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Abstract

This paper is concerned with some methods that attempt to provide simultaneous representation
of dual relationships, such as ties of membership that connect persons and groups, or connections
between organizations and agendas. We focus on vector space and lattice representations, and
on techniques for simplifying the structure of dual networks. We demonstrate some fundamental
similarities among these approaches.
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1. Introduction

It has been recognized for many years that some fundamental dualities among social
entities of different types can be understood by analyzing observed relations among pairs
of sets Breiger, 1974; Freeman, 1980; Wilson, 1982; Fararo and Doreian, 1984; Freeman
and White, 1993; White and Duquenne, 139%6or instance, a binary relation indicating
the membership of a set of persons in a set of groups provides not only an explicit repre-
sentation of the co-constitution of groups and persons, but also an implicit representation
of relationships among persons (in terms of the sets of groups to which they belong) and of
relationships among groups (in terms of their memberstpsiger, 1974, 199).

With his characteristic incisiveness, Freeman has played an importantrole in showing how
the analysis and re-representation of such dual relations can enhance our understanding of
these explicit and implicit relationships. Focusing first@@analysis (e.gFreeman, 1980
and subsequently on Galois latticdsd¢eman, 1992, 1996; Freeman and White, 1993
Freeman has opened productive pathways from mathematics to substantive, theoretical,
and methodological innovation in social network analysis.
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This paper includes a review of some methods that attempt to provide simultaneous rep-
resentation of dual relationships. Our main aims in the paper are two-fold. First, we discuss
in some detail the case of dual relationships expressed through an observed binary relation
between two sets. In particular, we explicate the relationship between representations based
on Boolean vector spaces and lattice representations, and we identify situations in which
they are equivalent. Second, we argue that a variety of different vector space representations
can be (and have been) considered for relational data between sets, with an appropriate form
depending on the nature of the data and the assumptions that it arguably sustains. Further,
a general vector space representational form provides a natural unifying framework for the
analysis of relational data between two sets.

Well-known examples of the two kinds of approaches we seek to relate are correspondence
analysis and Galois lattice (also known as formal concept lattice) analysis. Recently, there
has been increased appreciation of how both techniques can be combined within the same
research study to enhance the investigation of relations among dual entities (such as the
important persons and their qualities as named by an anorexic patietit &nd Gabler,

1999). And Galois lattice techniques can be used to provide interpretation for dimensional
analyses such as those produced by log-multiplicative statistical models (as in an illustrative
analysis of supreme court dataBneiger (2000, pp. 102—-10&tudying individual justices

and issue-areas in which each votes in the majority). Our paper demonstrates foundations
for the joint use of the two kinds of approaches.

We refer, for convenience, to relations among persons and groups, but as already noted
many other pairs of entities may be analyzed in exactly the same way, some familiar exam-
ples being individuals and event attendance pattérostér and Seidman, 1984ecords of
academic institutions with which researchers have been affili&reghan, 1980 organi-
zations and the components of their political agenifis¢he and Pattison, 20p@&nd so on.

A binary relation can be described in terms of a pergogroup array, in which? =
{1,2,...,a}is asetof persong = {1, 2,...,d}is a set of groups an& is ana x d
array for whichXj = 1, if the person belongs to groupandX;j; = 0 otherwise. In general,
we assume that the sé®sandG are distinct, so that the arra§ can be regarded having
two modegqArabie et al., 198). In some cases, the relation mayvJaued in which case
possible values of;; are discrete and come from a finite sebr they are continuous and
come from an interval in the set of real numbers.

2. Vector space and lattice representations

A natural starting point for the representation of binary arrays is with those approaches
that assume a Boolean algebra for the/sef possible values. In this case, values®f
are assumed to lie in the sét= {0, 1} and there are three operations., ¢, defined by:
0+0=01=10=00=0;0+1=1+0=1+1=11=1;°=1;andE=0(A
is therefore a two-element Boolean algel®akhoff, 1967)).

2.1. Boolean vector spaces and associated lattices

The rows (or columns) of the binary arr&ygive rise to a Boolean vector space, defined
in the following paragraphs.
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Definition. LetV, denote the set of all vectors of dimensian

V= [al az tte an ]7
witheachy; € A,i =1, 2, ..., n. The systenV, together with the operation of component-
wise addition:

[ax a2 -+ ay]+[b1 b2 -+ byl=[a1+b1 az+b2 - ay+by],

defines the Boolean vector space of dimensioA subseW of V, is asubspacef V, if it

containsthe zerovectof] 0 --- OJ]anditisclosedunderaddition. Tepanofasubset
W of V, is the intersection of all subspaces containitigThe vector spac¥” is defined
analogously, comprising Boolean column vectors of dimensiather than row vectors.

Definition. Let X be a binary relation o® x G. The span of the set of rows &f is a
subspace o¥/,;, termed theow spaceof X. The columns ofX span a subspace ¥f,,
termed thecolumn spacef X. Indeed, both vector spaces are partially ordered sets under
the operation of comparison of vectors:

[ar a2 -+ agl=[b1 b2 --- byl, iff aq>b; foreachi=12,...,d.
Notethatif[ay a2 -+ ag]>[b1 b2 --- bg]l,wemayalsowritef; by
bgl <[a1 a2 --- ag4];here, we use the two expressions interchangebly. It may easily

be shown that each vector space defines a lattice.

Definition. A lattice L is a partially ordered set, with a partial order=, in which every
pair of elements andb have a least upper bound,jomn, denoted by: v b, and a greatest
lower bound, omeet denoted by: A b. Thejoin a v b is the (unique) elementsatisfying
x > a andx > b, and ify is any other element satisfying> a andy > b, theny > x;
themeeta A b is the unique elemerttsatisfyinga > z andb > z, and ifw is any other
element satisfying > w andb > w, thenz > w.

A lattice is generated by the rows of the matkixunder the addition operation and will
be denoted bizr(X) and termed theow latticeof X ; the columns generatecalumn lattice
Lc(X) which is anti-isomorphic thr(X). A latticeL is anti-isomorphic odualto a lattice
K if there is a one-to-one mappirgfrom L to K with the property thatz > b in L if and
only if ¢(a) < ¢(b) in K. In bothLr(X) andLc(X), the join of two vectors is equal to
their Boolean sum, while their meet is the maximal vector in the lattice which is less than
or equal to both of them. The row lattitg:(X) has also been termed the Zareckii lattice
by Boyd (1990)

For instance, the binary matriX of Table 1generates the row lattice whose partial
order diagram is displayed iRig. 1. The elements of the lattice are the set of Boolean
vectors comprising the rows & and all possible vectors constructed from the rows by
component-wise addition. lIRig. 1, which is termed gartial order, or Hasse diagram, an
elementais displayed earlier and directly connected to an elerbéht coversb, that is
if @ > b and ifzis an element satisfying > z > b then eitherz = a orz = b. Table 2
reports the join and meet of each pair of elements in the lattice.
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Table 1

A rectangular binary matrixX

0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0
0 1 0 1 1 1

Definition. LetB be a subset of the vector spate A vectorv € V, isdependentnBiif v
is contained in the span Bf A setB of vectors isndependerif v is not dependent dB\{v},
for eachv € B. A basisof a subspac®V of V,, is an independent sBtwhose span i8V.

It may readily be shown that the basis of a subspadé, é$ unique Kim, 1982. Thus,
the vector spaces generated by the rows and columkigath have a unique basis, termed,
respectively, theow basisandcolumn basi®f X. The number of vectors in each of these
unigue row and column bases are termedrtive rank r = r(X) and thecolumn rank
¢ = ¢(X) of X, respectively. The row and column basis vectors may be identified from the
latticesLr(X) andLc(X).

(10) [111111]

e

(7) [111100] (9) [110111]

(8)[101111]

(6) [010111]

(5) [110100]

(4)[101100]

(2) [010100] (3) [000011]

(1) [000000]

Fig. 1. The partial order diagram for the latticeTafble 1(the vectors represent elements in the lattig€X)).
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Table 2
A lattice L = Lr(X) (the row lattice of the binary matriX of Table J)
1 2 3 4 5 6 7 8 9 10
Meet table
1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 1 2 2 2 1 2 2
3 1 1 3 1 1 3 1 3 3 3
4 1 1 1 4 1 1 4 4 1 4
5 1 2 1 1 5 2 5 1 5 5
6 1 2 3 1 2 6 2 3 6 6
7 1 2 1 4 5 2 7 4 5 7
8 1 1 3 4 1 3 4 8 3 8
9 1 2 3 1 5 6 5 3 9 9
10 1 2 3 4 5 6 7 8 9 10
Join table
1 1 2 3 4 5 6 7 8 9 10
2 2 2 6 7 5 6 7 10 9 10
3 3 6 3 8 9 6 10 8 9 10
4 4 7 8 4 7 10 7 8 10 10
5 5 5 9 7 5 9 7 8 9 10
6 6 6 6 10 9 6 10 10 9 10
7 7 7 10 7 7 10 7 10 10 10
8 8 10 8 8 10 10 10 8 10 10
9 9 9 9 10 9 9 10 10 9 10
10 10 10 10 10 10 10 10 10 10 10

Definition. An elementx of a latticeL is join-irreducible ifx # xmin andx = x1 Vv x2
impliesx = x1 orx = x».

Proposition 1. The row and column basis vectors &fare precisely the join-irreducible
elements of k(X) and Lc(X), respectively

Proof. For instance, sel€im (1982) a

For example, the join-irreducible elements of the lattic&igf 1 are those labeled (2),
(3), (4), and (5); hence, the row basis of the binary maXrigf Table 1lis:
b=[0 1 0 1 0 Q, b,=[0 0O O O 1 1,
b3=[1 0 1 1 0 0, bs=[1 1 0 1 0 Q.

It may be observed that the process of expressing each row of the iYatixa join
(Boolean sum) of row basis vectors leads to a decomposition of the ndatfxhe form:

X =UD,

whereD is a matrix of dimensiom x d whose rows are the row basis vectors, and where
U is ana x r matrix, withUj; = 1if, foreachk = 1,2,... ,d, Xix > Dj (that is, if the
ith row of X contains thgth row basis vector), and 0, otherwise. Expressing the columns
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of D in terms of its column basis (or, equivalently, the rows of the transpp'sef D in
terms of its row basis) leads to a decompositioDobf the form:

D' =Vv'(CT,

where the dimensions &f andV arer x ¢ andc x d, respectively. We have thus established
the following proposition.

Proposition 2. Anya x d Boolean matrixX possesses a Boolean decomposition of the
form:

X=UCV,

whereU, C andV have dimensions x r, r x ¢, andc x d, respectivelywith r being the
row rank and c¢ being the column rank Xf

Proof. See earlier proof, alsGhubb (1986) g

The rows and columns of the matikare independenChubb (1986jermed the matrix
C the union-coreof the matrix X, and described an efficient algorithm for its construc-
tion (at polynomial expense). Chubb also established that several important properties of
the matrix X are also properties of': one of these will be described later in detail. It
may be observed in passing that the decomposition earlier is somewhat analogous to the
Eckart—Young decomposition of a real rectangular matiek@rt and Young, 1936with
important differences in the Boolean case being, first, the potential for the row and column
ranks to differ and, second, the uniqueness of the row and column bases. We will further
discuss these in the following paragraphs.

The decomposition of the matriX of Table lillustratesProposition 2

X =UD,
where
0 0 0 O
1 00O
01 00
U= ,
0 010
1 0 0 1
|1 1 0 0]
and
o 1 01 0
0 00 O 11
D: )
01 100
L 1 01 0O
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from which
D=CV,
where
01 0O
0 0 0 1
C = ,
1 010
11 00
and
1 00 10
01 0100
VvV =
1 01 100
0 0 0 0 1 1

Proposition 3. The row lattices k(X) and Lr(D) are identical and both are isomorphic
to Lr(C). Similarly, Lc(X) is isomorphic to kg(C).

Proof. By construction, the matridD possesses the same row basiXaso thatLr(X)
andLr(D) are identical. Also, let

f 1 Lr(D) — Lr(C),
be given by
f(v{basa € S}) = V{cava € S}s

where{by, by,. .., b, } is the row basis oX (and hence the set of rows B), {c1, c2,. . .,
¢, } is the row basis o, Sis any subset of the index st, 2, .., r}, andv{b,,a € S}
denotes the join oby, bo, ..., b,. By observing thab; = ¢; V, and that

(V{ba,a € S}V (V{be,e € T}) =Vibg, g € SUT},
and

(Viba,a € SH A (V{be,e € TY) = Viby, h € SN T},
it may readily be established thfas both a homomorphism and a bijection, so thafC)
is isomorphic td_r(D). a

2.2. Galois, or concept, lattices

As Coombs (1964pnd others have pointed out, one derives parallel constructions by
replacing array entries by their complements, and the additior;,aperation by the
product, or. operation Doignon et al., 198/ For instance, a row lattice may be defined by
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whatDoignon and Falmagne (198&rm a knowledge structure. The row lattice is generated
from the rows ofX under the union (addition) operation; it is also possible to generate a
lattice structure using intersections rather than unions. This strategy is adopted by Wille
and colleagues in formal concept analysagter and Wille, 1989, 1999The resulting

lattice is termed a concept lattice and may be decomposed using the same algorithms as for
the union case. Specifically, the following proposition.

Proposition 4. If Mr(X) and Mc(X) denote the Galois or concept lattice generated by
the rows and columnsespectivelyof a binary arrayX, then Mir(X) is anti-isomorphic to
Lr(XC) and Mc(X), and isomorphic to £(X°©).

Proof. For example, sekim (1982)andBoyd (1990) a
2.3. Boolean vector spaces and lattice factorization

Pattison and Bartlett (1982)itroduced a general procedure, ternfadtorization for
decomposing algebraic structures such as lattices into “maximally independent” compo-
nents. The procedure is described more formallpattison (1993)

Definition. A partition @ on L is acongruence relatiorif, for all x, y, z € L, whenever
x=y(0) thenx Az=y Az(0) andx v z=y Vv z(0). Note that we writee=y (0) to indicate thak
andy are in the same class of the partittbrEach congruence relatieronL corresponds to
alattice homomorphisnthat is, to a mapping onL which satisfieg (x Az) = ¢(x) A@(2)
ando(x vVz) =¢x) Vo), forallx,z e L.

The congruence relations (and therefore the homomorphisms) of a lattice are themselves
partially ordered and form lattice®#éttison, 1998

Definition. Let 1 andf, be congruence relations on a latticelf, for all x,y € L,
x=y(61) impliesx=y(6,), then we say that; < 6,.

The collection of congruence relationslgfpartially ordered in this way, form a distribu-
tive lattice @irkhoff, 1967, p. 138

Definition. A lattice L is distributiveif the identity
xA(yVvVz=xAy)V(xAz),
holds. A latticel is modularif, wheneverx < z, then

xViyAz)=xVy Az

Examples of non-distributive and non-modular lattices are displayEdym 2 and 3The
lattice in Fig. 2 is the smallest non-distributive lattice, and it can be shown that every
non-distributive lattice contains the latticefeify. 2 as asublattice(that is, as a subset that

is also a lattice). The lattices &igs. 2 and Zre the smallest non-modular lattices.
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[111]

[101] [110] [011]

[000]

Fig. 2. The latticeMs.

It is readily shown Pattison, 199Bthat, for any algebraic structure with a distribu-
tive lattice of congruence relations, the decomposition termed factoriz&uttigon and
Bartlett, 1982 is unique. In particular, for a lattide, factorization is associated with a set
of congruence relations dndefined in the following way.

Definition. An atomof a latticeL is any element that covers the unique minimal ele-
ment of the lattice (that is, the elememi, satisfyingx > xmin, for all x € L. A meet-
complement of an elemente L is an element* such thak™ > xmin andx Ax™ = xpin. A
meet-complement* of x is maximalif x has no other meet-complemezrguch that > x*.

[111]

[110]

[011]

(100]

[000]

Fig. 3. The latticeNs.
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The unique factorization of the lattide is associated with the set of maximal meet-
complements of the atoms of the congruence lattice. @he homomorphism associated
with each congruence relation in this set is a mapping ofito one of itfactors

We consider below two separate cases, one where the la{38) is itself distributive,
and one where it is not. Since the dual of a distributive lattice is distributive, then either all
of {Lr(X), Lc(X), Mr(X®), Mc(X©)} are distributive or all are not.

2.3.1. Lg(X) is distributive

Inthe case wherker(X) itself is distributive, a proposition dirkhoff (1967)establishes
that the components of the factorization are all two-element lattices, each of which may
be represented as the lattice denote@gnd comprising the s€0, 1} with the ordering
0 < 1. Indeed, in this casér(X) may be shown to be isomorphic to the latt‘e, whereZ
is the partially ordered set of row basis vectorsgfX ) and wher@Z denotes the collection
of all isotone mappings frorZ onto {0, 1}, partially ordered by the relatiofi < g, iff
fx) <g),forallx e Z.

As a result, each vector in a distributive row latticdLr(X) may be represented by a
binary vector of dimension corresponding to the factorization: tith component of the
vector corresponding t® is equal to 1 if and only ift > b;. Thus, in the case where
Lr(X) is distributive, factorization of r(X) yields a decomposition oX identical to that
of Proposition 2and hence a Boolean decomposition of the fafre= UCV .

Proposition 5. Let Lg(X) be a distributive lattice with row basi®1, by, . .., b, }. Thenthe
factorization of Iz(X) expresses each lattice elemeras a binary vectof x1 x2 -+ x|,
wherex; = 1if x > b;; 0, otherwise As a result X possesses a decomposition induced by
the factorization of the form

X=UCV.

Proof. The latticeLr(X) hasr join-irreducible elements forming a partially ordered Zet
and, sincd_r(X) is distributive,Lr(X) is isomorphic ta2Z. Consequently, the factors of
Lr(X) correspond to congruence relatiansof the form

(x,b;) € 0;, iff x>0,
and
(x,y)eo;, ifxAbi=ynb; =0,

so that thath co-ordinate ok in the factorization of.gr(X) is equal to 1 ifx > b;, and O,
otherwise. ThusX = U D, whereD is a matrix whose rows are the basis vectorsb,,
..., b,. Further, sincd&.r(X) is distributive, it follows fromProposition 4thatLr(D) and
hence alsd.c(D) are distributive, and the result may be applied to the transpogetof
obtain the required decomposition. a

For example, the binary matrik presented ifable 3possesses the row lattieshown
in Fig. 4, and it may readily be verified that the lattice is distributive. The factorization of
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Table 3
The binary matrixy

1

roorOOR
PR ORROPRER
PR ORRLROOO
OCoOrRrRrRRLRORO

M is associated with the following congruence relations:
61:(3 4 6 T)(1 2 5 8),
o2:(1 2 3 6)(4 5 7 8,
o3:(1 3 7 8)(2 4 5 6),

so that, each lattice element may be represented as a binary vector of dimension three as
shown inTable 4 The associated decompositionlofs therefore:

Y=UD,

G)[1ta]

(8)[1110] (2)[1101] 4)[0111]
(1)’ [1100] (7) [0110] (6) [0001]
(3) [0000]

Fig. 4. The row latticd g(Y) (join-irreducible elements are marked by an asterisk).
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Table 4
Representation of elements of the lattMdenduced by factorization dfg(M)
Lattice element Vector ibg(M) Induced representation
1 [1100] (1,0,0)
2 [1101] (1,0,1)
3 [0000] 0,0,0)
4 [0111] 0,1,1)
5 [11117] (1,1,12)
6 [0001] (0,0,1)
7 [0110] 0,1,0)
8 [1110] (1,1,0)
where
[1 0 O]
1 10
0 0O
01 1
U=l11 1|
010
0 0 1
| 1 0 1_
and
1 1 0 O
D=|0 0 0 1],
(0110
so that
1 0 0
cC=]10 0 1{,
(010
and
11 0 0
v=|0 1 1 0
(0 001

It may be observed that the binary matrix component corresponding tiohttiactor
in the factorization divides the rows &f into two groups: those rows which lie above the
corresponding row basis vector and those that do not. The columns determining this division
are those having unit entries in the associated basis vector. This observation leads to a more
general construction, describedSection 2.4

2.3.2. Lg(X) is not distributive
In the case wherkr(X) is not distributive, at least one of the factorsLgf(X) will not
be isomorphic to the two-element latti2e For example, the lattice presentedTiable 2
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(andFig. 1) has factors isomorphic t® andNs; these factors correspond to the congru-
encerelations{ 2 4 5 7)(3 6 8 9 10and(1 3)(2 6)(4 8)(5 9)

(7 10) of Lr(X), respectively. Later, we describe a general decomposition of an array
that is associated with any homomorphism of its row lattice, and hence with the factors in
its factorization.

2.4. Induced decompositions of a data array

Itis natural to ask whether, if the lattitg (X) has a homomorphic imadé(such as one
of the factors ot.), can we find one or more “reductions” of the data array that is consistent
with the congruence relation for the homomorphism and that generates the Ktite
S0, we can argue that there is an association between such a reduction of the array and the
homomorphic image.

Proposition 6. Suppose that H is a homomorphic image gfX) with associated congru-
ence relation) and that K is a homomorphic image ofR¢X) with associated congruence
relation 6. For each row vectox in the matrixX, define

xy =Ny x=yW), forx,yeLlr(X)}
and
¥ =v{y:x=y@©), forx,ye Mr(X)}.

Also defineX ;, andX? to be the matrices in which the rawof the arrayX is replaced
by xy andx?, respectively. Thehr(Xy) is isomorphic toH andMg(X?) is isomorphic
toK.

Proof (See alsoGanter and Wille (1999) There is clearly a one-to-one relationship
between elements éf and elements dfr(X), and likewise folK andMgr(X); in addition
each construction leads to a homomorphism, sixce z)y = xy A 2y and(x v 2)?
=x? vzl O

Note that, by construction, botki,, andX? have a reducible form, so thRtoposition 2
and its intersection analogue can be applied to identify the union€gref X, and
the intersection-cor€? of X? which also have lattices that are isomorphicH@ndK,
respectively.

2.5. Boolean factor analysis

WhereLr(X) is not a distributive matrix, factorization does not yield a Boolean matrix
product representation of. It has been observed, however, in the literature that such
representations are of intereftg Boeck and Rosenberg, 1988; Mickey et al., )&%
now we consider them in relation tgr(X) and its factorization.

One general form of these representations that has been studied is a Boolean analogue
of factor analysis, that is, an expression¥fs a Boolean product of matric&sand Q:

X=PO.
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Definition. The Schein ranks = s(X) of ana x d binary matrixX is the least integes
such thatX may be expressed as a Boolean product of matidtesmd Q of dimension
a x s ands x d, respectively.

Some well-known equivalent definitions of the Schein rank of a matrix are summarized
in Proposition 7

Proposition 7 (Kim (1982)). The following are equivalent

(a) the Scheinrank aX is s

(b) sisthe leastinteger such thditmay be expressed as the Boolean sum of s cross-vectors
(orrectangle$ thatis of matrices of theford = [vy vz -+ v, ]T[w1 w2
wql;

(c) sis the least integer such thag(X) is a subset of a subspace W qf $panned by s
vectors

(d) s is the least integer such thag(X) is a subset of a subspace W qf $panned by s
vectors

For instance, a Boolean factor analysis

X=PQ,

may be converted into a cross-vector representation by putting
P=[p1 p> - bl

wherep; is a column vector of dimensiam and
0=1[q91 92 - g5l

wheregq; is a row vector of dimensiod, so that
PQ = piq1+p2g>+-+p4,.

and eactp;q; is a cross vector.

Doignon and Falmagne (1984fescribed these representations in termsnafching
relations A binary matrixX is amatchingrelation if it is across vectorthat is, if Xjx =
1 = Xjx = Xjn implies Xj» = 1. For binary proximity relations, a matching relation may
be regarded as a type tfo-set clusterlinking a subset of row entities to a subset of
column entities. Thus, the representation described by Doignon and Falmagne expresses a
proximity relation as the union of possibly overlapping clusters of this type.

It is useful once more to discuss separately those cases WREX® is distributive and
those where it is not.

2.5.1. Lg(X) distributive
Proposition 8. If Lr(X) is distributive thens(X) = r(X) = ¢(X) and the decomposition
X=UD,

yields a Boolean factor analysis &f into matrices of dimensiom x s ands x d.



P.E. Pattison, R.L. Breiger/ Social Networks 24 (2002) 423-444 437

Proof. SinceLr(X)isisomorphict®Y whereYis the partially ordered set of basis vectors
of X, Lr(X) has a chain (that is a sequence of distinct elemefits x1 < ... < x;)
comprisingr + 1 elementsBirkhoff, 1967). As a result, at leastvectors are required in
any subset of/; whose span containg(X). Thus,s > r. For any matrixX, r > s (Kim,
1982, and so we have established that s and that the decompositioXi = UD is a
Boolean factor analysis. The result that s follows by replacingX by its transpose in
the argument earlier. O

Thus, in the case of a distributive row lattice, the Schein rank @ equal to its row
rank, and the constructions we have already discussed yield a corresponding Boolean factor
analysis.

2.5.2. Lg(X) not distributive

The case of non-distributivity is more interesting, singgX) can be embedded as a
partial order in a subspace \@f having a smaller basis thag(X) itself. Later, we give an
embedding rule which guarantees that the basis of the space into ky{i&h is embedded
has a minimal number of vectors. We then show that this space must be distributive, so
that each row ofX can be expressed via factorization as an elemept.iThe expression
therefore yields a Boolean decompositiorointo matrices of dimensiom x s, ands x d.

Proposition 9. Let B be the row basis of a matrix, partially ordered by

b; <b;, |iff bix <byk, forallke(l,2 ...,d}.

Letd; € B be some vector for which; < b; andb; # b; for someb;. Then, the space
spanned by is contained in the space spanned by

B’ = B\{b;}union{x ;},
wherex ; is a vector such that; v B; = b; andx; A B; = 0, andB; is the vector

Bj =Vv{b; : b; < bj andbi ;ﬁbj}.

Proof. By constructionb; = B; Vv x;, hence the span d is contained in the span
of B'. O

This construction leads to the following algorithm.

Algorithm. SetW = B, and arrange the basis vectorswiin some order. Consider
elements oW in turn. If w; is minimal inW, leave it unchanged; i ; is not minimal,
construct the corresponding vector of the preceding proposition. if; is equal to any of
the existingw; (w; # w;), discard it from\W. Repeat the process through cycles of elements
of W, until an entire cycle througt leaves all of its members unchanged.

Proposition 10. The algorithm constructs an independent set W containing s veatioese
s = s(X) is the Schein rank oX.
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Proof. Any set spanning a s&V, but smaller thatWwW must have elements lying between
members ofV and the zero vector iW;. By construction, however, each elementfs
minimal, and so the cardinality &% is minimal. O

Proposition 11. The space spanned by the set W resulting from the algorithm above is
distributive

Proof. Since elements iV possess no partial ordering, the space spann&dibysomor-
phic to2"" and is therefore distributive. O

Thus, the construction amounts to an embeddingrdfX) as a partial order in a dis-
tributive space, and the latter possesses a factorizatiors camponents all of which are
isomorphic to the lattic2. Each row of the matriX may therefore be expressed as a binary
vector of dimensiors and the algorithm therefore constructs a decompositioki of the
form

X=PO0,

Thesrows of Q are thesvectors inW, andPj = 1if X > Wi forallke {1, 2,...,d}
and 0, otherwise. Of course, it will often be more efficient to apply this procedure directly
to the union-core matrig’ of the decomposition dProposition 2yielding,

C = P/Q/7

and so leading to the representation¥oin the form:

X=UPQV,
and hence
X=PO,

whereP = UP’ and Q@ = Q'V. The result that the Schein rank &fis the same as the
Schein rank ofC was also established I§hubb (1986)

The constructions earlier make it clear that the distinction between observed and latent
variable representations may be applied to the two different types of decomposition of a
matrix that we have been considering. In the decomposition of a mititixthe form

X =UD,

each row ofX is expressed in terms of “observed” row basis vectors. By contrast, the
decomposition o in the form

X=Pro,

expresses each row &f in terms of the sedV of “latent” vectors which are not necessarily
observed as rows of but which have the capacity to generate all of the observed rows of
X.

One final question that we consider here is the relationship between alternative
Boolean factor analyses of a matédk We demonstrate that the earlier construction leads



P.E. Pattison, R.L. Breiger/Social Networks 24 (2002) 423-444 439

to a maximal Boolean factor analysis of the matkix an analysis that has been termed
a set-theoretical decomposition Be Boeck and Rosenberg (1988)e first give the
following definition.

Definition. Let X = PQ andX = P’Q’ be alternative Boolean factor analysesXf
(so that bothP? and P’ have dimensiom x s, and @ and Q' have dimension x d). Let

[P, Q] <[P, Q1]if Pj < Pijf, foralli,jandQj < Q{j, for all i, j.

Proposition 12. LetX = P Q be a Boolean factor analysis &f. Then for each matrixP

in such a decompositigthere is a maximal matrixQ* satisfyingX = P Q* and for each
matrix Q there is a maximaP* satisfyingX = P* Q.

Further, the procedure based PBroposition 10/ields this unique maximal solution.

Proof. The result follows directly from the existence of unique maximal solutions to
Boolean relational equationSénchez, 1976 O

3. Non-binary representations

Suppose now that the values takenXy are not binary but from a sét of values. We
assume thad includes a minimum value of 0 and a maximum value of 1.

3.1. Matrices over a general Boolean algebra

Define the operations-, - and® by: (i) a + b = maxa, b); (ii) a.b = min(a, b); and
(iii) a® = 1 — a. ThenAis a Boolean algebra and most of the results described earlier can
be directly generalized to this case (see AppendiKim (1982)). In particular, row and
column bases of the resulting Boolean vector spaces are unique, and the constructions just
described lead to lattices whose join-irreducible elements correspond to basis elements.

3.2. Matrices over a fuzzy algebra

If, on the other hand, we assume that= [0, 1] and that the operations and ‘." are
the maximum and minimum operations just defined, thénafuzzy algebraln this case,
A'is not necessarily finite, and the important difference between this case and the case of
matrices over an arbitrary Boolean algebra is that bases of the vector spaces to which they
give rise are not uniquek{m, 1982).

3.3. Incline algebras

More generallyA is anincline algebraif it has (i) an associative, commutative addition
operation 4, (ii) a distributive product operation *.’, and (iii) i + « = a anda+ab=a
forall a, b € A. Matrices over an incline form a semiring; we can define row and column
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bases, as well as standard bases, and there are some results on when the bases (or standard
bases) are uniqu€go et al., 198/

3.4. Matrices over the reals

The final case is a familiar one and the theory of real vector spaces, bases, and standard
bases are well-known. A fundamental mathematical result in this case is the Eckart—Young
decomposition of a real-valued x m array X (Young and Householder, 1988 the
form X = X*AV*, whereU* and V* aren x p andm x p orthogonal matricesA
is a diagonal matrix, with entries.{, 12, ..., 4,), andp is the eigendimension oX.
Expressingl* and V* in terms of orthonormal matricd$ andV via U* = DIlU and
V* = D2_1V leads to the fornX = DIlUAV’Dgl, where the rows oU andV may
be regarded as an orthonormal basis of the vector space spanned by the rows and columns
of X, respectively. Indeed, the proof of the Eckart—Young decomposition establishes a
one-to-one correspondence between the matrix decomposition and the expression of the
rows and columns aX in terms of orthonormal row and column bases. Since each element
X;; of X is thereby represented in the forky = (Dl_l)ii (Dz_l)jj Y M Wik Vik), it has
been common to represent the decomposition in terms of a mapping of the entities indexed
by both the rows and the columns Xfin a p-dimensional real space.

4. Reduced rank representations

The discussion so far has focused on the problem of obtaining “exact” decompositions
for an arrayX. An implicit assumption of the constructions that have been analyzed is that
the data are measured without error and hence that it is desirable to repnesgfeature
possessed by the data in the decomposition. Needless to say, this is often an unreasonable
assumption and there is much to recommend attempts to obtain approximate representa-
tions using “small” numbers of “simple” components. Indeed, the reasons for pursuing an
understanding of algebraic decomposition techniques include (a) the development of exact
representational strategies for comparison with existing or new proposed approximate tech-
niques, and (b) the hope of obtaining some insights fodéwelopmerf new approximate
methods $chénemann, 1970

There are at least two different approaches to the development of new approximate tech-
nigues. One is a more formal, “confirmatory”, statistical approach and involves specifying a
probability model for an array of binary random variables. The Rasch model and a number of
latent class models$-gick, 1987; Rindskopf, 1983; Martin and Wiley, 1999, 2pf#ating
binary response profiles to one or a small number of biorder components are good examples
of the approach; random bipartite graph mod&kvoretz and Faust, 1999; Pattison and
Robins, 200D are another. In this approach, the general form of the model is assumed to
be known and the data are used to estimate model parameters.

An alternative strategy is to adopt a more exploratory stance, seeking fewer components
than the number required for exact representation, but often more than is allowed by a proba-
bilistic approach to the problem. Algorithms for reduced rank decompositions in real vector
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spaces are of course well-known. Decompositions can be based on correspondence analysis,
loglinear and association models, latent class analysis, multidimensional scaling and related
techniquesBlasius and Greenacre, 199&everal exploratory methods for approximate
Boolean factor analysis also exidflickey et al., 1983; De Boeck and Rosenberg, 1988

Here, we briefly review these Boolean approximate techniques and we also describe some
alternative strategies for fitting approximate decompositions of the form that we have been
considering.

4.1. Algorithms for approximate Boolean decompositions of the ] UCV

One strategy for fitting approximate decompositions is to perform an exact analysis (as
described earlier) and then to attach to each component of the resulting decomposition some
measure of the “extent” of the data covered by the component. One might then proceed
in a stepwise manner (for instance, backward or forward) to identify a smaller number
of components which cover “most” of the data. Presumably, a large number of “extent”
measures could be proposed, but one desirable feature that any selected measure should
possess is some consistency with the metric implicit in the lattiC¥) associated with the
algebra representing the data matrix.

A second general strategy is to simplify the algebra representing thpritatéo decom-
position. No such strategy has been suggested for row or column lattices, but eliminating
row basis vectors required by only a small fraction of the observed rows may be a useful
starting point. Indeed, for rectangular data, using the outcome of either of these two strate-
gies to obtain a representation with a small number of components would provide a useful
starting configuration for the Boolean regression step of Boolean factor andWiskey
et al., 1983; De Boeck and Rosenberg, 1988

In some cases, it might also be possible to identify a single “best” component for a data
array, a process that could be iteratively re-applied to a residual array constructed from the
data and the components fitted so far. Such a strategy, for instance, is incorporated in the
qualitative factor analysis methods describedMirkin (1987)for non-negative symmetric
proximity matrices.

4.2. Algorithms for Boolean factor analysis

Mickey et al. (1983Hdescribed an algorithm for Boolean factor analysis that is based on
Boolean regression procedures. The algorithm assumes that the observed binaky array
may be expressed in the form

X=PQ+E,

where P and Q are unknown binary matrices of dimensi@rx s ands x d, respectively,
and the matrixE has entries of-1, 0 or 1. The sum of absolute values of entriesin
can be regarded as a measure of discrepancy between the dataXnatrikthe Boolean
factor analysis solutio® Q. Mickey et al.’s algorithm begins with an initial estimate for
the matrix Q@ and then estimates the rows Bfusing an algorithm for Boolean regression.
Once the rows o have been estimated, the columns@®fare estimated using the same
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technique, and the whole process is recycled several times, with several different values
of sin a pre-specified range and in a pre-arranged ofdérkgy et al., 1983 De Boeck

and Rosenberg (198&dapted the Boolean factor analysis algorithm to fit approximate
‘set-theoretical decompositions’ to an art¥ythe result is an algorithm termed HICLAS.

It may be noted that the development of analytic methods for discrete structural models
lags well behind that for the more traditional linear models used in the behavioral and social
sciences. One reason for this delay is the greater complexity of structural models, and their
foundation in more general (and, as yet, less tractable) algebraic structures than the linear
algebras underlying the traditional linear models. Yet, procedures for expressing a binary
array in terms of discrete, binary matrix components have two noteworthy properties as
methods of data analysis. First, they seek components of the original data which have the
same fornas those original data, a property that they share with techniques like blockmod-
elling (Arabie et al., 1978; Breiger et al., 1975; White et al., 19B&cond, the components
are derived using a small set of simple Boolean operations, such as union, intersection,
relational composition, and binary comparison. Restricting the data analyses to such oper-
ations means that only a minimal set of assumptions need be made about the measurement
characteristics of the data, and, at the very least, the procedures that result will provide a
useful comparative base for those techniques which make a different and often stronger set
of assumptions about the data.

5. Futuredirections

This paper has been concerned with some methods that attempt to provide simultaneous
representation of dual relationships. We have demonstrated fundamental similarities among
these approaches. These similarities provide foundations for research examples that seek to
combine dimensional representations and lattices within the same substantive/gnlftly (
and Gabler, 199&reiger, 2000, pp. 102-106

Algorithms for reduced rank fuzzy decompositions remain an open problem. An addi-
tional topic of interest is the relation of probabilistic models to those we have discussed.
Skvoretz and Faust (1998)rmulate models allowing study of the (log) odds of an actor’s
belonging to an event (or an event including an actor) as a function of properties of the
two-mode network of actors’ memberships in events, based ol tHamily of models.
Pattison and Robins (200@rmulate neighborhood-based models for dual networks that
extends this line of research by allowing a contingency to be created between the two pos-
sible membership ties by virtue of their connection to an observed tie, hence allowing for a
collection of attendance ties to become mutually contingeattison and Robins, in prgss
Future work should build on these approaches as well &reiger (2000)o use lattice
techniques to simplify the structure of probabilities of relations in dual networks.
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