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Abstract

In the paper a subquadratic (O(m), m is the number of arcs) triad census algorithm
for large and sparse networks with small maximum degree is presented. The algorithm is
implemented in the program Pajek.
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1 Introduction

James Moody (1998) proposed a quadratic (O(n2), n is the number of vertices) algorithm for
determining the triad census of a network. For (very) large and sparse networks (tens or hun-
dreds of thousands of vertices) a subquadratic algorithm is needed (Batagelj, Mrvar 1998). In
this paper we present such an O(m), m is the number of arcs, triad census algorithm.

Let G = (V, R) be a directed network (relational graph); V is the set of vertices and R ⊆
V ×V is the set of arcs. We assume that G has no loops – the relation R is irreflexive. We denote
by R′ the inverse relation, xR′y ⇔ yRx, and by R̂ = R ∪R′ the symmetrized relation. R̂(v) is
the set of all neighbors of vertex v, R̂(v) = {u : vR̂u}, and d̂(v) its cardinality d̂(v) = |R̂(v)|.
Note that

∑

v∈V d̂(v) ≤ 2m. We also define the maximum degree in network G

∆̂ = max
v∈V

d̂(v)

Most large networks are sparse – the number of lines (edges or arcs) m is subquadratic:
m = O(k(n) ·n), where k(n) is small with respect to n, k(n) << n (for example k(n) = const,
or k(n) = log n, or k(n) =

√
n). For some interesting ideas about the structure of large

networks see Barabasi et al. (1999).
Graph G determines a function

Link(u, v) =
{

1 uRv

0 otherwise

that we shall use in our algorithm.
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Figure 1: Types of Triads.
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2 The algorithm

2.1 Basic idea

All possible triads (Wasserman, Faust 1994, page 244) can be partitioned into three basic types
(see Figure 1):

• the null triad 003;

• dyadic triads 012 and 102; and

• connected triads: 111D, 201, 210, 300, 021D, 111U, 120D, 021U, 030T, 120U, 021C,
030C and 120C.

In a large and sparse network most triads are null triads. Since the total number of triads
is T =

(

n

3

)

and the above types partition the set of all triads, the idea of the algorithm is as
follows:

• count all dyadic T2 and all connected T3 triads with their subtypes;

• compute the number of null triads T1 = T − T2 − T3.

In the algorithm we have to assure that every non-null triad is counted exactly once. A set
of three vertices {v, u, w} can be in general selected in 6 different ways (v, u, w), (v, w, u),
(u, v, w), (u, w, v), (w, v, u), (w, u, v). We solve the problem by introducing the canonical
selection that contributes to the triadic count; the other, noncanonical selections need not to be
considered in the counting process.

In the following, to simplify the presentation, we shall assume that the vertices are repre-
sented by integers V = {1, 2, 3, . . . , n}.

2.2 Counting dyadic triads

Every connected dyad forms a dyadic triad with every vertex both members of the dyad are not
adjacent to.

Each pair of vertices (v, u), v < u connected by an arc contributes

n − |R̂(u) ∪ R̂(v) \ {u, v}| − 2

triads of type 3 – 102, if u and v are connected in both directions; and of type 2 – 012 otherwise.
The condition v < u determines the canonical selection for dyadic triads.

2.3 Counting connected triads

A selection (v, u, w) of connected triad is canonical iff v < u < w. The triads isomorphism
problem can be efficiently solved by assigning to each triad a code Tricode(v, u, w) – an integer
number between 0 to 63, defined by
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Figure 2: Triad Code.

Table 1: Triad Types.

code type code type code type code type
0 1 16 2 32 2 48 3
1 2 17 6 33 5 49 7
2 2 18 4 34 6 50 8
3 3 19 8 35 7 51 11
4 2 20 5 36 6 52 7
5 4 21 9 37 9 53 12
6 6 22 9 38 10 54 14
7 8 23 13 39 14 55 15
8 2 24 6 40 4 56 8
9 6 25 10 41 9 57 14

10 5 26 9 42 9 58 13
11 7 27 14 43 12 59 15
12 3 28 7 44 8 60 11
13 8 29 14 45 13 61 15
14 7 30 12 46 14 62 15
15 11 31 15 47 15 63 16

function Tricode(v, u, w : vertex) : integer;
begin

Tricode := Link(v, u) + 2 ∗ (Link(u, v) + 2 ∗ (Link(v, w)+
2 ∗ (Link(w, v) + 2 ∗ (Link(u, w) + 2 ∗ Link(w, u)))));

end;

The function Tricode essentially treats the out-diagonal entries of triad adjacency matrix as a
binary number (see Figure 2).

Each triad code corresponds to a unique triad type as described by Table 1.
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2.4 The triad census algorithm

INPUT: relational graph G = (V, R) represented by lists of neighbors
OUTPUT: table Census with frequencies of triadic types

1 for i := 1 to 16 do Census[i] := 0;
2 for each v ∈ V do
2.1 for each u ∈ R̂(v) do if v < u then begin
2.1.1 S := R̂(u) ∪ R̂(v) \ {u, v};
2.1.2 if vRu ∧ uRv then TriType := 3 else TriType := 2;
2.1.3 Census[TriType] := Census[TriType] + n − |S| − 2;
2.1.4 for each w ∈ S do if u < w ∨ (v < w ∧ w < u ∧ ¬vR̂w) then begin
2.1.4.1 TriType := TriTypes[Tricode(v, u, w)];
2.1.4.2 Census[TriType] := Census[TriType] + 1;

end
end;

3 sum := 0;
for i := 2 to 16 do sum := sum + Census[i];
Census[1] := 1

6
n(n − 1)(n − 2) − sum;

For a connected triad we can always assume that v is the smallest of its vertices. So we have
in 2.1.4 to determine the canonical selection from the remaining two selections (v, u, w) and
(v, w, u). If v < w < u and vR̂w then the selection (v, w, u) was already counted before.
Therefore we have to consider it as canonical only if ¬vR̂w.

In an implementation of the algorithm we must take care about the range overflow in the
case of T and T1. For example, already T (10000) =

(

10000

3

)

≈ 1.67 1011. It is easy to see that

|T2| < n · m and |T3| < ∆̂ · m. Therefore, using in Delphi for counters the type Int64 with
19-20 significant decimal digits, there should be no problem also with sparse networks on some
millions of vertices.

2.5 Complexity of the algorithm

Assuming that the sets R̂(v) are represented by ordered lists, the count of dyadic triads (2.1.1 –
2.1.3) for each arc (v, u) can be done in time O(∆̂). Therefore, the total complexity for counting
dyadic triads is T (T2) = O(m∆̂).

The body (2.1.4.1 – 2.1.4.2) of the connected triads counting loop requires constant time.
Therefore the complexity of counting connected triads T (T3) is of the same order as the number
of all connected triads. Since every connected triad contains a vertex that is an ’origin of an
angle’ we have

|T3| ≤
∑

v∈V

(

d̂(v)

2

)

=
1

2

∑

v∈V

d̂(v)(d̂(v) − 1) ≤ 1

2
(∆̂ − 1)

∑

v∈V

d̂(v) = (∆̂ − 1)m

Counting the null triads (3) can be done in constant time. Therefore the total complexity of the
algorithm is O(∆̂m) and thus, for networks with small ∆̂ << n, since 2m ≤ n∆̂, of order
O(n).
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Figure 3: 6-Core of the Routing Data Network.

Note that in a large sparse network some vertices can still have large degrees. For such
networks ∆̂ = O(n) and the proposed algorithm is quadratic.

3 Example – Internet Connections

As an example of application of the proposed algorithm we applied it to the routing data on the
Internet network. This network was produced from web scanning data (May 1999) available
from

http://www.cs.bell-labs.com/who/ches/map/index.html
It can be obtained as a Pajek’s NET file from

http://vlado.fmf.uni-lj.si/pub/networks/data/web/web.zip
It has 124 651 vertices, 207 214 arcs, ∆̂ = 153 and average degree is 3.3. Figure 3 shows
6-core (arcs are counted in both directions) of the largest strongly connected component of the
network. Using Pajek implementation of the proposed algorithm on 300 MHz PC we obtained
in 10 seconds the triad census presented in Table 2.

There are only 69 complete triads (type 16 - 300). Using Pajek’s pattern searching we
identified all of them and extracted the induced subnetwork from the network. The subnet-
work has 18 components, 11 of them are ’triangles’. The other, nontriangular, components are
presented in Figure 4.
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Figure 4: Nontriangular Complete Triadic Components of the Routing Data Network.
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Table 2: Triad Census of the Routing Data Network.

Triad Count
1 - 003 322 769 974 374 083
2 - 012 23 955 959 979
3 - 102 175 605 448
4 - 021D 882 596
5 - 021U 109 179
6 - 021C 444 490
7 - 111D 4 917
8 - 111U 15 508
9 - 030T 17 107
10 - 030C 111
11 - 201 1 002
12 - 120D 899
13 - 120U 1 120
14 - 120C 96
15 - 210 121
16 - 300 69
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