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Abstract

This paper is concerned with some methods that attempt to provide simultaneous representation
of dual relationships, such as ties of membership that connect persons and groups, or connections
between organizations and agendas. We focus on vector space and lattice representations, and
on techniques for simplifying the structure of dual networks. We demonstrate some fundamental
similarities among these approaches.
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1. Introduction

It has been recognized for many years that some fundamental dualities among social
entities of different types can be understood by analyzing observed relations among pairs
of sets (Breiger, 1974; Freeman, 1980; Wilson, 1982; Fararo and Doreian, 1984; Freeman
and White, 1993; White and Duquenne, 1996). For instance, a binary relation indicating
the membership of a set of persons in a set of groups provides not only an explicit repre-
sentation of the co-constitution of groups and persons, but also an implicit representation
of relationships among persons (in terms of the sets of groups to which they belong) and of
relationships among groups (in terms of their memberships (Breiger, 1974, 1990)).

With his characteristic incisiveness, Freeman has played an important role in showing how
the analysis and re-representation of such dual relations can enhance our understanding of
these explicit and implicit relationships. Focusing first onQ-analysis (e.g.Freeman, 1980)
and subsequently on Galois lattices (Freeman, 1992, 1996; Freeman and White, 1993),
Freeman has opened productive pathways from mathematics to substantive, theoretical,
and methodological innovation in social network analysis.
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This paper includes a review of some methods that attempt to provide simultaneous rep-
resentation of dual relationships. Our main aims in the paper are two-fold. First, we discuss
in some detail the case of dual relationships expressed through an observed binary relation
between two sets. In particular, we explicate the relationship between representations based
on Boolean vector spaces and lattice representations, and we identify situations in which
they are equivalent. Second, we argue that a variety of different vector space representations
can be (and have been) considered for relational data between sets, with an appropriate form
depending on the nature of the data and the assumptions that it arguably sustains. Further,
a general vector space representational form provides a natural unifying framework for the
analysis of relational data between two sets.

Well-known examples of the two kinds of approaches we seek to relate are correspondence
analysis and Galois lattice (also known as formal concept lattice) analysis. Recently, there
has been increased appreciation of how both techniques can be combined within the same
research study to enhance the investigation of relations among dual entities (such as the
important persons and their qualities as named by an anorexic patient (Wolff and Gabler,
1998)). And Galois lattice techniques can be used to provide interpretation for dimensional
analyses such as those produced by log-multiplicative statistical models (as in an illustrative
analysis of supreme court data inBreiger (2000, pp. 102–106), studying individual justices
and issue-areas in which each votes in the majority). Our paper demonstrates foundations
for the joint use of the two kinds of approaches.

We refer, for convenience, to relations among persons and groups, but as already noted
many other pairs of entities may be analyzed in exactly the same way, some familiar exam-
ples being individuals and event attendance patterns (Foster and Seidman, 1984), records of
academic institutions with which researchers have been affiliated (Freeman, 1980), organi-
zations and the components of their political agendas (Mische and Pattison, 2000), and so on.

A binary relation can be described in terms of a person× group array, in whichP =
{1,2, . . . , a} is a set of persons,G = {1,2, . . . , d} is a set of groups andX is ana × d

array for whichXij = 1, if the personi belongs to groupj andXij = 0 otherwise. In general,
we assume that the setsP andG are distinct, so that the arrayX can be regarded having
two modes(Arabie et al., 1987). In some cases, the relation may bevalued, in which case
possible values ofXij are discrete and come from a finite setA, or they are continuous and
come from an interval in the set of real numbers.

2. Vector space and lattice representations

A natural starting point for the representation of binary arrays is with those approaches
that assume a Boolean algebra for the setA of possible values. In this case, values ofXij

are assumed to lie in the setA = {0,1} and there are three operations+, ., c, defined by:
0 + 0 = 0.1 = 1.0 = 0.0 = 0; 0+ 1 = 1 + 0 = 1 + 1 = 1.1 = 1; 0c = 1; and 1c = 0 (A
is therefore a two-element Boolean algebra (Birkhoff, 1967)).

2.1. Boolean vector spaces and associated lattices

The rows (or columns) of the binary arrayX give rise to a Boolean vector space, defined
in the following paragraphs.
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Definition. Let Vn denote the set of all vectors of dimensionn:

v = [ a1 a2 · · · an ],

with eachai ∈ A, i = 1,2, . . . , n. The systemVn together with the operation of component-
wise addition:

[ a1 a2 · · · an ] + [ b1 b2 · · · bn ] = [ a1 + b1 a2 + b2 · · · an + bn ],

defines the Boolean vector space of dimensionn. A subsetV of Vn is asubspaceof Vn if it
contains the zero vector [0 0 · · · 0 ] and it is closed under addition. Thespanof a subset
W of Vn is the intersection of all subspaces containingW. The vector spaceVn is defined
analogously, comprising Boolean column vectors of dimensionn rather than row vectors.

Definition. Let X be a binary relation onP × G. The span of the set of rows ofX is a
subspace ofVd , termed therow spaceof X. The columns ofX span a subspace ofVa ,
termed thecolumn spaceof X. Indeed, both vector spaces are partially ordered sets under
the operation of comparison of vectors:

[ a1 a2 · · · ad ] ≥ [ b1 b2 · · · bd ], iff ai ≥ bi for eachi = 1,2, . . . , d.

Note that if [a1 a2 · · · ad ] ≥ [ b1 b2 · · · bd ], we may also write [b1 b2 · · ·
bd ] ≤ [ a1 a2 · · · ad ]; here, we use the two expressions interchangebly. It may easily
be shown that each vector space defines a lattice.

Definition. A lattice L is a partially ordered setL, with a partial order≥, in which every
pair of elementsa andb have a least upper bound, orjoin, denoted bya ∨ b, and a greatest
lower bound, ormeet, denoted bya ∧ b. Thejoin a ∨ b is the (unique) elementx satisfying
x ≥ a andx ≥ b, and if y is any other element satisfyingy ≥ a andy ≥ b, theny ≥ x;
themeeta ∧ b is the unique elementz satisfyinga ≥ z andb ≥ z, and ifw is any other
element satisfyinga ≥ w andb ≥ w, thenz ≥ w.

A lattice is generated by the rows of the matrixX under the addition operation and will
be denoted byLR(X) and termed therow latticeof X; the columns generate acolumn lattice
LC(X) which is anti-isomorphic toLR(X). A latticeL is anti-isomorphic ordual to a lattice
K if there is a one-to-one mappingφ from L to K with the property that:a ≥ b in L if and
only if φ(a) ≤ φ(b) in K. In bothLR(X) andLC(X), the join of two vectors is equal to
their Boolean sum, while their meet is the maximal vector in the lattice which is less than
or equal to both of them. The row latticeLR(X) has also been termed the Zareckii lattice
by Boyd (1990).

For instance, the binary matrixX of Table 1generates the row lattice whose partial
order diagram is displayed inFig. 1. The elements of the lattice are the set of Boolean
vectors comprising the rows ofX and all possible vectors constructed from the rows by
component-wise addition. InFig. 1, which is termed apartial order, or Hasse diagram, an
elementa is displayed earlier and directly connected to an elementb if a coversb, that is
if a ≥ b and if z is an element satisfyinga ≥ z ≥ b then eitherz = a or z = b. Table 2
reports the join and meet of each pair of elements in the lattice.
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Table 1
A rectangular binary matrixX

0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0
0 1 0 1 1 1

Definition. Let B be a subset of the vector spaceVn. A vectorv ∈ Vn is dependentonB if v

is contained in the span ofB. A setBof vectors isindependentif v is not dependent onB\{v},
for eachv ∈ B. A basisof a subspaceW of Vn is an independent setB whose span isW.

It may readily be shown that the basis of a subspace ofVn is unique (Kim, 1982). Thus,
the vector spaces generated by the rows and columns ofX each have a unique basis, termed,
respectively, therow basisandcolumn basisof X. The number of vectors in each of these
unique row and column bases are termed therow rank, r = r(X) and thecolumn rank,
c = c(X) of X, respectively. The row and column basis vectors may be identified from the
latticesLR(X) andLC(X).

Fig. 1. The partial order diagram for the lattice ofTable 1(the vectors represent elements in the latticeLR(X)).
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Table 2
A latticeL = LR(X) (the row lattice of the binary matrixX of Table 1)

1 2 3 4 5 6 7 8 9 10

Meet table
1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 1 2 2 2 1 2 2
3 1 1 3 1 1 3 1 3 3 3
4 1 1 1 4 1 1 4 4 1 4
5 1 2 1 1 5 2 5 1 5 5
6 1 2 3 1 2 6 2 3 6 6
7 1 2 1 4 5 2 7 4 5 7
8 1 1 3 4 1 3 4 8 3 8
9 1 2 3 1 5 6 5 3 9 9

10 1 2 3 4 5 6 7 8 9 10

Join table
1 1 2 3 4 5 6 7 8 9 10
2 2 2 6 7 5 6 7 10 9 10
3 3 6 3 8 9 6 10 8 9 10
4 4 7 8 4 7 10 7 8 10 10
5 5 5 9 7 5 9 7 8 9 10
6 6 6 6 10 9 6 10 10 9 10
7 7 7 10 7 7 10 7 10 10 10
8 8 10 8 8 10 10 10 8 10 10
9 9 9 9 10 9 9 10 10 9 10

10 10 10 10 10 10 10 10 10 10 10

Definition. An elementx of a latticeL is join-irreducible ifx �= xmin andx = x1 ∨ x2
impliesx = x1 or x = x2.

Proposition 1. The row and column basis vectors ofX are precisely the join-irreducible
elements of LR(X) and LC(X), respectively.

Proof. For instance, seeKim (1982) �

For example, the join-irreducible elements of the lattice ofFig. 1 are those labeled (2),
(3), (4), and (5); hence, the row basis of the binary matrixX of Table 1is:

b1 = [ 0 1 0 1 0 0], b2 = [ 0 0 0 0 1 1],

b3 = [ 1 0 1 1 0 0], b4 = [ 1 1 0 1 0 0].

It may be observed that the process of expressing each row of the matrixX as a join
(Boolean sum) of row basis vectors leads to a decomposition of the matrixX of the form:

X = UD,

whereD is a matrix of dimensionr × d whose rows are the row basis vectors, and where
U is ana × r matrix, withUij = 1 if, for eachk = 1,2, . . . , d, Xik ≥ Djk (that is, if the
ith row of X contains thejth row basis vector), and 0, otherwise. Expressing the columns
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of D in terms of its column basis (or, equivalently, the rows of the transposeDT of D in
terms of its row basis) leads to a decomposition ofD of the form:

DT = V TCT,

where the dimensions ofC andV arer×c andc×d, respectively. We have thus established
the following proposition.

Proposition 2. Any a × d Boolean matrixX possesses a Boolean decomposition of the
form:

X = UCV ,

whereU , C andV have dimensionsa × r, r × c, andc × d, respectively, with r being the
row rank and c being the column rank ofX.

Proof. See earlier proof, alsoChubb (1986). �

The rows and columns of the matrixC are independent;Chubb (1986)termed the matrix
C the union-coreof the matrixX, and described an efficient algorithm for its construc-
tion (at polynomial expense). Chubb also established that several important properties of
the matrixX are also properties ofC: one of these will be described later in detail. It
may be observed in passing that the decomposition earlier is somewhat analogous to the
Eckart–Young decomposition of a real rectangular matrix (Eckart and Young, 1936), with
important differences in the Boolean case being, first, the potential for the row and column
ranks to differ and, second, the uniqueness of the row and column bases. We will further
discuss these in the following paragraphs.

The decomposition of the matrixX of Table 1illustratesProposition 2.

X = UD,

where

U =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0



,

and

D =




0 1 0 1 0 0

0 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 0


 ,
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from which

D = CV ,

where

C =




0 1 0 0

0 0 0 1

1 0 1 0

1 1 0 0


 ,

and

V =




1 0 0 1 0 0

0 1 0 1 0 0

1 0 1 1 0 0

0 0 0 0 1 1


 .

Proposition 3. The row lattices LR(X) and LR(D) are identical, and both are isomorphic
to LR(C). Similarly, LC(X) is isomorphic to LC(C).

Proof. By construction, the matrixD possesses the same row basis asX, so thatLR(X)
andLR(D) are identical. Also, let

f : LR(D) → LR(C),

be given by

f (∨{ba, a ∈ S}) = ∨{ca, a ∈ S},
where{b1, b2,. . . , br} is the row basis ofX (and hence the set of rows ofD), {c1, c2,. . . ,
cr} is the row basis ofC, S is any subset of the index set{1, 2,. . . , r}, and∨{ba, a ∈ S}
denotes the join ofb1, b2, . . . , br . By observing thatbi = ciV , and that

(∨{ba, a ∈ S}) ∨ (∨{be, e ∈ T }) = ∨{bg, g ∈ S ∪ T },
and

(∨{ba, a ∈ S}) ∧ (∨{be, e ∈ T }) = ∨{bh, h ∈ S ∩ T },
it may readily be established thatf is both a homomorphism and a bijection, so thatLR(C)
is isomorphic toLR(D). �

2.2. Galois, or concept, lattices

As Coombs (1964)and others have pointed out, one derives parallel constructions by
replacing array entries by their complements, and the addition, or+, operation by the
product, or· operation (Doignon et al., 1984). For instance, a row lattice may be defined by
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whatDoignon and Falmagne (1985)term a knowledge structure. The row lattice is generated
from the rows ofX under the union (addition) operation; it is also possible to generate a
lattice structure using intersections rather than unions. This strategy is adopted by Wille
and colleagues in formal concept analysis (Ganter and Wille, 1989, 1999). The resulting
lattice is termed a concept lattice and may be decomposed using the same algorithms as for
the union case. Specifically, the following proposition.

Proposition 4. If MR(X) and MC(X) denote the Galois or concept lattice generated by
the rows and columns, respectively, of a binary arrayX, then MR(X) is anti-isomorphic to
LR(Xc) and MC(X), and isomorphic to LC(Xc).

Proof. For example, seeKim (1982)andBoyd (1990). �

2.3. Boolean vector spaces and lattice factorization

Pattison and Bartlett (1982)introduced a general procedure, termedfactorization, for
decomposing algebraic structures such as lattices into “maximally independent” compo-
nents. The procedure is described more formally inPattison (1993).

Definition. A partition θ on L is a congruence relationif, for all x, y, z ∈ L, whenever
x≡y(θ) thenx∧z≡y∧z(θ) andx∨z≡y∨z(�). Note that we writex≡y(θ) to indicate thatx
andyare in the same class of the partitionθ . Each congruence relationθ onL corresponds to
a lattice homomorphism, that is, to a mappingϕ onL which satisfiesϕ(x∧z) = ϕ(x)∧ϕ(z)

andϕ(x ∨ z) = ϕ(x) ∨ ϕ(z), for all x, z ∈ L.

The congruence relations (and therefore the homomorphisms) of a lattice are themselves
partially ordered and form lattices (Pattison, 1993).

Definition. Let θ1 and θ2 be congruence relations on a latticeL. If, for all x, y ∈ L,
x≡y(θ1) impliesx≡y(θ2), then we say thatθ1 ≤ θ2.

The collection of congruence relations ofL, partially ordered in this way, form a distribu-
tive lattice (Birkhoff, 1967, p. 138).

Definition. A latticeL is distributiveif the identity

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

holds. A latticeL is modularif, wheneverx ≤ z, then

x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Examples of non-distributive and non-modular lattices are displayed inFigs. 2 and 3. The
lattice in Fig. 2 is the smallest non-distributive lattice, and it can be shown that every
non-distributive lattice contains the lattice ofFig. 2as asublattice(that is, as a subset that
is also a lattice). The lattices ofFigs. 2 and 3are the smallest non-modular lattices.
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Fig. 2. The latticeM5.

It is readily shown (Pattison, 1993) that, for any algebraic structure with a distribu-
tive lattice of congruence relations, the decomposition termed factorization (Pattison and
Bartlett, 1982) is unique. In particular, for a latticeL, factorization is associated with a set
of congruence relations onL defined in the following way.

Definition. An atomof a latticeL is any elementa that covers the unique minimal ele-
ment of the lattice (that is, the elementxmin satisfyingx ≥ xmin, for all x ∈ L. A meet-
complement of an elementx ∈ L is an elementx∗ such thatx∗ > xmin andx∧x∗ = xmin. A
meet-complementx∗ of x is maximalif x has no other meet-complementzsuch thatz > x∗.

Fig. 3. The latticeN5.
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The unique factorization of the latticeL is associated with the set of maximal meet-
complements of the atoms of the congruence lattice ofL. The homomorphism associated
with each congruence relation in this set is a mapping ofL onto one of itsfactors.

We consider below two separate cases, one where the latticeLR(X) is itself distributive,
and one where it is not. Since the dual of a distributive lattice is distributive, then either all
of {LR(X), LC(X), MR(Xc), MC(Xc)} are distributive or all are not.

2.3.1. LR(X) is distributive
In the case whereLR(X) itself is distributive, a proposition ofBirkhoff (1967)establishes

that the components of the factorization are all two-element lattices, each of which may
be represented as the lattice denoted by2, and comprising the set{0, 1} with the ordering
0 < 1. Indeed, in this case,LR(X) may be shown to be isomorphic to the lattice2Z , whereZ
is the partially ordered set of row basis vectors ofLR(X) and where2Z denotes the collection
of all isotone mappings fromZ onto {0, 1}, partially ordered by the relationf ≤ g, iff
f (x) ≤ g(x), for all x ∈ Z.

As a result, each vectorx in a distributive row latticeLR(X) may be represented by a
binary vector of dimensionr corresponding to the factorization: theith component of the
vector corresponding tox is equal to 1 if and only ifx ≥ bi . Thus, in the case where
LR(X) is distributive, factorization ofLR(X) yields a decomposition ofX identical to that
of Proposition 2, and hence a Boolean decomposition of the formX = UCV .

Proposition 5. Let LR(X) be a distributive lattice with row basis{b1,b2, . . . ,br}. Then, the
factorization of LR(X) expresses each lattice elementx as a binary vector[ x1 x2 · · · xr ],
wherexi = 1 if x ≥ bi ; 0, otherwise. As a result, X possesses a decomposition induced by
the factorization of the form

X = UCV .

Proof. The latticeLR(X) hasr join-irreducible elements forming a partially ordered setZ
and, sinceLR(X) is distributive,LR(X) is isomorphic to2Z . Consequently, the factors of
LR(X) correspond to congruence relationsσ i of the form

(x, bi ) ∈ σi, iff x ≥ bi ,

and

(x, y) ∈ σi, if x ∧ bi = y ∧ bi = 0,

so that theith co-ordinate ofx in the factorization ofLR(X) is equal to 1 ifx ≥ bi , and 0,
otherwise. Thus,X = UD, whereD is a matrix whose rows are the basis vectorsb1, b2,
. . . , br . Further, sinceLR(X) is distributive, it follows fromProposition 4thatLR(D) and
hence alsoLC(D) are distributive, and the result may be applied to the transpose ofD to
obtain the required decomposition. �

For example, the binary matrixY presented inTable 3possesses the row latticeM shown
in Fig. 4, and it may readily be verified that the lattice is distributive. The factorization of
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Table 3
The binary matrixY

1 1 0 0
1 1 0 1
0 0 0 0
0 1 1 1
1 1 1 1
0 0 0 1
0 1 1 0
1 1 1 0

M is associated with the following congruence relations:

σ1 : ( 3 4 6 7)( 1 2 5 8),

σ2 : ( 1 2 3 6)( 4 5 7 8),

σ3 : ( 1 3 7 8)( 2 4 5 6),

so that, each lattice element may be represented as a binary vector of dimension three as
shown inTable 4. The associated decomposition ofY is therefore:

Y = UD,

Fig. 4. The row latticeLR(Y ) (join-irreducible elements are marked by an asterisk).
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Table 4
Representation of elements of the latticeM induced by factorization ofLR(M)

Lattice element Vector inLR(M) Induced representation

1 [1 1 0 0] (1, 0, 0)
2 [1 1 0 1] (1, 0, 1)
3 [0 0 0 0] (0, 0, 0)
4 [0 1 1 1] (0, 1, 1)
5 [1 1 1 1] (1, 1, 1)
6 [0 0 0 1] (0, 0, 1)
7 [0 1 1 0] (0, 1, 0)
8 [1 1 1 0] (1, 1, 0)

where

U =




1 0 0
1 1 0
0 0 0
0 1 1
1 1 1
0 1 0
0 0 1
1 0 1




,

and

D =



1 1 0 0
0 0 0 1
0 1 1 0


 ,

so that

C =



1 0 0
0 0 1
0 1 0


 ,

and

V =



1 1 0 0
0 1 1 0
0 0 0 1


 .

It may be observed that the binary matrix component corresponding to theith factor
in the factorization divides the rows ofX into two groups: those rows which lie above the
corresponding row basis vector and those that do not. The columns determining this division
are those having unit entries in the associated basis vector. This observation leads to a more
general construction, described inSection 2.4.

2.3.2. LR(X) is not distributive
In the case whereLR(X) is not distributive, at least one of the factors ofLR(X) will not

be isomorphic to the two-element lattice2. For example, the lattice presented inTable 2
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(andFig. 1) has factors isomorphic to2 andN5; these factors correspond to the congru-
ence relations (1 2 4 5 7) ( 3 6 8 9 10) and (1 3) ( 2 6) ( 4 8) ( 5 9)
( 7 10) of LR(X), respectively. Later, we describe a general decomposition of an array
that is associated with any homomorphism of its row lattice, and hence with the factors in
its factorization.

2.4. Induced decompositions of a data array

It is natural to ask whether, if the latticeLR(X) has a homomorphic imageK (such as one
of the factors ofL), can we find one or more “reductions” of the data array that is consistent
with the congruence relation for the homomorphism and that generates the latticeK? If
so, we can argue that there is an association between such a reduction of the array and the
homomorphic image.

Proposition 6. Suppose that H is a homomorphic image of LR(X) with associated congru-
ence relationψ and that K is a homomorphic image of MR(X) with associated congruence
relation θ . For each row vectorx in the matrixX, define

xψ = ∧{y : x ≡ y(ψ), for x, y ∈ LR(X)},
and

xθ = ∨{y : x ≡ y(θ), for x, y ∈ MR(X)}.
Also defineXψ andXθ to be the matrices in which the rowx of the arrayX is replaced

by xψ andxθ , respectively. ThenLR(Xψ ) is isomorphic toH andMR(Xθ ) is isomorphic
to K.

Proof (See alsoGanter and Wille (1999)). There is clearly a one-to-one relationship
between elements ofH and elements ofLR(X), and likewise forK andMR(X); in addition
each construction leads to a homomorphism, since(x ∧ z)ψ = xψ ∧ zψ and (x ∨ z)θ

= xθ ∨ zθ . �

Note that, by construction, bothXψ andXθ have a reducible form, so thatProposition 2
and its intersection analogue can be applied to identify the union-coreCψ of Xψ and
the intersection-coreCθ of Xθ which also have lattices that are isomorphic toH andK,
respectively.

2.5. Boolean factor analysis

WhereLR(X) is not a distributive matrix, factorization does not yield a Boolean matrix
product representation ofX. It has been observed, however, in the literature that such
representations are of interest (De Boeck and Rosenberg, 1988; Mickey et al., 1983) and
now we consider them in relation toLR(X) and its factorization.

One general form of these representations that has been studied is a Boolean analogue
of factor analysis, that is, an expression ofX as a Boolean product of matricesP andQ:

X = PQ.
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Definition. TheSchein ranks = s(X) of ana × d binary matrixX is the least integers
such thatX may be expressed as a Boolean product of matricesP andQ of dimension
a × s ands × d, respectively.

Some well-known equivalent definitions of the Schein rank of a matrix are summarized
in Proposition 7.

Proposition 7 (Kim (1982)). The following are equivalent:

(a) the Schein rank ofX is s;
(b) s is the least integer such thatX may be expressed as the Boolean sum of s cross-vectors

(or rectangles), that is of matrices of the formC = [ v1 v2 · · · va ]T[w1 w2 · · ·
wd ];

(c) s is the least integer such that LR(X) is a subset of a subspace W of Vd spanned by s
vectors;

(d) s is the least integer such that LC(X) is a subset of a subspace W of Va spanned by s
vectors.

For instance, a Boolean factor analysis

X = PQ,

may be converted into a cross-vector representation by putting

P = [ p1 p2 · · · ps ],

wherepi is a column vector of dimensiona, and

Q = [ q1 q2 · · · qs ],

whereqi is a row vector of dimensiond, so that

PQ = p1q1 + p2q2 + · · · + psqs ,

and eachpiqi is a cross vector.
Doignon and Falmagne (1984)described these representations in terms ofmatching

relations. A binary matrixX is amatchingrelation if it is across vector, that is, ifXik =
1 = Xjk = Xjh impliesXih = 1. For binary proximity relations, a matching relation may
be regarded as a type oftwo-set cluster, linking a subset of row entities to a subset of
column entities. Thus, the representation described by Doignon and Falmagne expresses a
proximity relation as the union of possibly overlapping clusters of this type.

It is useful once more to discuss separately those cases whereLR(X) is distributive and
those where it is not.

2.5.1. LR(X) distributive

Proposition 8. If LR(X) is distributive, thens(X) = r(X) = c(X) and the decomposition

X = UD,

yields a Boolean factor analysis ofX into matrices of dimensiona × s ands × d.
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Proof. SinceLR(X) is isomorphic to2Y whereY is the partially ordered set of basis vectors
of X, LR(X) has a chain (that is a sequence of distinct elementsx0 < x1 < . . . < xr )
comprisingr + 1 elements (Birkhoff, 1967). As a result, at leastr vectors are required in
any subset ofVd whose span containsLR(X). Thus,s ≥ r. For any matrixX, r ≥ s (Kim,
1982), and so we have established thatr = s and that the decompositionX = UD is a
Boolean factor analysis. The result thatc = s follows by replacingX by its transpose in
the argument earlier. �

Thus, in the case of a distributive row lattice, the Schein rank ofX is equal to its row
rank, and the constructions we have already discussed yield a corresponding Boolean factor
analysis.

2.5.2. LR(X) not distributive
The case of non-distributivity is more interesting, sinceLR(X) can be embedded as a

partial order in a subspace ofVd having a smaller basis thanLR(X) itself. Later, we give an
embedding rule which guarantees that the basis of the space into whichLR(X) is embedded
has a minimal number of vectors. We then show that this space must be distributive, so
that each row ofX can be expressed via factorization as an element in2s . The expression
therefore yields a Boolean decomposition ofX into matrices of dimensiona× s, ands×d.

Proposition 9. Let B be the row basis of a matrixX, partially ordered by

bi ≤ bj , iff bik ≤ bjk, for all k ∈ {1,2, . . . , d}.

Let bj ∈ B be some vector for whichbi ≤ bj andbi �= bj for somebi . Then, the space
spanned byB is contained in the space spanned by

B ′ = B\{bj } union{xj },
wherexj is a vector such thatxj ∨ Bj = bj andxj ∧ Bj = 0, andBj is the vector

Bj = ∨{bi : bi ≤ bj andbi �= bj }.

Proof. By construction,bj = Bj ∨ xj , hence the span ofB is contained in the span
of B′. �

This construction leads to the following algorithm.

Algorithm. SetW = B, and arrange the basis vectors inW in some order. Consider
elements ofW in turn. If wj is minimal in W, leave it unchanged; ifwj is not minimal,
construct the corresponding vectorxj of the preceding proposition. Ifxj is equal to any of
the existingwi (wi �= wj ), discard it fromW. Repeat the process through cycles of elements
of W, until an entire cycle throughW leaves all of its members unchanged.

Proposition 10. The algorithm constructs an independent set W containing s vectors,where
s = s(X) is the Schein rank ofX.
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Proof. Any set spanning a setW, but smaller thanW must have elements lying between
members ofW and the zero vector inVd . By construction, however, each element ofW is
minimal, and so the cardinality ofW is minimal. �

Proposition 11. The space spanned by the set W resulting from the algorithm above is
distributive.

Proof. Since elements ofWpossess no partial ordering, the space spanned byW is isomor-
phic to2W and is therefore distributive. �

Thus, the construction amounts to an embedding ofLR(X) as a partial order in a dis-
tributive space, and the latter possesses a factorization intos components all of which are
isomorphic to the lattice2. Each row of the matrixX may therefore be expressed as a binary
vector of dimensions and the algorithm therefore constructs a decomposition ofX of the
form

X = PQ,

Thes rows ofQ are thes vectors inW, andPij = 1 if Xik ≥ Wjk for all k ∈ {1, 2, . . . , d}
and 0, otherwise. Of course, it will often be more efficient to apply this procedure directly
to the union-core matrixC of the decomposition ofProposition 2, yielding,

C = P ′Q′,

and so leading to the representation ofX in the form:

X = UP ′Q′V ,

and hence

X = PQ,

whereP = UP ′ andQ = Q′V . The result that the Schein rank ofX is the same as the
Schein rank ofC was also established byChubb (1986).

The constructions earlier make it clear that the distinction between observed and latent
variable representations may be applied to the two different types of decomposition of a
matrix that we have been considering. In the decomposition of a matrixX in the form

X = UD,

each row ofX is expressed in terms of “observed” row basis vectors. By contrast, the
decomposition ofX in the form

X = PQ,

expresses each row ofX in terms of the setWof “latent” vectors which are not necessarily
observed as rows ofX but which have the capacity to generate all of the observed rows of
X.

One final question that we consider here is the relationship between alternative
Boolean factor analyses of a matrixX. We demonstrate that the earlier construction leads



P.E. Pattison, R.L. Breiger / Social Networks 24 (2002) 423–444 439

to a maximal Boolean factor analysis of the matrixX, an analysis that has been termed
a set-theoretical decomposition byDe Boeck and Rosenberg (1988). We first give the
following definition.

Definition. Let X = PQ andX = P ′Q′ be alternative Boolean factor analyses ofX

(so that bothP andP ′ have dimensiona × s, andQ andQ′ have dimensions × d). Let
[P ,Q] ≤ [P ′,Q′] if Pij ≤ P ′

ij , for all i, j andQij ≤ Q′
ij , for all i, j.

Proposition 12. LetX = PQ be a Boolean factor analysis ofX. Then, for each matrixP
in such a decomposition, there is a maximal matrixQ∗ satisfyingX = PQ∗ and for each
matrixQ there is a maximalP ∗ satisfyingX = P ∗Q.

Further, the procedure based onProposition 10yields this unique maximal solution.

Proof. The result follows directly from the existence of unique maximal solutions to
Boolean relational equations (Sanchez, 1976). �

3. Non-binary representations

Suppose now that the values taken byXij are not binary but from a setA of values. We
assume thatA includes a minimum value of 0 and a maximum value of 1.

3.1. Matrices over a general Boolean algebra

Define the operations+, · andc by: (i) a + b = max(a, b); (ii) a.b = min(a, b); and
(iii) ac = 1 − a. ThenA is a Boolean algebra and most of the results described earlier can
be directly generalized to this case (see Appendix inKim (1982)). In particular, row and
column bases of the resulting Boolean vector spaces are unique, and the constructions just
described lead to lattices whose join-irreducible elements correspond to basis elements.

3.2. Matrices over a fuzzy algebra

If, on the other hand, we assume thatA = [0,1] and that the operations+ and ‘.’ are
the maximum and minimum operations just defined, thenA is afuzzy algebra. In this case,
A is not necessarily finite, and the important difference between this case and the case of
matrices over an arbitrary Boolean algebra is that bases of the vector spaces to which they
give rise are not unique (Kim, 1982).

3.3. Incline algebras

More generally,A is anincline algebraif it has (i) an associative, commutative addition
operation ‘+’, (ii) a distributive product operation ‘.’, and (iii) ifa+ a = a anda+ab = a

for all a, b ∈ A. Matrices over an incline form a semiring; we can define row and column
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bases, as well as standard bases, and there are some results on when the bases (or standard
bases) are unique (Cao et al., 1984).

3.4. Matrices over the reals

The final case is a familiar one and the theory of real vector spaces, bases, and standard
bases are well-known. A fundamental mathematical result in this case is the Eckart–Young
decomposition of a real-valuedn × m array X (Young and Householder, 1938) in the
form X = X∗ΛV ∗′

, whereU∗ andV ∗ aren × p andm × p orthogonal matrices,Λ
is a diagonal matrix, with entries (λ1, λ2, . . . , λp), andp is the eigendimension ofX.
ExpressingU∗ andV ∗ in terms of orthonormal matricesU andV via U∗ = D−1

1 U and
V ∗ = D−1

2 V leads to the formX = D−1
1 UΛV ′D−1

2 , where the rows ofU andV may
be regarded as an orthonormal basis of the vector space spanned by the rows and columns
of X, respectively. Indeed, the proof of the Eckart–Young decomposition establishes a
one-to-one correspondence between the matrix decomposition and the expression of the
rows and columns ofX in terms of orthonormal row and column bases. Since each element
Xij of X is thereby represented in the formXij = (D−1

1 )ii (D
−1
2 )jj

∑
kλk(UikVjk), it has

been common to represent the decomposition in terms of a mapping of the entities indexed
by both the rows and the columns ofX in ap-dimensional real space.

4. Reduced rank representations

The discussion so far has focused on the problem of obtaining “exact” decompositions
for an arrayX. An implicit assumption of the constructions that have been analyzed is that
the data are measured without error and hence that it is desirable to representeveryfeature
possessed by the data in the decomposition. Needless to say, this is often an unreasonable
assumption and there is much to recommend attempts to obtain approximate representa-
tions using “small” numbers of “simple” components. Indeed, the reasons for pursuing an
understanding of algebraic decomposition techniques include (a) the development of exact
representational strategies for comparison with existing or new proposed approximate tech-
niques, and (b) the hope of obtaining some insights for thedevelopmentof new approximate
methods (Schönemann, 1970).

There are at least two different approaches to the development of new approximate tech-
niques. One is a more formal, “confirmatory”, statistical approach and involves specifying a
probability model for an array of binary random variables. The Rasch model and a number of
latent class models (Feick, 1987; Rindskopf, 1983; Martin and Wiley, 1999, 2000) relating
binary response profiles to one or a small number of biorder components are good examples
of the approach; random bipartite graph models (Skvoretz and Faust, 1999; Pattison and
Robins, 2000) are another. In this approach, the general form of the model is assumed to
be known and the data are used to estimate model parameters.

An alternative strategy is to adopt a more exploratory stance, seeking fewer components
than the number required for exact representation, but often more than is allowed by a proba-
bilistic approach to the problem. Algorithms for reduced rank decompositions in real vector
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spaces are of course well-known. Decompositions can be based on correspondence analysis,
loglinear and association models, latent class analysis, multidimensional scaling and related
techniques (Blasius and Greenacre, 1998). Several exploratory methods for approximate
Boolean factor analysis also exist (Mickey et al., 1983; De Boeck and Rosenberg, 1988).
Here, we briefly review these Boolean approximate techniques and we also describe some
alternative strategies for fitting approximate decompositions of the form that we have been
considering.

4.1. Algorithms for approximate Boolean decompositions of the formX = UCV

One strategy for fitting approximate decompositions is to perform an exact analysis (as
described earlier) and then to attach to each component of the resulting decomposition some
measure of the “extent” of the data covered by the component. One might then proceed
in a stepwise manner (for instance, backward or forward) to identify a smaller number
of components which cover “most” of the data. Presumably, a large number of “extent”
measures could be proposed, but one desirable feature that any selected measure should
possess is some consistency with the metric implicit in the latticeLr(X) associated with the
algebra representing the data matrix.

A second general strategy is to simplify the algebra representing the dataprior to decom-
position. No such strategy has been suggested for row or column lattices, but eliminating
row basis vectors required by only a small fraction of the observed rows may be a useful
starting point. Indeed, for rectangular data, using the outcome of either of these two strate-
gies to obtain a representation with a small number of components would provide a useful
starting configuration for the Boolean regression step of Boolean factor analysis (Mickey
et al., 1983; De Boeck and Rosenberg, 1988).

In some cases, it might also be possible to identify a single “best” component for a data
array, a process that could be iteratively re-applied to a residual array constructed from the
data and the components fitted so far. Such a strategy, for instance, is incorporated in the
qualitative factor analysis methods described byMirkin (1987)for non-negative symmetric
proximity matrices.

4.2. Algorithms for Boolean factor analysis

Mickey et al. (1983)described an algorithm for Boolean factor analysis that is based on
Boolean regression procedures. The algorithm assumes that the observed binary arrayX

may be expressed in the form

X = PQ + E,

whereP andQ are unknown binary matrices of dimensiona × s ands × d, respectively,
and the matrixE has entries of−1, 0 or 1. The sum of absolute values of entries inE

can be regarded as a measure of discrepancy between the data matrixX and the Boolean
factor analysis solutionPQ. Mickey et al.’s algorithm begins with an initial estimate for
the matrixQ and then estimates the rows ofP using an algorithm for Boolean regression.
Once the rows ofP have been estimated, the columns ofQ are estimated using the same
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technique, and the whole process is recycled several times, with several different values
of s in a pre-specified range and in a pre-arranged order (Mickey et al., 1983). De Boeck
and Rosenberg (1988)adapted the Boolean factor analysis algorithm to fit approximate
‘set-theoretical decompositions’ to an arrayX: the result is an algorithm termed HICLAS.

It may be noted that the development of analytic methods for discrete structural models
lags well behind that for the more traditional linear models used in the behavioral and social
sciences. One reason for this delay is the greater complexity of structural models, and their
foundation in more general (and, as yet, less tractable) algebraic structures than the linear
algebras underlying the traditional linear models. Yet, procedures for expressing a binary
array in terms of discrete, binary matrix components have two noteworthy properties as
methods of data analysis. First, they seek components of the original data which have the
same formas those original data, a property that they share with techniques like blockmod-
elling (Arabie et al., 1978; Breiger et al., 1975; White et al., 1976). Second, the components
are derived using a small set of simple Boolean operations, such as union, intersection,
relational composition, and binary comparison. Restricting the data analyses to such oper-
ations means that only a minimal set of assumptions need be made about the measurement
characteristics of the data, and, at the very least, the procedures that result will provide a
useful comparative base for those techniques which make a different and often stronger set
of assumptions about the data.

5. Future directions

This paper has been concerned with some methods that attempt to provide simultaneous
representation of dual relationships. We have demonstrated fundamental similarities among
these approaches. These similarities provide foundations for research examples that seek to
combine dimensional representations and lattices within the same substantive study (Wolff
and Gabler, 1998; Breiger, 2000, pp. 102–106).

Algorithms for reduced rank fuzzy decompositions remain an open problem. An addi-
tional topic of interest is the relation of probabilistic models to those we have discussed.
Skvoretz and Faust (1999)formulate models allowing study of the (log) odds of an actor’s
belonging to an event (or an event including an actor) as a function of properties of the
two-mode network of actors’ memberships in events, based on theP ∗ family of models.
Pattison and Robins (2000)formulate neighborhood-based models for dual networks that
extends this line of research by allowing a contingency to be created between the two pos-
sible membership ties by virtue of their connection to an observed tie, hence allowing for a
collection of attendance ties to become mutually contingent (Pattison and Robins, in press).
Future work should build on these approaches as well as onBreiger (2000)to use lattice
techniques to simplify the structure of probabilities of relations in dual networks.
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