Combined Generators with Components from
Different Families

Pierre L'Ecuyer and Jacinthe Granger-Piché
lecuyer@iro.umontreal.ca, granger@iro.umontreal.ca
http://www.iro.umontreal.ca/~lecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, Canada

Abstract

Most random number generators used in practice are based on linear recurrences,
with linear output transformations. This gives long periods, fast implementations,
and structures that are easy to analyze. But the points produced by these generators
have very regular structures. Nonlinear generators can have less regular structures,
but they are generally slower and much harder to analyze when their period is long.

In this paper, combined generators with one large linear component, and a second
component of a different type (nonlinear or linear), are proposed and studied. The
structure of vectors of successive and non-successive output values produced by
the combined generators is analyzed. Under mild conditions, these vector sets are
proved to have at least as much uniformity than the corresponding sets for the linear
component alone. In empirical statistical tests, these combined generators perform
better than simple linear generator of comparable period lengths, because of their
less regular structure. Efficient implementation methods are suggested.

Key words: random numbers, uniformity, combined generators, statistical tests

1 Introduction

Combined random number generators with components from the same family
have been studied extensively. Specific generators of this form are now avail-
able in software packages. Examples include linear congruential generators

1" This work has been supported by NSERC-Canada Grant no. ODGP0110050 and
FCAR-Québec grant no. ER-3218 to the first author, and by an NSERC scholarship
to the second author

Preprint submitted to Elsevier Preprint 3 June 2002

(LCGs) and multiple recursive generators (MRGs) combined with a modulo 1
addition [6] and Tausworthe or linear feedback shift register (LFSR) genera-
tors combined via a bitwise exclusive-or [5,8,18]. The theoretical properties of
these linear generators are easy to analyze because they have the same type
of highly regular structure as their components. Having a lot of structure is
convenient from the analysis viewpoint but becomes a drawback from the “ap-
parent randomness” or “unpredictability” viewpoint. It is then interesting to
explore how much must be given away in terms of our understanding of the
structure and in the “guaranteed uniformity” of the point set produced by the
generator over its full period, in order to obtain a more complicated (or less
regular) structure.

In this paper, we consider combined generators with components taken from
different families, from the theoretical and empirical viewpoints. Our goal
is to construct combined generators with good (and guaranteed) uniformity
properties, less regular structure than purely linear generators, and fast imple-
mentations. We concentrate on the following two main classes of combinations:
(a) a LCG or MRG combined with another type of generator by adding the
outputs modulo 1, and (b) a LESR generator combined with another type of
generator via a bitwise exclusive-or. The second type of generator used in the
combination can be nonlinear, with a complicated structure. Its purpose is to
scramble the regularity and increase the apparent randomness.

We analyze the structural properties of sets of ¢-tuples formed by successive
output values, or by non-successive output values at specified lags, for these
combined generators. Measuring the uniformity of such sets is a standard
way of assessing the approximate uniformity and independence of the output
values [11]. We show that a certain level of uniformity for these sets can be
guaranteed if the corresponding point sets produced by the LCG, MRG, or
LFSR are well distributed. On the other hand, these point sets have a much less
regular structure than the corresponding point sets for LCG, MRG, or LFSR.
This shows up in empirical testing: Standard statistical tests require a larger
sample size to detect the structure, or to find statistical deficiencies of the
generator, for a mixed combined generator than for a simple linear generator
of comparable period length. In our experiments, this trend is remarkably
systematic.

In the next section, we recall properties of two classes of linear generators.
In Sections 3 and 4, we analyze the structural properties of combined genera-
tors with one MRG component and with one LFSR component, respectively.
Section 5 summarizes our statistical experiments and Section 6 discusses im-
plementation issues. Further details can be found in [3].

2 Linear Generators and their Measures of Uniformity

A MRG is defined by the recurrence

Tp = (alxn—l + akxn—k) mod m; (1)
Up = Ty /M, (2)

where the modulus m and the order k are positive integers, the coefficients a;
belong to Z,, = {0,1,...,m — 1}, and u, € [0,1) is the output at step n. For
prime m and properly chosen a;’s, the recurrence has period length p = m*—1
[4]. We have a LCG when k = 1.

For any fixed set of non-negative integers I = {iy, s, -,4;}, define
Uy ={u; = (ug,,...,u): (zg,...,06_1) €ZEY, (3)
the set of all vectors (u;,,...,u;) produced by the generator from its mF

possible initial states. (Formally speaking, ¥, is a multiset in the sense that
duplicate vectors are counted as many times as they appear in it, so ¥; always
has cardinality m*.) It is well known that in the case of a MRG, this set is the
intersection of a lattice L; with the ¢t-dimensional unit hypercube [0, 1)!, where
Ly contains the set Z' of all integer vectors [4,10]. This implies that ¥, lies on
a limited number of equidistant parallel hyperplanes, at a distance (say) d;
apart. A standard way of measuring the uniformity of W; is to compute this
dy, which must be as small as possible for all index sets I that one wishes to
consider. This is called the spectral test. It is customary to normalize d; by
computing d; /d;, where d; is an absolute lower bound on d; given m, k, and
t, and to select MRGs based on a figure of merit defined as the worst case
(smallest) of these ratios over a specified class of sets I [6,7,12]. A common
choice for this class is to consider the sets I = {0,...,t — 1} of successive
indices, for ¢t < t1, where ¢; is an arbitrary constant.

The LFSR (or Tausworthe) generators considered here are defined by the
recurrence

xn=(a12p—1 + -+ - + agTp_x) mod 2; (4)
Up = Z xns+i—12_ia (5)
i=1

for some positive integers s and w [5,16-18]. The maximal period length is
p = 2% — 1. Specific parameter sets and implementations are given, e.g., in
[8,18] and some references therein.

Let B be an arbitrary set of selected bits of the output values. More specifically,
consider the bit string formed by concatenating the bits by 1, ..., by s, in the

expansion of ug, the bits b1, ..., b1 in the expansion of uy, ..., and the bits
bi—11,...,bi—15,, in the expansion of u;_1, where so+...+ 5,4 et g < k. Let
B denote the set of these £’ bit indices and let ®5 be the set of all bit strings
thus formed when the initial state of the generator runs over its 2 possible
values. (®p is called a set, but like Wy, it should be interpreted as a multiset,
in the sense that each bit string must be counted as many times as it occurs.)
We say that the generator is B-equidistributed if ® g is equidistributed, i.e., if it
contains every bit string of length &’ exactly 25~ times. This equidistribution
can be verified by checking if the linear transformation that expresses these
k' bits in terms of (zg,...,zx—1) has full rank [5,13]. In (5), the bit b, ; of
Up 18 Tpsii—1, but our development easily extends to more general classes of
“LFSRs”, such as those considered in [13].

A special case is when B contains the ¢ most significant bits of the first ¢
successive output values ug, ..., u;_1. In this case B-equidistribution, usually
called (t,¢)-equidistribution, means that if each axis of the unit hypercube
[0, 1)! is partitioned into 2¢ equal parts, each of the 2 small cubes of volume
27% thus determined contains exactly 2¥=% points from the set ¥; = {u; =
(ug, - 1) : (s ..., xp_1) € {0,1}*}. A generator is called asymptotically
random or mazimally equidistributed (ME) for the word size w if it is (¢, ¢)-
equidistributed whenever ¢ < min(|k/t],w), for 1 < ¢ < k [5,18,19]. Such
generators are listed, e.g., in [8].

For nonlinear generators, the uniformity of W, is often assessed via discrepancy
bounds [16], which are sometimes averages over an entire family of generators.
For specific generator instances, they are not tight. No easily computable
uniformity measure is currently available for these generators. On the other
hand, certain types of nonlinear generators tend to perform better than the
linear ones in empirical statistical tests [11]. In the forthcoming sections, we try
to team up the guaranteed uniformity of linear generators with the irregularity
of the nonlinear ones.

3 Combining a MRG with another generator

In this section and the next one, we combine two generators, G; and G,. For
Jj =1,2, let S; be the state space of G}, s;¢ € S; its initial state, u;,, € [0, 1)
its output at step n, and p; its period length. Let G denote the combined
generator, with state space S, initial state sq, output w, at step n, and period
length p.

We suppose in this section that G is a MRG, G5 any other type of generator,
and that the output of G is defined by

Up = (U1, + Uz,) mod 1. (6)

0.6 o o o 4
Unp+1

04 * ’ B

.
0.2 r M b

0 I ‘. I I
0 0.2 0.4 0.6 0.8 1

Un

Fig. 1. Pairs (up, tun+1) for the LCG with m =29 and a1 =8

For any I = {iy,i2,- -4}, let ¥; 1 = {ujr = (wjsy, .y uj4,) : Sj0 € S;} and
U, ={u; = (uyy,...,u;,) : o € S}. Here, ¥y ; is the intersection with [0, 1)* of
a lattice Ly that contains Z;. We also have ¥ = {(u;; +uy ;) mod 1: 51 €
Sy and 599 € Sa} = U, ges, (V1,7 + Uz 1) mod 1, where the “mod 1” reduction
is applied coordinatewise. Thus W; is the superposition of |Ss| different shifts,
modulo 1, of the set ¥, ;. The next lemma shows that shifting ¥; ; modulo 1
preserves its structure, in the sense that it is the same as shifting the lattice
L; and taking the intersection with [0,1)". Then, ¥; is the intersection with
[0,1)" of the union of |Ss| shifted copies of Ly, and we can conclude that it
covers the unit hypercube [0,1)" at least as well as ¥y, in the sense that it
cannot leave bigger uncovered gaps.

Lemma 1 Letw € R and let \f/u = (Y17 +w) mod 1. Then, ﬁ/l,[=(L;+
w) N [0,1)", where Ly + w is the lattice L; shifted by w.

Proof: Let x € ‘ifl,l' Then, x = (y + w) mod 1 for some y € ¥, ;. That
is, x =y + w — z where z € Z'. This implies that x € (L; + w) N [0,1)",
because y — z € L; (recall that L; contains Z') and x € [0, 1)’. Conversely, if
x € (Lr+w)N[0,1)% then x =y +w € [0, 1) for some y € L;, and therefore
xcVU, ;. m

Example 1 Let G; be a LCG with parameters m = 29 and a; = 8, and
let t = 2 and I = {0,1}. The black disks in Figure 1 are the 29 points
uy; = (u1p,u1q) of Wy 7. The two arrows in the figure represent the vectors
vy = (4/29, 3/29) and vy = (1/29, 8/29), which form a basis of Ly; i.e., Ly
is comprised of all integer linear combinations of these two vectors. These
vectors determine a parallelogram P, also illustrated in the figure. Suppose
now that G5 has only three states and produces the output sequence 0.3, 0.6,
0.6. Then, ¥y, = {(0.3,0.6), (0.6,0.6), (0.6,0.3)}. These points are marked
by three small squares in Figure 1. Figure 2 shows the 87 points of ;.

Each point uy ; € Wy can be moved to the parallelogram P by adding to it

1 o L, T P
. . *
. . .
. . .
. ° .
.
08 . L ..
. . .
. . .
. . o
® . .
|® -
u'n+1 0.6 . * ‘. .
. . .
. . .
. * .
. . .
0.4 e . o b
hd . .
. . d
. ® .
* . .
.
02 ‘e . 1
. .
. * o ”
.
. . ‘ ‘. n
0 e 1 bl L e
0 0.2 0.4 0.6 0.8 1

Fig. 2. Pairs (up, up+1) for the combined generator

some integer multiples of vy and vy; that is, moved to Qg = uy; + 21vy +
29vy € P for some integers z; and 2. Let \I/QJ C P be the set of points thus
obtained. These points are marked by the three arrows in Figure 2. Note that
L+ = Ly +ug 1+ 21V + 22ve = L +uy g, because z1vy + 29vy € L.
Therefore ¥y = (L + Wy) N [0,1)! = (L; 4+ ¥y ;) N[0, 1)?, which means that
moving the points of Wy to P as we just did does not change ;.

The three points of Wy ; form a pattern in P that is reapeated (modulo 1) 29
times in W, (see Figure 2). The uniformity of the point set W; is determined by
two things: the quality of the lattice L; and the uniformity of the point set \TJQ’ I
in P. To improve the quality of U; here, we could certainly choose G5 so that
the set @2, 1 covers the parallelogram P more evenly. This could be viewed as
a criterion for choosing G, given GG;. The same idea applies in more than two
dimensions, and to other MRGs as well. However, constructing Gs so that \I’Z I
covers the appropriate parallelogram for several sets I simultaneously seems
hard in practice, unless GGy and the combined generator also have a lattice
structure, but this is precisely what we want to get away from. Constructing
G5 to nicely cover these parallelograms seems incompatible with our goal of
introducing irregularity in G.

The bottom line: We are sure that W, covers [0,1)" at least as well as Uy ;.
Since ¥ contains more points, the coverage could be expected to be improved,
but its seems hard to guarantee an improvement while introducing irregularity
at the same time.

4 Combining a LFSR with another generator

Now let GG; be a LFSR, G5 another type of generator, and the output of G be
defined by

Up = Ul n > U2 n,s (7)

where @ denotes the bitwise exclusive-or of the binary expansions of the two
fractions. For any bit selection B of size £/, let ®; 5 and ®p be the correspond-
ing sets of bit strings for GG; and G, respectively.

Proposition 1 If Gy is B-equidistributed, then ®1 5 ® W is equidistributed
for each k'-bit vector w and G is also B-equidistributed.

Proof: Using the fact that x @ w = x' @ w if and only if x = X/, it is easily
seen that @) p & W = Uxes, ,(X @ W) is equidistributed if and only if &, p is,
because the strings that are identical in one set are also identical in the other.
When this happens, ®5 = Uyca, (P15 ® W) is also equidistributed because
the union of equidistributed sets is equidistribued. B

As a special case of this proposition, if G is (¢, £)-equidistributed, then G also
is. The proposition also holds with G replaced by G5. This implies, in par-
ticular, that if G is Bi-equidistributed and G5 is Bs-equidistributed for some
bit sets By and Bs, then G is both B;-equidistributed and Bs-equidistributed.
This does not imply, however, that G is (B;UBjy)-equidistributed. For example,
suppose By = {1,2}, By = {3}, B = {1,2,3}, and &5 = {000, 000,011,011,
100,100,111,111}. Then ®p, and ®p, are both equidistributed, but ®p is
not.

5 Statistical Testing

We now report the results of our statistical testing with families of linear and
nonlinear generators, and their combinations. For each of the tests that we
have applied, n random points are thrown in the unit hypercube [0, 1)¢, where
n is called the sample size. For the nearest pair test [9], the test statistic is the
distance between the two nearest points. For the birthday spacings [14] and
the collision [15] tests, the hypercube is partitioned into k = d* cubic cells of
equal sizes. The collision test computes the number of times a point falls in
a cell already occupied (number of collisions), whereas the birthday spacings
test computes the number of collisions in the spacings between the successive
numbers of the occupied cells. The reader can consult the references for precise
definitions and analyzes of these tests.

These tests have been chosen because they are powerful for detecting regu-
larities in linear generators. They have been applied in a systematic way, as

follows [9,11,14,15]. For each family of generators we seek an approximate re-
lationship of the form ng = Kp?, for some constants v and K, where p is the
period length of the generator and ng is the minimal sample size for which
the p-value of the test is outside the interval (10715, 1 — 107'%). The p-value
is defined as

_ J P[T >t | Hy if P[T">t|Ho] < P[T" <[Mo, (8)
p= 1—P[T <t|Hy| otherwise,

where t is the value taken by the test statistic 7', and the null hypothesis Hj is
that the w,’s are i.i.d. U(0, 1) random variables. It is important to distinguish
the two cases in (8) because in some tests (e.g., the birthday spacings and
collision tests), 7" can only take integer values.

To estimate v and K for any given family, we applied the tests to generators
of period length p ~ 2¢ for all integer values of e in a certain range. After
determining v in a heuristic way, we defined K = 2" where v is the smallest
integer 4 for which the p-value of the test with sample size n = 2777¢ is outside
the interval (1071% 1 —10719).

The generator families considered here are LCGs selected via the spectral test
in up to 8 dimensions and taken from Table 2 of [7], combined LFSR genera-
tors with good equidistribution properties [8], explicit inversive generators [1],
defined by z,, = (an + ¢) mod m, 2z, = x,;' mod m (the inverse of z,, mod-
ulo m), and w,, = z,/m, and cubic congruential generators [2,11], defined by
2, = (az3_,+1) mod m and u,, = z,,/m. For the latter two nonlinear genera-
tors, the parameters m, a and ¢ for each value of e were taken from [11]. They
were selected so that the output sequence has maximal period length m. We
also consider the combination of a LCG with each other type of generator by
addition modulo 1, and a LFSR combined with each other type of generator
by bitwise exclusive-or. In these combinations, the period length of component
J is p; = 2% and that of the combined generator is p ~ 2° ~ 2°12°,

Tables 1 and 2 summarize the results (i.e., give our estimates of v and K)
for a two-dimensional nearest pair test and for an eight-dimensional birthday
spacings test. We see in both tables that for the (nonlinear) inversive and cubic
generators, failure occurs only after the entire period length is exhausted. On
the other hand, LCGs fail with a sample size proportional to the square root
of the period length (v = 1/2) for the nearest pair test and the cubic root
(v = 1/3) for the birthday spacings test. When LCGs are combined with
a fixed-size nonlinear generator (e.g., e = 6 or ey = 10), this rule (i.e., 7)
remains the same, although the constant K increases by a factor that depends
on e;. This means that the mixed combined generator stays alive longer than
the LCG in face of these tests if both have similar period lengths. If the size of
the nonlinear component increases with that of the LCG, i.e., if ey increases
with e (e.g., e3 = e/4 or es = €/2), we see an improvement in the value of ~,

Table 1

Estimates of v and K for the nearest pair test in t = 2 dimensions

Table 2

Family) v K
LCG /2 8
Inversive 1 1
Cubic 1 1
LCG + Inversive | 6 1/2 32
LCG + Inversive | 10 1/2 256
LCG + Inversive | e/4 2/3 2
LCG + Inversive | ¢/2 2/3 32
LCG + Cubic 6 1/2 32
LCG + Cubic | 10 1/2 256
LCG + Cubic | e/4 2/3 2
LCG + Cubic e/2 2/3 32
LCG + LFSR 10 1/2* 256
LCG + LFSR | e/2 2/3* 16

Estimates of v and K for the birthday spacings test, with ¢t = 8, k ~ p, and

n3/4k ~ 1

Family e ol K
LCG /3 8
LFSR 2/5 32
Inversive 1 2
Cubic 1 1
LCG + Inversive 6 1/3 16
LCG + Inversive | 10 1/3 64
LCG + Inversive |e/4 2/5 8
LCG + Inversive |e/2 1/2 8
LCG + LFSR 10 1/3 64
LCG + LFSR e/2 3/5 1
LFSR @ Inversive | 6 2/5 128
LFSR & Inversive | 10 1/2 128
LFSR & Inversive | e/4 3/5 4
LFSR @ Inversive | ¢/2 3/5 32
LFSR & LCG 10 12 64
LFSR & LCG e/2 3/5 16

from 1/2 to 2/3 in Table 1 and from 1/3 to 1/2 in Table 2. Similar results are
obtained in Table 2 when the LCG is combined with a LFSR. We also obtain
the same types of results for a LEFSR combined with another type of generator
via bitwise exclusive-or (the bottom part of Table 2).

Other tests were made, for other values of ¢t and es, and the results were simi-
lar. See [3] for more details. The “correct” values of v and K were not always
clear from the results, especially for the collision tests. However, the following
was observed systematically: For comparable period lengths, the mixed com-
bined generators always did better in the tests than the linear ones, there was

more improvement when the value of e, was larger, and v was improved only
when ey was increased together with e. This means that to destroy the regu-
larity, combining a large linear generator with a very small nonlinear one does
not suffice. The size of the nonlinear component must be significant enough.
Moreover, combining two different types of linear generators, such as a LCG or
MRG with a LFSR, seems to do as well as the linear-nonlinear combinations,
at least from the empirical perspective.

6 Implementations

One might argue that a combined generator with a large nonlinear component
would be unacceptably slow for many applications. However, nonlinear gen-
erators with arbitrarily long periods can be constructed by combining small
nonlinear generators with relatively prime period lengths, and very fast im-
plementations of these small nonlinear generators can be obtained simply by
precomputing their output sequences and storing them in tables. Moreover,
once it is decided to implement a generator component via a table, its defi-
nition can be made very complicated and this has no effect on the running
speed. In fact, for a component of period p;, one can simply generate a random
permutation of the p; output values, by any method, and store it in the table.

For a concrete illustration, we took the generator 1fsr113 of [8], with period
length near 23, and combined it by bitwise exclusive-or with a nonlinear
generator of period length 2'® implemented in a table. The code was written
in C and compiled by the gcc compiler with full optimization options. The
CPU time needed to generate and add 10 million random numbers was 0.7
seconds with this combined generator, compared with 0.6 seconds for 1fsr113
alone, on an AMD Athlon processor at 750 MHz. On a Pentium IIT at 500 MHz
and with the g++ compiler, the numbers were 1.9 and 1.3 seconds, respectively.

References

[1] J. Eichenauer-Herrmann. Inversive congruential pseudorandom numbers: A
tutorial. International Statistical Reviews, 60:167-176, 1992.

[2] J. Eichenauer-Herrmann and E. Herrmann. Compound cubic congruential
pseudorandom numbers. Computing, 59:85-90, 1997.

[3] J. Granger-Piché. Générateurs pseudo-aléatoires combinant des récurrences
linéaires et non linéaires. Master’s thesis, Département d’informatique et de
recherche opérationnelle, Université de Montréal, 2001.

[4] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., third edition, 1998.

10

[6] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation, 65(213):203-213, 1996.

[6] P. L’Ecuyer. Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1):159-164, 1999.

[7] P. L’Ecuyer. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation, 68(225):249-260, 1999.

[8] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation, 68(225):261-269, 1999.

[9] P. L’Ecuyer, J.-F. Cordeau, and R. Simard. Close-point spatial tests and their
application to random number generators. Operations Research, 48(2):308-317,
2000.

[10] P. L’Ecuyer and R. Couture. An implementation of the lattice and spectral tests
for multiple recursive linear random number generators. INFORMS Journal on
Computing, 9(2):206-217, 1997.

[11] P. L’Ecuyer and P. Hellekalek. Random number generators: Selection criteria
and testing. In P. Hellekalek and G. Larcher, editors, Random and Quasi-
Random Point Sets, volume 138 of Lecture Notes in Statistics, pages 223-265.
Springer, New York, 1998.

[12] P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214-1235, 2000.

[13] P. L’Ecuyer and F. Panneton. Construction of equidistributed generators
based on linear recurrences modulo 2. In K.-T. Fang, F. J. Hickernell, and
H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 318-330, Berlin, 2002. Springer-Verlag.

[14] P. L’Ecuyer and R. Simard. On the performance of birthday spacings tests for
certain families of random number generators. Mathematics and Computers in
Simulation, 55(1-3):131-137, 2001.

[15] P. L’Ecuyer, R. Simard, and S. Wegenkittl. Sparse serial tests of uniformity
for random number generators. SIAM Journal on Scientific Computing. To
appear.

[16] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,
volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied
Mathematics. STAM, Philadelphia, 1992.

[17] R. C. Tausworthe. Random numbers generated by linear recurrence modulo
two. Mathematics of Computation, 19:201-209, 1965.

[18] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass., 1995.

[19] J. P. R. Tootill, W. D. Robinson, and D. J. Eagle. An asymptotically random
Tausworthe sequence. Journal of the ACM, 20:469-481, 1973.

11

