 2 Srg:
This implies that for x 2 Uj the following two conditions are equivalent:

g�x; y�P 0 for all x 2 Uj; y 2 Y �x� \ B2q�yj
��;

gj�x; b; s� :� g�x; yj
� � stj�x; b�b�P 0 for all s 2 �0; 1�; b 2 Sr:

�15�

By an appropriate partition of the unity in Rn we can de®ne a Lipschitz function (still denoted by gj)
which is zero for Rn n Uj but coincides with the function gj (cf. Eq. (15)) on a smaller neighborhood Û j

contained in Uj. By the assumption AMFCQ, the set S � f�x; y� j x 2 K; y 2 Y �x�g is compact. Hence, S can
be covered by ®nitely many neighborhoods Û j � B2q�yj

�� of points �xj; yj� 2 S. The corresponding functions
gj�x; b; s�; j � 1; . . . ;N , are Lipschitz continuous on Rn � Sr � �0; 1� and in view of the equivalence of the
constraints in Eq. (15) the statement follows. �

Remark 1. In the proof of Theorem 3(b) we have constructed functions tj�x; b� (cf. Eq. (14)). For any point
�xj; yj� with yj on the boundary of Y �xj� these functions tj�x; b� locally near xj yield a parametrization of the
boundary of Y �x�. Hence, this construction implicitly contains the following result: If Y �x� satis®es
MFCQ, then locally near x the boundaries @Y �x� are (Lipschitz-) homeomorphic to oY �x�. Our proof is
similar but more elementary than the construction used in ([3], Theorem B) to obtain this result (among
others). We also refer to [14], where a related construction has been used to obtain optimality conditions
for GSIP.

Under further convexity assumptions, the local transformation used in the proof of Theorem 3 yields a
global transformation of a GSIP into SIP.

As: Let be given an open set K0 � Rn, (K0 \M 6� ;), such that for all x 2 K0, the sets Y �x� are star-shaped in
the following sense: There exist continuous functions c: K0 ! Rr, r: K0 � Sr ! R, satisfying for all
x 2 K0; b 2 Sr,

c�x� � sr�x; b�b 2 int Y �x�; s 2 �0; 1�;
62 Y �x�; s 2 �1;1�:

�
�16�

Here the interior of Y(x) is denoted by int Y �x�. Note that since Y �x� is closed this implies that c�x� �
r�x; b�b; b 2 Sr is a parametrization of the boundary oY �x�.

The following lemma gives a su�cient condition for As.

Lemma 1. The condition As is ful®lled if the following holds on an open set K0 � Rn (K0 \M 6� ;):
(i) The set-valued map satis®es (1) for all x 2 K0.
(ii) For any x 2 K0 the sets Y �x� satisfy the Slater condition.
(iii) For any x 2 K0 the functions ÿvl�x; y� are convex functions of y 2 Rr and vl 2 C�K0 � Rr;R�; l 2 L.

Proof. By conditions (i) and (iii) all sets Y �x� are convex and compact. Let x be ®xed and c be an inner point
of Y �x�. We ®rstly show, that for any (®xed) x in a neighborhood U of x and b 2 Sr there exists a value
r�x; c; b� such that
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c� tb
2 int Y �x� 06 t < r�x; c; b�;
62 Y �x� t > r�x; c; b�:

�
�17�

To this aim we choose U such that c 2 int Y �x� for all x 2 U and de®ne

h�x; c; b; t� :� min
l2L

vl�x; c� tb� �18�

which is continuous (in x; c; b and t). We have h�x; c; b; 0� > 0 and for a value tm > 0 (large enough)
h�x; c; b; tm� < 0 for all b 2 Sr (since Y �x� is bounded). Note that since ÿvl�x; y� are convex in y, the function
ÿh is convex in t. Since h is continuous and the upper-level set ft P 0 j h�x; c; b; t�P 0g (� �0; tm�) is compact
the following function is well-de®ned:

r�x; c; b� :� argmaxft P 0 j h�x; c; b; t�P 0g: �19�
Using convexity, it follows easily that for the solution function r�x; c; b� the relations (17) hold.

Moreover, by continuity arguments, this function r�x; c; b� is continuously depending on x 2 U ; b (and c).
Now, we will show that we can choose a continuous function c�x� such that c�x� 2 int Y �x� for x 2 K. For
x 2 U we obviously have constructed a parametrization of Y �x� of the form

Y �x� � fy � c� tb j b 2 Sr; t 2 �0; r�x; c; b��g:
Hence, with the transformation T : �0; 1� � Sr ! Rr given by T �t; b� � c� tb, the volume v�x� and the

bary-center c�x� of the convex sets Y �x�; x 2 U are given by:

v�x� �
Z
Y �x�

dy �
Z

b2Sr

Zr�x;c;b�

0

jdetDT �t; b�j dt db;

c�x� � 1

v�x�
Z
Y �x�

y dy �
Z

b2Sr

Zr�x;c;b�

0

�c� tb� jdetDT �t; b�j dt db:

Obviously, both functions v�x�; c�x� are continuous. We ®nally show, that c�x� is an inner point of Y �x�.
To do so, consider for ®xed x the support function (with d 2 Sr)

s�d� :� max
y2Y �x�

dTy:

In convexity theory it is well-known that a point c is an inner point of the convex set Y �x� if and only if

s�d� > dTc for all d 2 Sr

(cf. e.g. [[13], Theorem 13.1]). Since c is an inner point of Y �x� by choosing U su�ciently small we can
assume that there exists j > 0 such that the ball Bj�c� lies in the interior of Y �x�. Consequently we obtain
for any d 2 Sr

s�d� ÿ dTc�x� � 1

v�x�
Z
Y �x�

�s�d� ÿ dTy� dy P
1

v�x�
Z

Bj�c�

�s�d� ÿ dTy� dy > 0;

i.e. c�x� 2 int Y �x�. Now, we choose c � c�x� and put r�x; b� :� r�x; c�x�; b� (cf. Eq. (19)). Then, by sub-
stituting t � s r�x; b�, the relation (17) is equivalent with Eq. (16) and the functions c�x� and r�x; b� satisfy
the conditions in As. �

Under the assumption As the GSIP can be transformed into SIP.
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Theorem 4. Suppose that the assumption As is ful®lled in the open set K0 � Rn, (K0 \M 6� ;).
(a) Then, the problem GSIP restricted to K0 can be written equivalently in the form of the following SIP:

min f �x�
s:t: x 2 K0 and
ĝ�x; b; s� :� g�x; c�x� � s r�x; b�b�P 0 for all b 2 Sr; s 2 �0; 1�

�20�

(b) If moreover, for any ®xed x, the function ÿg�x; y� is convex in y 2 Rr, then the inequality constraints in
Eq. (20) can be replaced by

~g�x; b� :� ĝ�x; b; 1� � g�x; c�x� � r�x; b�b�P 0 for all b 2 Sr: �21�

Proof.

(a) The proof follows immediately by noticing that As implies

Y �x� � fy 2 Rr j y � c�x� � s r�x; b�b; b 2 Sr; s 2 �0; 1�g:
(b) It su�ces to show that we have (for ®xed x 2 K0)

ĝ�x; b; 1�P 0; b 2 Sr ) ĝ�x; b; s�P 0; b 2 Sr; s 2 �0; 1�: �22�
Obviously, the points y � c�x� � sr�x;ÿb��ÿb� and y � c�x� � sr�x; b�b, s 2 �0; 1� are points on the line

segment between yÿ :� c�x� � r�x;ÿb��ÿb� and y� :� c�x� � r�x; b�b. Using the convexity of ÿg w.r.t. y the
relation (22) follows. �

Remark 2. Even if in Theorem 4 in addition to As we would assume that ALICQ is satis®ed, the functions
r�x; b� and then ĝ would only be Lipschitz continuous but in general not C1-functions. So, to solve the
transformed problem (20) we cannot use the `Newton-method' but we have to apply a discretization
method. We emphasize, that for an application of the transformation in Theorem 4 we need not have these
functions c�x�; r�x; b� explicitly. We only have to compute the corresponding values on every actual
discretization.

Often, additional conditions on the problem functions (such as linearity) can be used to get a simpler
transformation of the GSIP into an SIP. When for example the conditions of Lemma 1 and of Theorem
4(b) are both satis®ed, then, the conditions g�x; y�P 0 only need to hold for all extreme points of Y �x�. A
special class of variational problems is treated in [11]. For an example in connection with the maneuver-
ability problem we refer to [5].
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