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Abstract

In this paper we describe a Monte Carlo simulation of imperfections in photonic
crystals, a new class of materials with optical properties that offer promise in a
range of potential applications in the areas of information and communications
technology. We describe the relevant physical and structural properties of these
materials and outline the derivation of a theoretical model. We then present a
Monte Carlo investigation of the tolerance of these materials to fabrication defects.

1 Introduction

In recent years there has been much interest in photonic crystals, a new class of
materials with optical properties that offer promise in a range of potential ap-
plications in communications technology. Photonic crystals of dimension s are
materials in which the refractive index varies periodically with position along
s axes. Examples of one-dimensional crystals include multilayer thin films (see
for example [1]), which have been widely studied—applications include dielec-
tric mirrors and optical filters. Recently, higher-dimensional photonic crystals
have been intensively studied [2-4]. Such materials may be constructed by
fabricating a material matrix with inclusions that are centred at points of a
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two- or three-dimensional lattice. The examples used in this paper are based
on a square lattice with lattice constant d. In particular, when the period
of the refractive index is of an order comparable with the wavelength of an
incident electromagnetic field, interferometric action can yield ranges of fre-
quencies and wave vectors for which the fields cannot propagate through the
material (photonic band gaps)—the local density of states (LDOS), a useful
indicator of electromagnetic field confinement, diminishes exponentially, on
average, with the depth of penetration into the structure [5].

The introduction of defects into a photonic crystal’s lattice structure can al-
low local propagation into the structure of an electromagnetic wave with a
frequency belonging to a band gap: a localised mode analogous to the impu-
rity states of semiconductors. These defects change the radiation dynamics of
the crystal and, by controlling the nature and location of such defects, it is
possible to control the direction of propagation on a scale comparable with
the wavelength—in effect allowing the crystal to mould the flow of light in
various ways. It is this property that gives hope of many significant applica-
tions, including the fabrication of microscopic lasers, new families of optical
fibres, and the fabrication of optical waveguides and switches which may be
used as components in future integrated photonic circuits [2,3]. Consequently,
it is of interest to determine the sensitivity of a crystal’s radiation dynamics
to imperfections in its geometric and material properties.

Much of the research to date has been devoted to development of methods
to compute transmission spectra and the related band diagrams that charac-
terise the frequencies and directions for which light may propagate within a
crystal [4]. These methods, however, provide little insight into a crystal’s radi-
ation dynamics, which are characterised by the local density of states (LDOS),
studied recently in [5-7]. The LDOS at a given point determines the density
of available modes of the structure at the point. In turn, this determines the
efficiency of the radiation of an embedded source at this position. For more
details see [5-7] and the references cited therein. In this paper we describe the
application of Monte Carlo simulation to the modelling of structural defects
in two-dimensional photonic crystals. In §2 we give a brief description of a
Rayleigh multipole method for calculating the relevant Green’s function and
LDOS. The implementation of this method and its application to the study
of localised modes is described in §3, and in §4 we present a Monte Carlo
simulation study based on the method.

2 Green’s function and LDOS for a 2D crystal—TM polarisation

We consider a two-dimensional crystal comprising a finite cluster of N, circular
cylinders of infinite length aligned with the z axis, with cylinder / centred
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Fig. 1. Contour plots in the z,y plane of LDOS (p) (left) and square modulus of
Green’s function (|V,|?) (right) for TM polarisation for a square lattice (N, = 49)
of infinite circular cylinders, whose positions are indicated by circles. The crystal
is regular (no defects), with cylinder radii 0.3d and refractive index 3.0. The field
plots correspond to normalised wavelengths of A/d = 3.3 (top), in the band gap,
and A\/d = 5.5. (bottom), a pass band.

at ¢; and having radius a; and refractive index m;. The response of such a
crystal to a cylindrical wave emanating from a line source at c; in the z,y
plane and parallel to the cylinder axes is given by the two-dimensional Green’s
function for the source point. More generally, the radiation dynamics at a
particular point of a photonic crystal are characterised by the LDOS. For a
given frequency the LDOS provides the spectral distribution of modes to which
a fluorescent line source can couple. For large LDOS values, the probability
of emission at that frequency is enhanced; correspondingly, a small LDOS
value indicates a lower probability of emission. In a band gap of an infinite
crystal, the LDOS is zero: emission cannot occur. The LDOS has previously
been calculated in infinite periodic structures of one dimension, and at isolated
points within the unit cell of a three-dimensional lattice of spheres [8,9]. In
a band gap of a finite crystal the LDOS is small, but not zero—it is thus
a parameter of physical significance for applications. Accordingly, there is
considerable interest in the development of efficient methods for computing
densities of states, and related measures, for finite crystals of realistic size.
Recent papers [5-7] describe such a method for two-dimensional structures,
which we outline briefly below.

Figure 1 presents greyscale contour plots in the z,y plane (a plane of symme-
try) of both the Green’s function for a line source at (0, —4) and the LDOS,



both for a pass band and for a wavelength in a band gap. In the band gap
case (\/d = 3.3), high values of the Green’s function for y < —2 together with
low values for y > —2 indicate strong reflection of the incident field by the
structure. The LDOS plot for this wavelength indicates a low field strength
within the crystal but a relatively high field strength at the surface layer.
For the wavelength in the pass band (A\/d = 5.5), however, the LDOS plot
indicates that propagation within the crystal is allowed, which behaviour is
demonstrated by the Green’s function plot.

In the following we assume that the crystal material is macroscopic and
isotropic, the dielectric parameter is independent of frequency and piecewise
constant and magnetic permeability is constant (=1). We also assume sinu-
soidal time dependence of the electric and magnetic fields, that there are no
free charges, and the current is a line source parallel to the z axis with angular
frequency w = kgc. Maxwell’s equations then have the form

VxE+ikZH=0 V xH-—i(ky/Zy)n*(r)E = Jz
V-H=0 V-E=0

where ky is the free-space wavenumber, Z, is the impedance of free space,
n(r) is the refractive index and r denotes position in the plane normal to
the cylinders. When the wave vector lies in the plane normal to the cylinder
axes (in-plane incidence), the field problem decouples into two fundamental
polarisations in which either the electric field (TM polarisation) or magnetic
field (TE polarisation) aligns with the cylinder axes. We consider only the TM
polarisation that is parametrised by the single non-trivial component of the
two-dimensional Green’s tensor, which we denote by V€. In this case Maxwell’s
equations yield the two-dimensional boundary value problem for V¢ in which

V2Ve(r; cs) + k§n2(r)Ve(r; cs) = d(r — cy),

and V¢ and its normal derivative v - VV¢ are continuous at cylinder inter-
faces. In the vicinity of each cylinder [, we expand the exterior field in local
coordinates r; = (1, 6;) =r — ¢,

Ve(rie) = Y [AﬁnJm(kon)—i-Ban,(,P(kon)] eimo (1)

m=—0Cco

using a multipole expansion involving both irregular components (coefficients
B!.), denoting scattered field sources associated with this cylinder, and regular
components (Al ). This expansion is valid only in the annulus extending from
the surface of cylinder [ to the surface of the nearest cylinder or source. An
expansion valid everywhere in the crystal matrix [7] is given by:

N¢ 00 .
Ve(r;c,) = Vi(r;es) + Y. Y. BLHY (ko|r — cg|)e™ sl (2)

g=1m=—c0



where VE(r; ¢,) = x¥(c,) HS" (ko|r — ¢,|)/(47) is the solution of the boundary
value problem in the absence of a cylinder cluster. Here x***(c,), the exte-
rior characteristic function, is 1 for a source exterior to all cylinders and 0
otherwise. Similarly, letting xi™(c) be 1 if the source lies in cylinder [ and 0
otherwise, the field expansion inside cylinder [ is given by

int Cs 0o .
Ve(r;cs) = Xi 4(i )Hél)(konz|1' —c)+ Y CLm(komyr — c|)eimare(e—en),
(3)

m=—0Cco

Equating the expansions in (1) and (2) yields a field identity of form
A =SB + x*K, (4)

where S is a partitioned matrix specifying multipole contributions associated
with sources on each scatterer, K is a partitioned vector containing the co-
efficients of the source at c, with respect to a local expansion, and A, B
are partitioned vectors containing the multipole coefficients for all cylinders.
Applying the boundary conditions then gives identities B = RA + Tx™Q
and C = T'A + R'x'™Q, where R, R/, T T' denote matrices of cylindrical
harmonic reflection and transmission coefficients and the term Q represents
a source interior to a cylinder. These, together with (4), yield the Rayleigh
identity:

(I-RS)B = Ry™K + Tx™Q, (5)
from which B, and hence A, C and V¢, are determined. The LDOS, denoted
by p(r;w), is then defined [10] as a function of spatial position r and temporal
angular frequency w by

We note here that in free space p has value 0.25. Also note that these field
constructions are exact up to the truncation of the series in (2) and (3). In
implementing the method, the number of cylinders N, and the number of
terms retained in these series govern the size of the dense matrix I — RS in
(5). In the examples used in this paper, 11 terms (m = 5) were used.

3 Implementation

As noted in §1, it is of interest to determine the sensitivity of a crystal’s local
radiation dynamics to imperfections in the geometric and material properties
of the crystal structure that may be introduced during manufacture—in par-
ticular, perturbations in the cylinder radii, refractive indices and positions.
Here we describe a Monte Carlo simulation of an ensemble of N; photonic



crystals using a given design containing N, cylinders, which we refer to as
the ideal structure, characterised by parameter vectors defining the locations
of the cylinder centres, their radii and their refractive indices (which may be
complex-valued). Each realisation in the ensemble is formed by the addition
to these parameter vectors of corresponding random perturbations: ey, €y, €,
€n,, €n; (the first three representing perturbations of the z and y coordinates
of the cylinder centres and the cylinder radii, and the last two representing
perturbations of the real and imaginary parts of the refractive indices). The
perturbing vectors are assumed to be uniformly distributed on a specified
interval of form [—€y max, €v,max), Where v is one of x, y, a, n,, n,.

The values of p and |V¢|? for each realisation in the ensemble are com-
puted at each point of a user-specified grid P in the z,y plane. Let ¢ =
(€x, €y €as €n, ; €n;) and denote by p(r;w, €) and |V¢|*(r; w, €) the values of p(r;w)
and |V¢|?(r; w) for the realisation with perturbation e. Also, denote by (p(r; w))
and (|[V¢?(r;w)) the mean values (over €) of p(r;w,€) and [V¢]*(r;w,¢€) re-
spectively. The simulation objective is to estimate, at the grid points, val-
ues of (p(r;w)) and (|V8E(£w)) by corresponding ensemble averages, de-

noted by pv;)(r;w) and [Ve[?y ) (r;w). In practice we also track estimates

of ¢, := H((p(r;w)))rePH2 and ¢y = H((|Ve|2(r;w)))1r€73 |2, and the standard
errors for these variables (see, for example, [11]). Two methods were used to
generate the perturbations in the initial program: Lapack’s pseudo-random
number generator [12], and the Faure low discrepancy sequence [13]. The first
500 terms in the Faure sequence were skipped in the example described below.

The simulation program is well-suited to a parallel environment and has been
implemented in Fortran90 using MPI to support multiple slave processes, each
executing the code for a single realisation. A master process is responsible
for generating the realisations, distributing these to the slave processes and
collating their results. Each slave process itself manifests substantial loop-level
parallelism and, when executed in a shared memory environment, the code can
use OpenMP to distribute the slave process over multiple processors.

As an example we consider an ideal crystal composed of 49 cylinders of radius
0.3 units and refractive index 3.0, with cylinders centred at the integer points
of [—3, 3]%. Note that the crystal design and its optical properties are scalable,
so when specifying the positions of cylinder centres we may use integer lattice
points. In the notation of §1, this is equivalent to choosing d = 1. An ensem-
ble of 500 realisatons of this design was created with realisations subject to
perturbations with ex max = 0.01, €y max = 0.02, €4 max = 0.1, €n, max = 0.2 and
€n;,max = 0.2. Values of We\|2(500) for the TM polarisation were computed on a
square grid P of 1600 points in [—3.5, 3.5]2. Figure 2 gives the estimated stan-
dard error for ¢y . Fitting this data to the expression ¢N} yields b = —0.39 for
the Lapack pseudo-random generator, and b = —0.36 for the Faure sequence.
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Fig. 2. Plots of estimated standard error for ¢y versus number of realisations Ny,
for a square cluster of 49 circular cylinders of infinite length aligned with the z axis.
The cylinders have common refractive index 3.0 and radius 0.3d units, where d is
the magnitude of the lattice basis vectors. The results obtained with the Lapack
generator are plotted on the left, and those obtained with the Faure sequence on
the right. The dashed lines are plots of the fitted functions f(N7) = cN?.

The value of ¢y obtained after 500 realisations with the Lapack generator
was 0.44153 with an estimated standard error of 0.0062. The Faure sequence
yielded ¢y = 0.44922 with an estimated standard error of 0.0067.

4 Application: imperfections in a photonic waveguide

As described in §1, the introduction of flaws in the lattice structure of a pho-
tonic crystal potentially allows the localised propagation of modes belonging
to a band gap of a corresponding flawless crystal. Structuring the flaws to pro-
duce a channel through the crystal can then produce a photonic waveguide on
a scale comparable with the wavelength of light in the band gap. Such a guide
may contain sharp corners around which light is guided by the local radiation
dynamics (see Fig. 3). The transmission properties depend critically on the
lattice structure of the crystal. Here we consider a Monte Carlo study of trans-
mission for waveguides using the design containing 226 cylinders illustrated in
Fig. 3, which we refer to as the ideal structure. The cylinders of the cluster are
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Fig. 3. Contour plots of p (left) and |V,|? (right) for TM polarisation for a waveguide
(N, = 226) composed of infinite circular cylinders with no disorder. The cylinders
have radius 0.3d and refractive index 3.0. The black dot at (—4,—7) in the second
plot indicates the position of a line source. The wavelength used is 3.3d.



Table 1

Values of psy and |V/e\|2(50) at selected points for TM polarisation for the waveguide
of Fig. 3 with a source at (—4, —7). The point (0, 0) is the centre point of the channel,
(—4,3.5) lies in the crystal matrix in line with, but beyond, the first segment of the
channel, and (4,7) lies just beyond the channel exit.

(z,y) (0,0) (—4,3.5) 4,7

€a,max/d 5(50) |V/e\|2 5(50) |Ve\|2 (50) 5(50) |V/e\|2(5o)
0 0.26(0) 0.66(— 1) 0.28(—2) 0.42(-3) | 0.37(0) 0.31(-1)
0.01 0.20(0) 0.46(—1) | 0.33(—2) 0.22(—3) | 0.22(0) 0.49(-1)
0.03 0.60(0) 0.13(0) 0.98(—2) 0.14(-2) | 0.37(0) 0.26(—1)
0.065 0.23(0) 0.36(—1) | 0.86(—1) 0.54(—2) | 0.30(0) 0.17(-1)
0.1 0.28(0) 0.34(—2) | 0.27(0) 0.23(—2) | 0.30(0) 0.49(-3)

centred at the integer lattice points in the region [—9,9] x [—6, 6], excluding
the channel points indicated in the figure. As in the example of §3, we use a
lattice constant d = 1. The crystal structure of each realisation was perturbed
by the addition to cylinder radii of random increments uniformly distributed
on a specified interval [—€a max, €amax|- The values of (p) and (|[V¢[?) for TM
polarisation were then estimated at each point of a square grid in the z,y
plane.

Using the notation of §3, Table 1 gives the values of p(5p) and |Ve\|2(50) at se-
lected points in the channel, in the crystal and outside the crystal, for a range
of levels of perturbation €, max.- The wavelength used (A/d = 3.3) lies in the

band gap for the crystal. High values of |Ve|2(50) in the channel, together with
low values in the matrix, indicate strong guiding in the weak randomisation
cases. With strong randomisation (€amax/d = 0.1) the values of p(se) are all
reasonably close to the free space value (0.25)—the structure’s influence on
local radiation dynamics is relativel/y\minor. Further, with strong randomisa-

tion, the relatively low values of [V¢|?, at points at the channel exit and
in the channel, but beyond its first segment, indicate effective closure of the
channel.

Figure 4 gives contour plots of p(5g) and WG\P(E)O). The cylinder positions of the
ideal structure are indicated by the circles in the plot. For €, max/d = 0.01, 0.03
the figure demonstrates the suppression of propagation within the structure
except in the waveguide, indicating that the crystal possesses substantial guid-
ing properties. However, for €, max/d = 0.065 both the LDOS and the Green’s
function plots suggest that there is substantial leakage from the guiding chan-
nel. At the €umax/d = 0.1 level this leakage is so severe that guiding has
effectively ceased. These observations are consistent with the data in Table 1.
Data such as that presented in Table 1 and Fig. 4 may provide substantial
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Fig. 4. Contour plots of piso) (left) and |V/e\|2(50) (right) for TM polarisation for
a waveguide (N, = 226) composed of infinite circular cylinders with increasingly
disordered radii. The crystal’s design parameters and the wavelength used are the
same as those of Fig. 3. In particular, the design radius is 0.3d units.



benefits in the manufacture of photonic crystal waveguides.
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