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A WAVELET “TIME-SHIFT-DETAIL” DECOMPOSITION
N. LEVAN AND C.S. KUBRUSLY

ABSTRACT. We show that, with respect to an orthonormal wavelet 1 (-) € £2(R)
any f(-) € £L2(R) is, on the one hand, the sum of its “layers of details” over
all time-shifts, and on the other hand, the sum of its layers of details over all
scales. The latter is well known and is a consequence of a wandering subspace
decomposition of £2 (R) which, in turn, resulted from a wavelet Multiresolution
Analysis (MRA). The former has not been discussed before. We show that it
is a consequence of a decomposition of £2(R) in terms of reducing subspaces
of the dilation-by-2 shift operator.

1. INTRODUCTION

An element () € £L2(R)—with the usual inner product [-,-] and norm || - ||—is
called an orthonormal wavelet if the functions
(1.1) Ymn(-) :=259(2™() —n), mncZ

——called wavelet orthonormal functions, form a basis for £2(R) [5]. Therefore,
corresponding to a given wavelet ¥ (-), any f(-) € £2(R) admits the orthogonal
decomposition

(1.2) fe) = Z Z () ¥mn ()] Ymn ().

Now, for each m,n € Z, the projection of f(-) onto ¥, ,(+) is
(13) O ¥maO)Ymal) = [f(), 25027 () =n)] 2527 () = n).
This can be considered as a detail variation of f(-)—at scale 2™ and at time-shift

n. For each m € Z, the projection of f(-) onto the scale-detail subspace W, (1))
defined by

(1'4) Wm(w> = \/{wm,n} = m{wm,n}nez
neEL

is the partial sum on the RHS of (1.2)

(15) Z [f()a d}m,n] wm,n(')-

This, in turn, can be regarded as a “layer of details” (LOD) of f(-)—at scale 2™
[5]. Consequently, any f(-) € £L%(R) is the sum of all its LOD over all scales.
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Now, instead of LOD at scale 2™, we define the LOD—at time-shift n—of f(:)
as the sum

o0

(1'6) Z [f()vwm,n()] qpmn()

m=—00

Then, is it true that any f(-) € £2(R) is the sum of its LOD—over all time-shifts?
In other words, is it true that

n=—o0 m=—0o0

The answer is affirmative as we shall show. This implies that a wavelet approxima-
tion can be carried out either by scale-details summation or by time-shift-details
summation.

We begin by recalling basic facts of Hilbert space bilateral shifts. The main
result is given in Theorem 1.

2. MAIN RESULTS

Let H be a separable Hilbert space with inner product [-, ]z and norm || - ||z.
Let U: H — H be a bounded linear operator. A closed subspace W is a wandering
subspace for U if it is orthogonal to all its images under positive powers of U [3],

(2.1) W LU"W, Vn>D0.

In addition, if the subspaces U"W, n > 0, span H, then W is a generating wan-
dering subspace for U.

A bounded linear operator U : H — H is a bilateral shift, or simply a shift, if
it is unitary and it admits a generating wandering subspace W. In other words, a
unitary operator U on H is a shift if and only if H admits the “wandering subspace”
decomposition

(2.2) H= é UmWw.

m=—0o0

The dimension of W is called multiplicity of the shift.
We must note that if S is a completely nonunitary isometry on H then ker S* is
the unique generating wandering subspace and

(2.3) H= é S™W.
m=0

Therefore, S is now a unilateral shift.
To proceed, let D: L2(R) — L2(R) be the dilation-by-2 (or dyadic scaling) op-
erator defined by

and T: £L%(R) — L£*(R) be the translation-by-1 operator defined by
(2.5) Tf=g, g(t)=f(t-1).
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It is easy to see that both D and T are shifts of infinite multiplicity. Moreover,
the wavelet orthonormal functions ¥, ,(-) generated from an orthonormal wavelet
¥(-) can now be written as

(2.6) me,n(') = 2%¢<2m(') - n) = Danw(')a m, n € 7.
Define the closed subspace
(2.7) W(w) = \/{T"y} = span{T"$}nez.

nez

Then, since {¢,.n}m.nez is an orthonormal basis for £2(R), [1],

(28)  L'R)= P D"W@E) = P D" N{TW = P Wnl),

m=—00 m=—00 nez m=—00

where
(2.9) Win(¥) = D™W(¢), m € Z.
We note that the subspaces W,,(¢) are neither D-invariant nor D*-invariant.

Remark 1. The subspaces W, (1) were defined in (1.4). This and (2.6) yield
Wi () = \/ {D"T"y}.
ne”Z
They were redefined in (2.9), which together with (2.7) yields
Win(¥) = D™ \/ {T"y}.
neE”Z
The next proposition shows that there is no ambiguity here; both expressions for

W (1) coincide.
Proposition 1. The following identity holds for every integer m € Z.

(2.10) D \/{T "y} = \/{D"T ).

nez ne”Z

Proof. Since D: L2(R) — L2(R) is linear, continuous and invertible, it follows (by
the Banach Continuous Inverse Theorem) that D™ is linear and continuous for
every m € Z. Recall that

(2.11) D™span{T"Y}nez = span{ DT Y} ncz
and
(2.12) D™span{T" Y }nez C Dmspan{T”dJ}neZ,

since D™ is continuous [4, Problem 3.46]. Moreover,

(2.13) Dmspan{T" ¢}, c; = D"span{T"¢Y}nez

by the fact that D~™ is also continuous. Therefore, by (2.12) and (2.13),
Dmspan{T "¢} nez € D™span{T"™Y}ncz

C Dmspan{T"¢}nez = D"'span{T"}nez.

Hence

D™span{T™}nez = D™span{T"}pcz.



4 N. LEVAN AND C.S. KUBRUSLY

It follows from this and from (2.11) that

D™span{T" Y} nez = D™span{T"V},cz = span{D"T"Y},ez.
This proves (2.10). O

We now derive a second wavelet decomposition of £2(R) into orthogonal sum of
reducing subspaces for the shift D. For this we begin by defining, for each n € Z,
the subspace

(2.14) H, () = \/ {Ymn} = \/ {D"T"0} = Span{D"T" Y} ez
meZL meZ

—called time-shift detail subspace, which is invariant for every power of D. Since
D* = D~!, and since m runs over Z, it follows that H, (1) is also D*-invariant.
Hence H, () reduces D. Moreover, since ¥m, »(-) L ¥m p(-) whenever n # p,

H,(v) L Hy(¢) for n#np.

‘We now show.

Theorem 1. Let ¥(-) € L2(R) be an orthonormal wavelet. Then the space L2(R)
admits the orthogonal decomposition

(2.15) L2R) = P Ha(v),

n=-—oo
where the subspaces

Hn(d)) = \/ {ﬂ’m,n}a nez
mEZL
are reducing for D.

Proof. Recall that, since H,(¢) L H,(¢) for n # p,

1) @ Viorrey = (Y \Aorrwy) =\ \/ DT

n=—oo meZ n=—o0 me7z ne”Z mel

~

where = means unitarily equivalent. Similarly, as W, (v) L Wy(¢) for m # p
according to the orthogonal direct sum in (2.8), we get from (2.10) that

oo

(2.17) P Viprrrey = \/ \/{D"Ty}

m=—00 n&Z meZ neZ
Since {¥m.n}m.nez is an orthonormal basis for £2(R), it follows from (2.6) that
‘CZ(R) = \/ {wm,n} = \/ {D™ T}
m,n€”Z m,ne”Z
Thus, by unconditional convergence of the Fourier Series,
(2.18) \/ \prrrey =\ {prrred =\ {DmTe,
MEZLNEL m,n€”z neEZ mel

and therefore, according to (2.14),

(2.19) LR = P \A{D"T} = P Haly).

n=—o0 meZ n=—oo

This completes the proof of the Theorem by writing = for 2, as usual. O
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We conclude from the above that.

Proposition 2. With respect to an orthonormal wavelet 1(-) € L2(R), any f(-) in
L2(R) admits the “scale-detail” decomposition

(220) Z Z "/)m n ] wm,n(')7

m=—0o0 Nn=—0o0

as well as the “time-shift-detail” decomposition

(221) Z Z ¢mn ]wm,n(>

n=—o0 m=—0oQ

We must note that the decomposition (2.8) is a wavelet wandering subspace
decomposition of £2(IR) which gives rise to the decomposition (1.2) of f(-) in £2(R).
Moreover, it is also consequence of a wavelet MRA which is defined as follows [5].

A sequence of subspaces {V,(¢), m € Z} of L2(R) is a wavelet MRA, with
scaling function ¢(-), if the following conditions hold:

(i) V() CViny1(¢), meZ,

() Moo V() = (0},

(iif)  Upm——oo Vm(9) = L2(R),

(iv) v() € Vin(9) <= v(2() € Vimta(9), meZ,

(v) {o((-) = n), n € Z} is an orthonormal basis of the subspace V().

Condition (v) is “native” only to wavelet, while conditions (i)-(iv), on the one
hand, define the shift operator D [2], and on the other hand define, in general,
an incoming subspace V; for the shift operator D—*“a la” Lax-Phillips Scattering
Theory. Then with condition (v), Vo depends on ¢(-), hence it is written as Vp().
We refer to the work of Antoniou and Gustafson [1] for these and other interesting
connections between wavelet MRA and various parts of Mathematics.

What is interesting, from invariant subspace view point, is that by conditions (i)
and (iv), each V,,(¢) is a D*-invariant subspace. Moreover, it is also irreducible, i.e.,
it does not contain any nontrivial reducing subspace of D. This is due to the fact
that V,,,(¢) can be expressed in terms of the subspaces Wi (v), —co < k <m — 1,
as [5]

m—1
(2.22) Vn(9) = €D Wi(v)
k=—00
and we have noted above that Wy (1) are neither D-invariant nor D*-invariant.
The decomposition (2.15), on the contrary, cannot be derived from a wavelet
MRA since the subspaces H,, () are reducing subspaces for D. Reducing subspaces
of shifts are well understood. Thus the decomposition (2.15) of £2(R)—can be
called a wavelet reducing subspaces decomposition—provides further understanding
of wavelets as well as their relationships to shift operators.
We close by noting that, for each m € Z and each n € Z,

(223> Wm(¢) N Hn(¢) = Danw = ’(/)m,ny

which is simply the detail at scale-2™ and at time-shift-n. Therefore, the projection

of f() S ﬁQ(R) onto wm,n
(224) Pwm,nf<') = [f()a wm,n()] wm,n<')
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is the detail variation at scale-2™ and at time-shift-n. Then, since the orthogonal
complements of {¢,, ,} in W,,(¢) and in H,(1)), respectively, are orthogonal, we
also have

(2.25) Py, .f() = Pw,.c)Pr, ) f(-) = Pu, ) Pw,, ) f(-)-

This again explains why the scale-detail decomposition (2.20) and the time-shift-
detail decomposition (2.21) are decompositions of the same f(-) € £L2(R). Con-
sequently, (2.2) and (2.15) are two orthogonal decompositions of the same space
L2(R).
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