N

N

On Not-First /Not-Last Conditions in Disjunctive
Scheduling
Philippe Torres, Pierre Lopez

» To cite this version:

Philippe Torres, Pierre Lopez. On Not-First/Not-Last Conditions in Disjunctive Scheduling. Euro-
pean Journal of Operational Research, 2000, 127 (2), pp.332-343. 10.1016/S0377-2217(99)00497-X .
hal-00022745

HAL Id: hal-00022745
https://hal.science/hal-00022745
Submitted on 13 Apr 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00022745
https://hal.archives-ouvertes.fr

On Not-First/Not-Last Conditions in Disjunctive
Scheduling”

Philippe Torres, Pierre Lopez

Laboratoire d’Analyse et d’Architecture des Systemes du CNRS
7 avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France

e-mails: {ptorres, lopez}@Qlaas.fr

Abstract

This paper is concerned with the development of constraint propagation techniques
for the characterization of feasible solutions in disjunctive scheduling. In disjunctive
scheduling, a set of uninterruptible tasks is to be performed on a set of resources. Each
task has a release date, a deadline, and a fixed processing time; each resource can
handle only one task at a time. Some of these propagation techniques are implemented
by rules that deduce either mandatory or forbidden sequences between tasks or sets
of tasks. For instance, certain rules indicate whether a given task must or cannot be
performed before or after a set of other competing tasks. We focus our attention on
the latter problem, known as the “Not-First/Not-Last” problem.

The genericity of propagation rules is a question of major importance. It induces that
the result of the overall propagation must not depend on the order in which the infer-
ence rules are applied. Hence, one must search for completeness in the time-windows
narrowing, in order to ensure the convergence of the propagation towards a unique
fix-point.

An efficient algorithm is proposed. It guarantees the completeness of time-windows
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narrowing due to not-first/not-last conditions. It has been integrated in a branch and
bound procedure to solve job-shop instances. It has also been tested within several
lower bounding procedures. Computational results are reported and the power and
complementarity of not-first/not-last rules with other classical inference rules is dis-

cussed.

Keywords: Disjunctive scheduling; Constraint propagation, Edge-finding; Time-bound

adjustments; Branch and bound; Job shop; Lower bounds

1 Introduction

In this paper, we are concerned with disjunctive scheduling. An instance of the disjunctive
scheduling problem consists of a set 1" of n tasks to be performed on one disjunctive resource,
which can process only one task at a time. Tasks cannot be interrupted (this corresponds
to the non-preemptive case). A release time r;, a deadline d;, and a processing time p;
characterize each task ¢ of 7. The relation d; — p; > r; holds Vi = 1,...,n. Additional
temporal constraints such as precedences due to production routings, time-lags, ... can also

be considered.

The scheduling problem under study is seen as a Constraint Satisfaction Problem (CSP)
[26]. The question is to find an assignment of the start time ¢; of each task ¢ within [r;, d; — p;]
that satisfies the set of constraints of the problem, particularly the resource constraint. In
the recent past years, constraint-based approaches have been proven to be an efficient way to
represent and solve N"P-hard scheduling problems such as the Job-Shop Scheduling Problem
[13, 23, 25, 27]. These approaches use general CSP solving techniques, such as variable and

value ordering, dead-end handling, and consistency enforcing.

In our work, we more specifically focus on techniques for enforcing the problem consis-
tency by constraint propagation [14, 15, 24]. An interval of possible start times is assigned
to each task by computing extreme bounds for its processing (so-called “heads” and “tails”

in [9]). Propagation rules are applied to update (or adjust) these bounds. Thus these rules



deduce new constraints from the current search state so as to characterize as well as possible

the feasible solutions, i.e., the schedules that satisfy all the constraints.

Some of these deductions relate to rules that reveal whether (1) a given task must precede
another task, or more generally whether (2) a task either (a) must or (b) cannot be per-
formed before or after a set of other competing tasks [2, 10, 13, 20, 23]. These problems are
respectively known as (1) immediate selections on a disjunction, (2a) immediate selections
on a descendant or an ascendant set, (2b) Not-First/Not-Last problem [2, 10]. All these rules
are also known under the general name “edge-finding”, as it consists in deducing ordering

relations in the associated disjunctive graph [1].

Not-first /not-last conditions can be seen as part of immediate selections on a set. Indeed,
the conjunctive precedences always induce non-conjunctive precedences (a given task must
precede a set of other tasks implies that the whole set cannot be performed before this task),
which lead to no additional information. Conversely, some sequential properties can be
expressed only by non-conjunctive precedences. Domains of application of such rules concern
an early detection of inconsistencies in time-resource constrained scheduling problems, and a

support for the generation of solutions by pruning the search space without loss of solutions.

The rules involved in the not-first/not-last problem are well-known in the scheduling
community [2, 7, 9, 10, 11, 20, 23]. They are often combined with non-insertability conditions
to lead back to immediate selections. In this form, they are very effective to quickly bring

useful information out and offer a reliable guide for problem solving.

However the detection of impossible sequences used alone gives weaker conditions than
immediate selections do. Actually, many conditions found out by the rules are useless because
they do not lead to time-window narrowing. Therefore concrete results on their efficiency
and their coupling with other propagation rules have been seldom published. Often used in

an incomplete way [11, 23], they seemed to prune too little regarding their cost.

In this paper, we accept the challenge to pay more attention to the study of not-first /not-
last conditions and to show their interest. We propose a new algorithm to solve the problem,

that is to derive all possible deductions, in terms of bound adjustments, induced by these



conditions. We will show how such conditions can improve the propagation process so as to
solve scheduling instances in an amount of time significantly reduced from the time required

without these conditions.

In a previous work [18], an O(nlogn) algorithm dealing with not-first /not-last conditions
has been reported. The main advantages of this algorithm are its low complexity, its sim-
plicity, and the ability to derive only non-conjunctive precedences which allow a time-bound
adjustment. Unfortunately, it does not meet the pursuit of an exhaustive search, which is of

major importance in our work (see Section 2.3).

The paper is organized as follows. The problem is more precisely stated in Section 2.
The question concerning the convergence of the propagation is particularly discussed. In
Section 3, the algorithm and its specificity are presented; the algorithm is qualitatively
compared with the procedure proposed in [3] by Baptiste and Le Pape which to our knowledge
gave the first reported algorithm to perform all the corresponding deductions in quadratic

time. Section 4 is dedicated to the algorithm validation on various job-shop instances.

2 The “Not-First /Not-Last Problem”

2.1 Immediate Selections

Among edge-finding techniques, immediate selections appear as important rules to decide
whether a task is the input or the output of a clique of disjunctions [9, 10]. The immediate

selection associated to an ascendant set is described by the rule below. Let S C T, i € T\ S:

1 must be processed after the tasks of S 1)

maxds — min 7; < Z ps =
s€S s€SU{s} s€SU{i} (i.e., i must be processed last)

Once we find an ascendant set, we obtain the necessary adjustment:

r; < max|[r;, g}gfé(g&g} rs + Sél ps)] (2)



A symmetrical reasoning can be applied to detect descendant sets.

Obviously, rule (1) is the conjunction of a condition which implies that a task must be
processed first or last among the clique and a condition which implies that this task cannot
be processed first (Not-First condition). However few works have considered each of these
conditions alone because of the absence of efficient algorithms to handle them. In the next

section, we focus the presentation on the Not-First/Not-Last conditions.

2.2 Not-First/Not-Last Problem Statement

In the Not-First/Not-Last (in short NF/NL) problem, the forbidden positions of a single
task relatively to a group of tasks are studied. More precisely, one can examine whether a
task 7 cannot be processed before or after a given subset of tasks S. The rule in charge of
detecting NF conditions is as follows ([7], page IV.6):
Proposition 1. Let S C T,i € T\S:

max ds —r; < Seg{i}ps =i NFin SU{i} (3)
Proof. Suppose maxses ds — ;i < Ysesuqi} Ps and ¢ precedes any of the tasks in S. Let s; be
the task to be scheduled last in S; it yields t5, + ps, > 7 + 2osesu{i} Ps > MaXses d, which

leads to a contradiction. O

The only-permitted partial permutations must place i after at least one task of S. It

yields the following adjustment (Figure 1):
ri < max|[r;, meiél(rs + ps)] (4)

In the same way, we may search for revealing NL conditions and associated adjustments

for deadlines.

Remark Immediate selections on disjunctions appear as particular cases of NF/NL when

S is reduced to a singleton {j}. For (i,5) € T?, i # j, one has:
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Figure 1: Not-first detection (a) and associated adjustment (b)

1 NF in {i,7 re =1 4D ' .
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2.3 Convergence of the Propagation: Fix-Point and Completeness

The genericity of propagation rules is a question of major importance. It induces that
the result of the overall propagation must not depend either on the way an inference rule
is applied or the order in which different rules are selected. Different behaviours can be
expected from different orders of application of the rules on the same problem. This concerns
the problem of the convergence of the propagation directly related to the completeness of
the deductions. The completeness in the time-windows narrowing is pursued, in order to

ensure the convergence of the propagation towards a unique fix-point.

An algorithm which solves the NF/NL problem must then deduce all and not some of
the temporal adjustments obtained by application of the rules. Completeness of the NF/NL
algorithm is required if one wants to use it in a flexible (independent choice of the rules)
and generic (result not dependent of the rules application order) rule-based scheduling tool.
Moreover from an experimental view-point, completeness when applying the rules allows a

sane behaviour of the propagation process, which is necessary for its evaluation.

A key point of the propagation algorithm concerns which subsets S C T must be consid-

ered to ensure both the completeness of the adjustments and a fast convergence towards the



fix-point, (considering all the subsets of 7" would amount to a knapsack problem and would
be too long [11]). These points are treated in the following sections where a temporal bound
and a sufficient condition of non-existence of NF adjustments are presented (Section 3.1).

They are included in the NF algorithm (Section 3.2).

3 An Algorithm for the Not-First /Not-Last Problem

3.1 Formulation of NF/NL Rules

Considering the classical formulation of the Not-First rule, the usual bound used to define
the latest start time (Ist) of a set of tasks S still unordered and competing for the same
resource is computed as [st(S) = maxsesds — > cqPs. We refine this upper bound on the
starting time of S introducing /sto(.S), computed by the following procedure (we suppose S

sorted in non-increasing order of its deadlines; we define an array such that dgp) > dgpr41])-

—_

: procedure latest_start_time

S = tasks sorted in non-increasing order of dj;
s Isty(S) +— +o0

: for k :=1 to card(S) do

Isty(S) « min[dgspy, [st2(S)] — Psp

@ gk w

end for

Sy

/

|
s’ 97 | . ]
R e

o Ist(S) Y
Ist,(9)

Figure 2: A tighter bound for the latest start time of a set
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The bound Ists(S) is tighter than lst(S) (Figure 2); in the worst case, Isty(S) = Ist(S)
and if there exists an iteration k such that dgy is lower than the current value of Ist(S),
then Isty(S) < Ist(S). Therefore, we can use this new bound in our rule and compute it
in linear time if the competing tasks are already sorted. Stronger deductions are expected
from the rules by using /sty(S) instead of [st(S). Furthermore, this bound gives a sufficient
condition on the non-existence of subsets of S likely to trigger NF rule. With this bound, if
a task i cannot be said NF in S U {i} then it is impossible to find a subset S’ in S such as i
is NF in S’ U {i}. It yields the following proposition:

Proposition 2. For all S C T and for all i € T\S:
ri + pi < lsta(S) = AS’ C S such that r; + p; > Ista(S') (5)

Proof. Obvious since S’ C S == Ist2(S) < Isty(S'). O

Particular case. For alli € T, let T* = T\{i}:

ri +p; < lsto(TY) = AS' C T such that r; + p; > Isty(S")

. (6)
= AS" C T" such that ¢ NF in S’ U {i}

Condition (6) allows us to avoid useless enumeration of sets of tasks and furnishes in O(n)
time a stopping condition to the search for NF adjustments for a given task (O(n?) for the

whole set T') if the tasks are already sorted.

Based on this property, an algorithm to solve the Not-First problem is proposed in the
following paragraph. A symmetrical work on Not-Last conditions, omitted for the sake of
conciseness, searches for refining the lower bound on the finishing time (i.e., the earliest
finish time or eft) of S from eft(S) = minges7s + > 4cgPs t0 efta(S) (the associated “NL

algorithm” is similar to the NF algorithm given below).

3.2 NF Algorithm

The NF algorithm described below computes and stores new release dates rgp; (S sorted in

non-increasing order of its deadlines) on every conflicting task S[i].
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1: procedure Not-First

2: S = tasks sorted in non-increasing order of d;
3: for i :=1 to card(S) do

4:  Continue <~ TRUE

5: sty <= 400, eftMin < +o00, j + 1

6: while (j < card(S) and Continue) do
7: if (rsp;] + psp) > rsp) and @ # j) then
8: Isty + min(dgp;), Ist2) — psyj)

9: eftMin < min(rsy) + psp, eftMin)
10: if (Isty < rgp) + psp)) then

11: rsp) < eftMin

12: Continue <~ FALSE

13: end if

14: end if

15: jg+1

16: end while
17: end for




Let us detail the major ideas of procedure Not-First.

e Line 2 initializes array S.

e The main loop (lines 3-17) consists in an iteration over all tasks for which we try to

prove they are not first.

e The second loop (lines 6-16) considers the tasks that will contribute to define a set on
which an NF condition could be detected on S[i]. This loop is iterated until all tasks

are examined or the ‘Continue’ flag is false.

e The key-test of line 7 selects a task S[j] only if this task will be able to update the
release date of S[i]. This means that a NF condition, if detected, necessarily induces

a time-bound adjustment.

e Line 8 reproduces the computation presented in the procedure latest_start_time stated
previously. This is used in line 10 to detect an NF condition on S[¢]. In line 11 we
update the value of the release date of S[i] to the value computed in line 9 and the
‘Continue’ flag is turned to FALSE (line 12); the procedure exits from j-loop, and next
task S[i + 1] is considered.

For each task S[i], this very simple O(n?)-time and O(n)-space algorithm performs a linear
search which selects candidate tasks for the updating of the release date of S[i]. It iteratively
maintains the current bound [st, given by the current set of candidate tasks, and stops as

soon as an adjustment is possible for the current task S[i].

This process must be run until no more deductions can be done. Hence, the NF algorithm
and its dual NL have to be embedded in a loop repeated whilst an adjustement is processed.
The global NF /NL procedure can be executed at most D xn times where D = max;—y__,(d;—
r; —p;) denotes the maximum slack over all tasks i € T. So the time complexity is in O(Dn?)

and the space usage remains linear.
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3.3 Comparison with Related Work

To our knowledge, Carlier-Pinson were the first to use NF/NL conditions [8]. Embedded in
their branching scheme, NF/NL conditions are used to detect the tasks that cannot be first
or last among all the unscheduled tasks. Hence, a list of possible first tasks is characterized
for branching. This is done very fast and leads to a drastic reduction of the search tree.
However, the deductions are incomplete so the genericity is not guaranteed. Moreover, they
are only useful in the context of a first/last branching scheme. Therefore, this consistency
checking technique cannot be used independently of the branching scheme and in a modular

way to tighten the time-windows of the tasks.

The algorithm presented in [3] by P. Baptiste and C. Le Pape is to our knowledge the
unique alternative to guarantee the completeness of time-window narrowings due to NF/NL
conditions. As in our algorithm, it consists of two dual parts: NF and NL. The NF (resp.
NL) algorithm pre-computes, for each task ¢, temporal bounds ¢;; allowing the identification
of task j which induces the greatest possible adjustment of r; (resp. d;) in quadratic time.
Nonetheless, several runs are needed to solve the NF (resp. NL) subproblem. Hence, this
pre-computing effort can be put in question since a single adjustment performed by NF or
NL does not longer ensure the completeness of the global process. Several (and not just two)
local resolutions of the two NF and NL subproblems have to be realized until time-window
stabilization, i.e., until the fix-point is reached. The algorithm is proven to run in O(n?)
steps; therefore the solution of the global NF/NL problem is also obtained in O(Dn?)-time.
From the authors opinion, the implementation of their algorithm is encouraging in terms of

pruning but quite disappointing in terms of time consuming.

Knowing that NF and NL subproblems will have to be solved more than once each, our
procedure abandons the idea of local resolution at each step. For every task, the updating
process finds out the first possible window adjustment, if any, achievable in a single pass, and
performs it without extra computation. So, a simpler approximate processing is realized for

each subproblem, in order to save unnecessary time consumptions. The sufficient stopping
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condition enounced in (6) ensures that the global completeness is still fulfilled.

With a similar complexity, our algorithm has a clearer formulation. As we will see in
the next section, it achieves time-windows narrowing faster and, used in conjunction with
a “classical” edge-finding algorithm, offers a good trade-off in the search space reduction in

regard to the CPU time consumed.

4 Computational Experience

4.1 Computation of Optimal Solutions

Consistency checking techniques are part of a more global framework aiming to solve schedul-
ing problems stated as special instances of CSPs. Solving a scheduling CSP by a tree-search
method implies three classical components: branching scheme, dead end handling and con-

sistency enforcing.

Branching scheme In our work, the branching scheme chosen is inspired from [2]. The
heuristic for resource selection is based on the minimum global slack. At each node of the
tree, the current solution is extended by choosing a possible-first operation to sequence be-
fore all the other unscheduled operations on the current resource. An earliest-start time rule

gives the priority in the operation selection. A latest start-time rule is used as a tie-breaker.
Dead end handling Chronological backtracking is performed to escape from dead ends.

Consistency enforcing The minimal consistency enforcing applied at each node consists
in applying the calcLB1-calcUBI algorithm of Nuijten [23]. This “edge-finder” deduces nec-
essary sequencings between sets of conflicting operations and performs the adjustments of

“heads” and “tails” of Carlier-Pinson ([10]) in O(n?).

Are the NF /NL rules worth their applying? To answer this question, our algorithm has been

implemented in C++ language and tests have been run on a Sun/Sparc Ultra-5 Workstation
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64 MB. The goal of these experiments is to evaluate the power of the NF/NL rules used in

addition to Nuijten’s classical edge-finder.

For our experiments we consider the job-shop scheduling problem (JSSP). A finite set
of jobs must be processed on a finite set of machines that are disjunctive resources. Each
job consists of a sequence of operations of fixed durations; it must be processed on every
machine and it has its own predetermined machine sequence (routing). The problem is to
determine the job sequences on the machines in order to minimize the makespan, i.e., the
duration in which all operations for all jobs are completed. The JSSP is well known to be
an N'P-hard problem in the strong sense. See [17] for a recent overview of the techniques

used and the important results obtained.

Starting with an obvious lower bound (e.g., the maximal length of the jobs to be pro-
cessed), a binary search is performed on the makespan. For each value of the makespan to
consider, the branch and bound searches for a solution. We compare the results obtained by
applying at each node Nuijten’s edge-finder (column ‘EF alone’) with the same procedure
reinforced by the NF/NL algorithms of Baptiste and Le Pape (column ‘EF 4+ NF/NL BLP’)
on the one hand, and by the approach proposed in this paper on the other hand (column
‘EF + NF/NL proposed’). The branching scheme and chronological backtracking are used

throughout the three search procedures.

Table 1 reports the number of backtracks (BT) and CPU time in seconds needed to
obtain an optimal solution on some well-known 10 x 10 instances of JSSPs [1]. The amount
of CPU time and the number of backtracks needed for the proof of optimality are reported

between brackets. Two major conclusions can be drawn from these results:

e The raw results remain rather far in CPU time and number of backtracks from the most
performing constraint-based procedures (see [5, 11]). Different reasons can be found to
explain the relatively high number of backtracks. First, the dichotomic approach can
lead us to apply constraint propagation rather far from the optimum. There, constraint

propagation is no more efficient and a phase transition phenomenon can appear [16].
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Consistency enforcing algorithms applied
Instances EF alone EF + NF/NL
Name | Opt BT | cpU BT | CPU (BLP) | CPU (proposed)
ABZ5 | 1234 || 146464 (35234) | 1017 (249) | 46515 (11788) | 706 (178) 532 (134)
ABZ6 | 943 || 19003 (5558) 117 (35) 7596 (2146) 104 (31) 76 (23)
FT10 | 930 | 60884 (22542) | 735 (274) || 34833 (11389) | 994 (341) 757 (259)
LA19 | 842 || 127962 (33155) | 1392 (353) | 37427 (3986) | 1158 (283) 863 (211)
LA20 | 902 || 35420 (7939) 312 (74) 15808 (3777) | 326 (77) 248 (59)
ORBI | 1059 || 14360 (5095) 170 (62) 6697 (2408) 202 (74) 153 (57)
ORB2 | 888 | 55060 (18309) | 530 (169) | 19325 (5977) | 481 (147) 362 (111)
ORB3 | 1005 || 516848 (61821) | 4756 (585) | 197398 (24953) | 4626 (619) 3553 (475)
ORB4 | 1005 || 56832 (12622) | 1202 (296) | 35588 (7894) | 1505 (356) 1144 (271)
ORB5 | 887 || 124772 (4736) 913 (53) 75622 (2425) | 1165 (63) 903 (47)
| totar | 1157695 (206741) | 11144 (2150) || 476899 (81743) | 11267 (2169) | 8501 (1647) |

Table 1: Results on ten 10x10 JSSP instances

For example, on ORB5, 62369 backtracks are spent before finding a solution at a
distance of more than 10% from the optimum, which represent more than 82% of the
total number of backtracks needed to find the optimal solution (this value must also
be compared with the 2425 backtracks needed to prove the optimality). Moreover, the
branching scheme is in fact very simple and do not include any “entropic” guidance
[11]. The systematic search performed by the chronological backtracking often leads to
long times to recover from a dead end. It must be said that our interest in developing
such a procedure was not optimization-oriented but rather towards the evaluation of
the efficiency of the NF/NL rules in pruning the search space versus the CPU time
needed to apply them in an exhaustive way. Hence, it is more instructive to read the

results in a comparative way between the three procedures.

It appears that applying the NF/NL rules in addition to a classical edge-finder leads to

dramatic search space reductions. Actually, it yields a 58% drop in the total number of
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backtracks needed to solve the problems tested in Table 1 (drop of 60% for the proofs
of optimality). Concerning the CPU time, since BLP obtains results similar to EF

alone our approach is comforted in the sense where the mean CPU time is 23% better.

4.2 Computation of Lower Bounds

The previous results are encouraging but recent works [12, 17] report that hybrid methods
appear today as the most efficient way to compute optimal solutions. Their main strength
is to combine different techniques to obtain the best of them. For example, local search
methods are very efficient to find good upper bounds [22] and their use in conjunction with
our approach would surely lower significantly the number of backtracks spent by our optimal

procedure in phase transition areas.

Conversely, constraint propagation techniques are especially designed to help proving
optimality and find good lower bounds. Computing lower bounds is a good criterion to
evaluate the power and complementarity of different constraint propagation rules. So, we
tested different lower bounding techniques (LB1, LB2 and LB3) using different amounts of
constraint propagation (R1, R2 and R3 are the sets of rules employed for the reduction of

the time-windows).

Lower bounding techniques
LB1 is obtained by simple propagation (it corresponds to the first value of the makespan

for which no infeasibility is derived).

LB2 is also obtained by simple propagation but a technique called “global operations”
introduced in [10] and further developed under the name of “shaving” by [21] is used on top
of the propagation. Two shaving techniques are employed. For each unscheduled pair of
tasks (i,7), the first technique sequences i before j (resp. i after j) then applies constraint
propagation rules with the hope to raise an infeasibility and thus proving the necessary

sequencing of i after j (resp. ¢ before j). The second shaving technique tries to reduce

15



the time-windows of the tasks. In this purpose, a task is constrained to start within a
reduced part of its time-window and constraint propagation is performed. If an infeasibility
arises, the task cannot be processed during this reduced time-window and an adjustment
of its original time-window can be performed. A bisection search on the time-window is
performed to ensure the greatest possible reduction. To limit the computational time, each

shaving technique is only applied once per analysed makespan.

LB3 is the lower bound obtained by sequencing only the tightest machine but the cons-
traint propagation is performed on all the machines during the search. The shaving tech-
niques described above are applied before the start of the search. We used the branching
scheme described earlier and arbitrarily limited to 15000 the number of backtracks allowed

to a given makespan in order to keep reasonable the computational overhead.

Constraint propagation rules
We computed LB1, LB2 and LB3 with different amounts of constraint propagation. Willing
to evaluate the power and efficiency of Not-First/Not-Last rules versus other propagation

rules, we defined three different bases of rules called R1, R2 and R3:

e R1 corresponds to the constraint propagation performed by the Nuijten’s edge-finder.
e R2 adds the proposed NF/NL algorithm to R1.

e R3 adds two other complete constraint propagation algorithms to R2 inspired by rules

defined in [11] (exclusion (“case is-after” and its dual)) and [19] (energetic rule “R3”).

The benchmarks are 33 job-shops from the literature (references can be found in [17]) and
are accepted as “hard” problems. The results are reported in Table 2. To make easier the
reading of Table 2, we only reported at each column the improved bounds; a hyphen means
that the lower bound is equal to the previous value reported on the same line for the problem
considered (lower bounds in bold are equal to the optimum). LB/UB are the best known

lower and upper bounds (reported from the survey of Jain and Meeran [17]). The “CPU
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time span” lines report the minimal and maximal running times observed over all the 10x10

and 20x20 tested instances.

LB1-R2 improves the lower bounds found by LB1-R1 for 14 problems out of 33. LB2-R2
improves the lower bounds found by LB2-R1 for 22 problems out of 31 (two lower bounds were
optimal after LB2-R1). Finally, LB3-R2 improves 25 out of the 30 non optimal lower bounds
computed by LB3-R1. Hence, it seems that the complementarity between the deductions
made by Nuijten’s edge-finder and the NF /NL rules increases with the amount of propagation
performed: by simple propagation (LB1), the addition of a NF/NL constraint propagation
algorithm only slightly improves the bound found by Nuijten’s edge-finder while the shaving
mechanism (used in LB2 and LB3) is much more efficient by adding NF/NL adjustments.

We now consider the aggregated results of LB2 and LLB3 reported in Table 3. Line A
stands for the relative distance from the best known lower bounds; an index of 100 is given
for the average distance found by LB2 and LB3 when the Nuijten’s edge-finder is used alone.
Performing an extra amount of consistency checking using R3 gives a slightly better bound
than R2, while it needs much more computation time. It seems that R2 covers most of the
deductions made by R3 and hence offers a good trade-off between the quality of the bound
obtained and the CPU time needed to find it.

Nonetheless, some notorious problems like LA21 or LA29 remain indifferent to the tech-
nique used or the amount of propagation performed, and the initial lower bound far from
the optimum is not improved. It seems that bound-consistency alone (consistency checking
based on the tightening of the time-windows) is not powerful enough yet to tackle these

problems in a reasonable time.

Conclusions

Throughout this paper we have considered specific conditions for sequencing in disjunctive
scheduling. More precisely, we study the not-first/not-last deductions which reveal that a

task cannot be performed before/after a set of other tasks. While this kind of deduction
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Lower bounding technique applied

Instances LB1 LB2 LB3
Name | Size | LB/UB || R1 | R2 | R3 R1 R2 R3 R1 R2 R3
FT10 | 10x10 | 930 855 | 858 | 868 902 - - 907 912 914
ABZ5 | 10x10 | 1234 1126 | - | 1127 1191 1199 1201 1200 1207 -
ABZ6 | 10x10 | 943 889 - 890 934 941 - 934 941 -
ABZT | 20x15 | 656 651 - - - - - - 652 -
ABZ8 | 20x15 | 645/665 || 608 - - 620 - - - - 621
ABZ9 | 20x15 | 661/679 || 630 - - 643 - - 646 647 648
LAL6 | 10x10 | 945 901 | 909 - 943 945 - 944 945 -
LA18 | 10x10 | 848 803 - 809 848 - - - - -
LA19 | 10x10 | 842 755 | 756 | 763 814 821 822 816 822 -
LA20 | 10x10 | 902 836 | 851 - 890 897 898 893 897 898
LA21 | 15x10 | 1046 1033 | - - - - - - - -
LA22 | 15x10 | 927 913 - - 924 - - 927 - -
LA24 | 15x10 | 935 880 | 892 - 909 912 - 915 920 -
LA25 | 15x10 | 977 919 - - 950 955 956 952 955 957
LA29 | 20x10 | 1152 119 | - - - - - 1120 - -
LA36 | 15x15 | 1268 1233 | - - 1258 1262 - 1267 - -
LA38 | 15x15 | 1196 1106 | - - 1143 1145 - 1158 1162 171
LA39 | 15x15 | 1233 1221 | - - 1230 1231 - 1232 - -
LA40 | 15x15 | 1222 1190 | 1192 | - 1206 1207 1208 - 1209 1210
ORB1 | 10x10 | 1059 975 - - 1006 1013 - 1036 1045 1048
ORB2 | 10x10 | 888 812 - 815 860 864 865 863 867 869
ORB3 | 10x10 | 1005 96 | 907 | - 961 965 - 975 978 981
ORB4 | 10x10 | 1005 898 - - 968 972 973 997 1005 -
ORB5 | 10x10 | 887 810 | 822 - 856 858 860 868 872 873
ORB6 | 10x10 | 1010 946 | 947 | - 984 989 - 991 999 -
ORB7 | 10x10 | 397 358 | 365 - 387 389 - 388 390 301
ORBS | 10x10 | 899 894 | - - 899 - - - - -
ORBY9 | 10x10 | 934 901 | 909 - 929 - - - 932 -
ORBI0 | 10x10 | 944 923 - - 941 943 944 941 943 944
YN1 | 20x20 | 826/888 || 782 | 784 | - 809 811 812 811 812 813
YN2 | 20x20 | 861/909 || 818 | 819 | 825 840 841 - 849 852 853
YN3 | 20x20 | 827/893 || 799 - - 815 816 817 815 817 -
YN4 | 20x20 | 918/968 || 881 | 884 | 885 895 - - 904 905 906
10 x 10 CPU time span (s) || 0.1-1 | 0.1-1 | 0.1-1 || 20160 35210 60-350 || 30-1700 | 40-3100 | 805500
20 x 20 CPU time span 125 | 12s| 16s| 0826ks | 0941ks | 1.675ks | 514ks | 429ks | 11-56 ks
Mean dev. from best LB (%) 5.38 5.13 5.01 2.14 1.88 1.84 1.59 1.29 1.19

Table 2: Lower bounds on hard instances of JSSPs
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Set of rules R1 | R2 | R3
A 100 | 84.5 | R0.4

Approximate time factor | 1 1.8 | 3.8

Table 3: Aggregated results from LB2 and L.B3

already exists in consistency enforcing of scheduling, it has been rather neglected in the
sense of no particular attention has been paid till now. The paper is concerned with the
resolution of the Not-First/Not-Last problem, that means we strive towards the detection of
all the not-first /not-last conditions and the associated adjustments, so as to offer a generic
reasoning. Hence we propose a simple, polynomial, efficient, but also complete algorithm to

solve the Not-First/Not-Last problem.

We have then evaluated the usefulness of considering not-first/not-last conditions for
scheduling problems. First, a branch and bound procedure has been devised to solve job-
shop instances; it serves to highlight the benefits obtained with not-first /not-last reasoning in
terms of reduction of the number of backtracks to reach an optimal solution. It also shows for
the first time that considering explicitly not-first /not-last conditions are encouraging in terms
of CPU time savings. Next, some experiments have been managed to compute lower bounds
on hard instances in order to evaluate the power and complementarity of different constraint
propagation rules. The main result is that the stronger the propagation techniques are, the
better the complementarity between not-first/not-last reasoning and classical edge-finding.
This result could deserve to be delved, in particular as an eventual support for local search
to obtain good upper bounds; recent works using constraint propagation and especially the
shaving technique to prune large parts of neighborhood report excellent results [12]. The use
of constraint propagation in local search methods and particularly the shaving techniques

employed are promising fields of research.

Finally, we claim that the results presented in this paper are not restricted to disjunc-

tive scheduling problems. Indeed they can contribute to derive strong deductions also for
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cumulative instances where disjunctive parts can be exhibited (see [4]). The NF/NL deduc-

tions could for example be incorporated in global procedures developed for the Resource-

Constrained Project Scheduling Problem ([6] for example).
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