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Scale continuum approach in biomechanics: a simple simulation of
a microstructural control of tissues’ stiffness�
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Abstract

We construct a simple model of an elastic material whose stiffness can be effectively controlled by an appropriately
chosen set of microstructural parameters. The model is based on ideas of the scale-dependent continuum description
and might play an important role in modelling of muscle tissues in biomechanics.
© 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Biomechanics deals with a physical and mechanical modelling of various organs of living organisms to
be able to simulate their standard behaviour or various pathological states and problematic situations. A
very important problem of this modelling is to find reasonable models of important tissues. The models
should be not only realistic but appropriately simple and robust so that the number of “free” parameters
(usually very problematic to be determined experimentally) be minimal. A typical tissue whose realistic
mechanical model is very needed is the muscle tissue. A striking fact connected with this tissue is its
ability to change its mechanical stiffness in an extremely large extent with controlling those changes at a
microstructural level. Roughly speaking, the mechanism is as follows: an electrical stimulation triggers
some chemical processes whose effect is a change of conformations of some protein molecules. These
changes (at the microstructural level) lead to a considerable change of macroscopic mechanical parameters
(a muscle becomes very stiff, for example)[1,2].

In this paper, we present a very simple mechanical model in which a big sensitivity of global mechanical
parameters on changes of some microstructural parameters occurs. The model is based on the so-called
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scale-dependent continuum approach[3–5] in which the continual quantities are supposed to depend on
the scale at which they are studied. The approach allows to formulate the continuum theory simultaneously
at several scales—an interplay of these scales is that what makes the theory fruitful. In the concrete
here, we introduce both a (macroscopic) scale of a standard continuum description and some lower
scale at which the microstructural changes are defined. At that (“micro”) scale, material “particles”—
fictitious, artificially chosen parts of the body playing the role of material points of the standard continuum
description—become real physical systems which can be described by a thermodynamic description. The
strain energy connected with a deformation of the system is thus stored both in elastic bounding among
the particles and in inner degrees of freedom of each particle. We model this “inner” energy of particles
by using the idea ofsimple thermodynamic systems which have, in the simplest case, the only one
volume variable[6]. To define the change of the volume of individual particles we introduce not only the
standard deformation gradient but also that defined at the lower scale. We formulate general features of
this model and, as an illustration, we find a simple, two-dimensional example in which a big sensitivity
of macroscopic stiffness on microstructural parameters is clearly demonstrated.

2. Scale continuum description

The continuum description identifies some parts of a deformable body—usually called theparticles—
with material points. These points form a continuous structure modelling the body so that an (actual)
configuration of the body can be described by a vector functionx : Ω → Rn, i.e.x(X). The regionΩ is
a bounded subset ofn-dimensional spaceRn, the so-called reference configuration, so that any pointX of
Ω is the label of a material point of the body. The tensor fieldF (X),F ij = ∂xi/∂Xj , is called the gradient
of deformation. It describes relative positions of infinitesimally distant particles during the deformation.

In our approach each particle is understood to be asimple thermodynamic system[6]. It means that it
can exchange energy with its surrounding and has own state variables (in standard continuum description
the energy and state are connected only with a relative position of particles). We ignore thermal effects and
thus we can use the simplest thermodynamic description in which the energy of the system is a function
of its volume, namelyE(V ). We will study only elastic deformations and the energyE is understood
to be thestrain energy stored in the particle as a result of its deformation. Since we work in continuum
description we introduce the relative change of volume,v ≡ V/Vr, whereVr is the volume of the particle
in the reference configuration, and, similarly, we will work with thespecific strain energyper unit mass,
e, instead ofE. Both quantities are scalar fields, i.e.v(X) ande(X).

In continuum mechanics, the relative change of local volume is defined asv0 = |detF |. However,
understanding the particle as an infinitesimal thermodynamic system,v0 cannot be a relative change of
the volume ofthis system. We need more such systems (particles) ‘surrounding’ that to determinev0

(F describes a relative change ofpositionsof particles)[7]. Otherwise speaking,v0 is a relative change
of the volume of a bigger thermodynamic system including several particles (seeFig. 1). Generally, the
field v can be different fromv0. The crucial step of our approach is based on the idea of the so-called
scale-dependent continuum description: we suppose that the deformation gradient is scale-dependent,
i.e.F can be understood as a functionF (l), wherel is a characteristic length-scale. Moreover we assume
that there is a scalelm at which the deformation gradientF (lm) ≡ Fm describes inner deformations of
individual particles so that the relative change of the particle’s volumev is defined as

v = |detFm|. (1)
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Fig. 1. The relative change of the volumev0 = |det∇ ·x| at the pointX is given by displacement of several particles surrounding
the pointX. It implies that it is defined at different scale than the relative change of the volume of individual particlesv.

In what follows, the symbolF denotes the deformation gradient at some fixed scalel0, l0 > lm, at which
the macroscopic deformation of the body is studied.

The total specific strain energy consists of the deformation energy of individual particles,e(v), and
the strain energy coming from interaction of particles. The second one depends not only on the defor-
mation gradientF because there is also an influence of own deformations of the particles. Namely the
energy connected with couplings of particles can be increased or decreased only by changing their own
deformations (seeFig. 2).

In a linearised approximation this influence may be estimated by a correction∼ M · (Fm − F ) to
the standard deformation gradient, where the tensorM describes a measure of influence of the shape of
individual particles and will be called themicrostructural tensorin what follows. Thus, we express the
specific (total) strain energyw as a function

w = W(F ef, v), (2)

where

F ef = F + M · (Fm − F ), (3)

andv is given by(1). Let us notice that if there are no scale effects, i.e.F = Fm, we obtain the strain
energy in a formw = W(F ,detF ), which corresponds with some useful constitutive laws of standard
continuum mechanics[8].

Fig. 2. The interaction energy of particles can be changed by changing the size of particles while the relative position of particles
(described by the fieldF ) is fixed.
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Let us restrict our discussion to elastic materials whose possible configuration minimises the integral

I =
∫
Ω

w(X)dnX, (4)

within a suitable class of functionsx(X) respecting boundary conditions. When solving the problem of
minimising the integral(4) we can simply suppose that the structure at lower scalelm minimises the local
stored energy at any pointX while F has a fixed value (we look for the shape of particle minimising
the strain energy while positions of surrounding particles are fixed). In other words, finding the minimal
value over all possible tensorsFm (with fixed F ) we obtain an effective strain energyw0 defined at the
scalel0, i.e.

w0(F ,X) = min
Fm
W(F ef,detFm). (5)

3. Two-dimensional model

Let us study the deformation of a body which can be defined in two dimensions. Let us suppose that
there is a coordinate system in which the tensorFm has a diagonal form, namely

Fm =
(
α1 0

0 α2

)
(6)

(αi may depend onX). Taking into account that the existence of a minimum of the strain energy with
respect to the state of each particle (variableFm) is supposed (at each pointX for any deformationF )
we can approximate the functionw around this minimum by a quadratic Taylor approximation. Doing
that by supposing that the variablev = α1α2 is not “mixed” with the others we obtain

w = g(F )+
∑
i=1,2

ai(F )(αi − bi(F ))2 + c(F )(α1α2 − d(F ))2. (7)

Now, solving the minimising problem(5) at the microscopic level (i.e. for each particle individually) we
look for an inner particle geometry which minimises the strain energy. It means to solve the conditions

∂w

∂α1
= 0,

∂w

∂α2
= 0, (8)

in which the macroscopic deformation variables, stored in the matrixF , are understood as fixed param-
eters. It gives the equations

cα1α
2
2 + a1α1 − cdα2 − a1b1 = 0, cα2

1α2 − cdα1 + a2α2 − a2b2 = 0, (9)

and we obtain the solution(α0
1, α

0
2) being fully dependent on the macroscopic deformationF . That is,

by puttingαi = α0
i (F ) in (7), we obtain the strain energy defined at scalel0,

w0 = g(F )+ wnonl(F ). (10)

The termwnonl(F ) ≥ 0 plays the role of a nonlinear correction to a standard elasticity (expressed by the
termg). It has a source in own strain energy of particles (expressed by the termc(α1α2 − d) in (7)): if
c = 0 the solution of(9) is

αi = bi, (11)
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Fig. 3. A simple spring model.

vanishingwnonl for anymacroscopic deformationF . If c �≡ 0 the energywnonl is generally nonzero and
may play an important role in the macroscopic behaviour of material. The reason is that though(11)cannot
be a general solution it can be a very special solution whose occurrence is crucial. Namely,ai, bi, c, d

depend not only onF but also on the microstructural tensorM whose elements describe some details of
geometric arrangement at scalelm. Changes ofM thus simulate changes in microstructure. Now, let us
image that there exists a microstructural arrangement expressed by the tensorM = M0 for which the
coefficientsbi , d fulfil the following relation:

b1(M0)b2(M0) = d(M0). (12)

The solution of minimising problem(9)at the “point”M0 is then given by the condition(11)which means
that the energywnonl becomes zero. An (arbitrarily small) change of microstructural tensor (microstruc-
tural arrangement)M0 + δM can lead to a nonzero energywnonl which can have a clear macroscopic
manifestation. This phenomenon can explain a big sensitivity of material’s behaviour on changes in
microstructure.

To illustrate it in the concrete, let us construct a two-dimensional spring model consisting of deformable
particles interconnected by linear springs as shown inFig. 3. For simplicity we will suppose that the
macroscopic gradient of deformation describing displacements of individual particles has the diagonal
form, namely

F =
(
δ1 0

0 δ2

)
. (13)

The body deformation has to be considered as a set of deformations,

 X1 → δ1 X1,  X2 → δ2 X2,  X
p
1 → α1 X

p
1,  X

p
2 → α2 X

p
2, (14)

where X1 and X2 denote the distances of centres of neighbouring particles in the principal deformation
directions and Xp

1 and Xp
2 denote the size lengths of particles in the principal deformation directions.

The energy coming from the interaction between neighbouring particles can be approximated as being
dependent only on their relative distance(δi Xi − αi Xp

i )/( Xi − Xp
i ). Denotingλi the ratioλi =

 X
p
i / Xi and taking into account that the strain energy has its minimum at the reference configuration

we can choose its quadratic approximation as follows

w =
∑
i=1,2

Y

2

(
δi − αiλi
1 − λi − 1

)2

+K(α1α2 − 1)2 + g(δ1, δ2), (15)
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whereY andK are physical parameters. Let us notice that the microstructural tensor is given asMij =
−λi(1 − λi)−1δij . The relation(12) is fulfilled when

λ1(δ2 − 1)+ λ2(δ1 − 1) = δ1 + δ2 − δ1δ2 − 1. (16)

Thus, for any couple of parametersλ(0)i fulfilling this relation we obtain a zero energywnonl. It is worth
stressing that this relationship depends only onδi and for any macroscopic deformationδi we can find
such a couple of microstructural parameters. Numerical solution of the microscopic minimising problem
(9) enables us to plot the dependence ofwnonl on microstructural parameters as shown inFig. 4.

We see that just a small change in the microstructural parameters can lead to an important increase or
decrease of the strain energy. This change then considerably influences the macroscopic deformation of
the system. Taking into account the termg(δ1, δ2) in (15)we have the system having some standard elas-
ticity (not dependent on the microstructure) and an additional nonlinear term strongly dependent on the

Fig. 4. Relationship between the correction partwnonl of the specific strain energy and the microstructural parameterλ2 for
fixed values ofλ1(λ1 = 0.5), Y (Y = 0.3 MPa), K(K = 0.36 MPa) in the case of macroscopically incompressible materials
(δ1 = δ−1

2 ) for three cases of macroscopic deformations:δ1 = 1.7 (plot 1),δ1 = 1.5 (plot 2),δ1 = 1.3 (plot 3).
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microstructure. Ifg(δ1, δ2) is small comparing to the second term (if states are far from the “point”(16)) we
can expect big changes in deformations of the system when some microstructural changes happen. In the
concrete, let us imagine that the microstructural parameters are “tuned” so that the material is near the point
(16). Then only the standard elasticity described by the termg plays a role and the material is in configura-
tion minimising this energy with respect to boundary conditions (e.g. a prescribed pressure). Let us suppose
that this energy is low enough so that the pressure leads to a big deformation of the material. Now, let some
inner changes in the material lead to a change in microstructure sending the microstructural parameters far
from the point(16). If the deformation did not change it would lead to an important increase of the elastic
energy (due to the termwnonl), which is impossible because no macroscopic supply of energy happened
(the external pressure is the same). Thus, the material has to considerably decrease its deformation—it
behaves as if its macroscopic stiffness sharply increased. This phenomenon resembles qualitative pro-
cesses in muscle tissues: an extremal change in macroscopic mechanical parameters due to changes of
conformations of protein chains within muscle cells—the passive state comes to the stimulated one[1].

4. Conclusion

We use the scale continuum approach in description of an elastic body whose actual state is characterised
by a minimal value of its elastic energy. Understanding each “particle” (a material point of the standard
continuum description) as a simple thermodynamic system we can suppose that the minimal value of
the global energy means minimisation of own energy of all particles too. The state of each particle is
interconnected with a (macroscopic) deformation by a set of microstructural parameters describing a
detailed geometric arrangement of individual particles and thus we obtain the model of an elastic material
whose behaviour can be controlled by changing these microstructural parameters.

To illustrate the method we have constructed the two-dimensional model modelling the strain energy
of particles by a quadratic function. An important feature of this model is the emergence of an additional
termwnonl which gives a nonlinear correction to a standard elasticity. It essentially depends on some
microstructural parameters (e.g.λi in the model(15)) and is very sensitive on the change of these
parameters. If there is a possibility of varying these parameters near the “point” where the termwnonl

vanishes, the material can exhibit a broad spectrum of material properties (e.g. its stiffness can vary
considerably). A concrete example of such a “controlling” point is shown on a simple spring model
(though using linear springs the model gives nonlinear behaviour).

The model enables us to simulate controlling of a macroscopic model by changes of microstructural
parameters. It is a promising step because such a behaviour exhibits some “materials” in living nature. The
muscle tissue, for example, varies largely its stiffness by doing some changes at the microstructural level—
large protein molecules like actin and myosin change their conformations (very roughly resembling the
change of proportions of springs inFig. 3). The question whether this way of using the scale continuum
description can lead to a more realistic models of the muscle tissue is a challenging problem for further
progress.
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[3] M. Holeček, Heat conduction equation as a limit of scale-dependent hydrodynamics, Physica A 183 (1992) 236–246.
[4] M. Holeček, Scale-dependent space averaging, University of West Bohemia, Pilsen, 1996 (Preprint No. 91).
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