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Ego-centered networks and the ripple effect
— or —

Why all your friends are weird
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Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, U.S.A.

(Dated: November 5, 2001)

Recent work has demonstrated that many social networks, andindeed many networks of other types also,
have broad distributions of vertex degree. Here we show thatthis has a substantial impact on the shape of ego-
centered networks, i.e., sets of network vertices that are within a given distance of a specified central vertex,
the ego. This in turn affects concepts and methods based on ego-centered networks, such as snowball sampling
and the “ripple effect.” In particular, we argue that one’s acquaintances, one’s immediate neighbors in the
acquaintance network, are far from being a random sample of the population, and that this biases the numbers of
neighbors two and more steps away. We demonstrate this concept using data drawn from academic collaboration
networks, for which, as we show, current simple theories forthe typical size of ego-centered networks give
numbers that differ greatly from those measured in reality.We present an improved theoretical model which
gives significantly better results.

I. INTRODUCTION

In social network parlance, anego-centered network
(sometimes also called a personal network) is a network cen-
tered on a specific individual (generically “actor”), whom we
call the ego.1,2,3,4 For example, Sigmund Freud and all his
friends would form an ego-centered network. This network
would have radius 1, meaning we include everyone within
distance 1 on the friendship network of the central individual,
Freud in this case. If we also included friends of friends in the
network, it would have radius 2. In Fig. 1 we show a radius-2
ego-centered network of scientific collaborations. The egoin
this case is my own: the central vertex in the figure represents
me, the first ring of vertices around that my coauthors on pa-
pers published within the last ten years, and the second ring
their coauthors. As the figure shows, networks of this type can
grow very rapidly with radius.

Ego-centered networks are of interest for a number of rea-
sons. For instance, in two recent papers, Bernardet al.5,6 ad-
dress the following question. Consider some subset of the
population, consisting ofe people. They could be people in a
particular demographic or social group, or the people involved
in a particular event. How many of thesee people, if any, is
the typical person likely to know? As Bernardet al. show,
this is easy to calculate. If the total population who might be
involved in the event ist, then each member of that popula-
tion has a probabilityp = e/t of being involved. If the av-
erage person knowsc other people, then the average number
of those people who were involved is simplym = cp = ce/t.
Bernardet al. take the example of the population of the United
States, for which they estimate from previous empirical stud-
ies that the average person has a social circle of aboutc = 290
people,3,5 and for which the total population currently stands
at around 280 million. Thus the ratiot/c ≃ 1000000 in this
case, giving the simple rule of thumb

m =
e

1000000
. (1)

Simply stated, this equation says that the average individual
living in the United States is acquainted with about one person

in a million out of the country’s total population.
As an example, let us apply the method to the problem of

estimating how many HIV positive individuals the average
person in the US knows. At the time of writing, there were
about 800000 known cases of HIV in the US (including those
who have died). The number of actual cases is probably sub-
stantially greater than this and is estimated to be somewhere
between 1.0 and 1.5 million. To take a conservative figure, let
us suppose that the actual total ise = 1 million. From Eq. (1),
we then estimate that on average each member of the US pop-
ulation as a whole has or had one acquaintance who is or was

FIG. 1: An ego-centered network of scientific collaborations, cen-
tered in this case on the author of this paper, represented bythe ver-
tex in the middle of the figure. The two surrounding rings represent
his collaborators, and their collaborators. Collaborative ties between
members of the same ring, of which there are many, have been omit-
ted from the figure for clarity.
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HIV positive. It must be emphasized that this is an average
figure. HIV positive individuals are not a uniform sample of
the population. Nonetheless, Eq. (1) is expected to give a cor-
rect population average ofm.

Now we want to extend this calculation one step further. If a
person has no immediate friends in the group under consider-
ation, how many of their friends’ friends are in this group? Al-
ternatively, one could rephrase the question and enquire how
many people in the population as a whole have one or more
friends of friends in the specified group: one can visualize a
group or event as the center of a set of ever widening circles
of influence in the social network. Colloquially, this is what
we call the “ripple effect.” The two questions here are equiva-
lent, but not identical. In this paper we speak in the language
of the former, which focuses our attention on the calculation
of the number of actors two steps away from the ego in an
ego-centered network.

Unfortunately, the calculation of this number is not simple.
An approximate solution is given in Ref. 5 but, as we will
demonstrate, this solution misses some important featuresof
real social networks and as a result can give answers that are
inaccurate. The crucial point is that in many networks there
exist a small number of actors with an anomalously large num-
ber of ties. While it may appear safe to ignore these actors
because they form only a small fraction of the population, we
show that in fact this is not so. Because of the way the rip-
ple effect works, this small minority has a disproportionately
large influence, and ignoring them can produce inaccurate es-
timates for the figures of interest. We show here how to per-
form calculations that take these issues into account correctly.

The topic of this paper is also of interest in some other ar-
eas of social network theory. One such area is “snowball sam-
pling,” an empirical technique for sampling social networks
that attempts to reconstruct the ego-centered network around a
given central actor.7,8 In this technique, the central actor is first
polled to determine the identities of other actors with whom
he or she has ties. Then those actors are polled to determine
their ties, and so forth, through a succession of generations of
the procedure. The statistical properties of snowball samples
have been studied using Markov chain theory9 and the tech-
nique has been shown to give good (or at least predictable)
samples of populations in the limit where a large number of
generations of actors is polled. Unfortunately, in most practi-
cal studies only a small number of generations is polled, and
in this case, as we will see, the sample may be biased in a se-
vere fashion: snowball samples, like calculations of the ripple
effect, are highly sensitive to the presence in the population of
a small number of actors with an unusually large number of
ties.

The outline of this paper is as follows. In Section II we
calculate exactly the expected number of network neighborsat
distance two from a central individual, in a network without
transitive triples. In Section III we show how the resulting
expression is modified when the network has transitivity, and
in Section IV we apply our theory to two example networks,
showing that in practice it appears to work extremely well. In
Section V we give our conclusions.

II. FRIENDS OF FRIENDS

So how do you estimate the number of people who are two
steps away from you in a social network (or indeed in a net-
work of any kind)? Bernardet al.6 suggest the following sim-
ple method. If each actor in a network has ties toc others on
average, and each of those has ties toc others, then the average
number of actors two steps away isc2. There are some prob-
lems with this however. First, as pointed out in Ref. 6, people
who know one another tend to have strongly overlapping cir-
cles of acquaintance, so that not all of thec people your friend
knows are new to you—many of them are probably friends of
yours. In other circles this effect is called network transitivity1

or clustering,10 and it is also related to the concept of network
density.1,11 Typically, the mean number of people two steps
away from an actor can be reduced by a factor of two or so by
transitivity effects. Bernardet al. allow for this by including a
“lead-in factor”λ in their calculation. We discuss transitivity
in more detail in Section III.

Even if we ignore the effects of transitivity, however, there
is a substantial problem with the simple estimate of the num-
ber of one’s second neighbors in a social network. By approx-
imating this number asc2 we are assuming that the people
we know are by and large average members of the population,
who themselves know average numbers of other people. But
we would be quite wrong to make such an assumption. The
people we know are anything but average.

Consider two (fictitious) individuals. Individual A is a her-
mit with a lousy attitude and bad breath to the point where it
interferes with satellite broadcasts. He has only 10 acquain-
tances. Individual B is erudite, witty, charming, and a profes-
sional politician. She has 1000 acquaintances. Is the average
person equally likely to know A and B? Absolutely not. The
average person is 100 times more likely to know B than A,
since B knows 100 times as many people.23 Extending this ar-
gument to one’s whole circle of friends, it is clear that the peo-
ple one knows will, overall, tend to be people with more than
the average number of acquaintances.24 This means that the
total number oftheir friends—the people two steps away—
will be larger than our simple estimate would suggest. And as
we will show, it may be very much larger.

The fundamental concept that we need to capture here is
that not all people have the same number of acquaintances. In
the language of social network analysis, there is a distribution
of the degrees of vertices in the social network. (Recall that
the degree of a vertex is the number of other vertices to which
it is directly connected.) Letk denote the degree of a vertex
andpk the degree distribution, i.e., the probability that a ver-
tex chosen uniformly at random from the network will have
degreek. Thus, for example, the mean degreec of a vertex is

c = k =
∞

∑
k=0

kpk. (2)

Degree distributions have been measured for a variety of
networks, and in many cases are found to show great
variation.12,13,14,15,16It is certainly not the case that vertices
always have degree close to the mean (although they may in
some networks17). A clear example of this can be seen in
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Fig. 1, in which some vertices have degree only 1, while at
least one has degree greater than 100.

Now the fundamental point of this paper may be expressed
as follows. The distribution of the degrees of the vertices to
which a random vertex is connected isnot given by pk. The
probability that you know a particular person is proportional
to the number of people they know, and hence the distribution
of their degree is proportional tokpk and not justpk.18 The
correctly normalized distribution is thus

qk =
kpk

∑∞
k=0 kpk

. (3)

Now consider the number of vertices two steps away from a
given vertex. The probabilityP(k2|k1) that this number isk2,
given that the number of vertices one step away isk1, is

P(k2|k1) =
∞

∑
m1=1

∞

∑
m2=1

. . .
∞

∑
mk1

=1
︸ ︷︷ ︸

degrees of neighbors

δ

(
k1

∑
i=1

(mi −1),k2

)

︸ ︷︷ ︸

degrees sum tok2

k1

∏
j=1

qm j ,

(4)

whereδ(m,n) is 1 if m = n and 0 otherwise. Note the oc-
currence ofmi −1 in this expression; the amount that yourith
neighbor contributes to the total number of your second neigh-
bors is one less than his or her degree, because one of his or
her neighbors is you. The overall probability that the number
of second neighbors isk2 can then be calculated by averaging
Eq. (4) overk1:

P(k2) =
∞

∑
k1=0

pk1P(k2|k1). (5)

We want the mean value ofk2, which we will denotec2, and
this is given by

c2 = k2 =
∞

∑
k2=0

k2P(k2). (6)

Combining Eqs. (3)–(6), we thus arrive at the quantity we are
interested in:

c2 =
∞

∑
k2=0

k2

∞

∑
k1=0

pk1P(k2|k1) =
∞

∑
k1=0

pk1

∞

∑
k2=0

k2P(k2|k1)

=
∞

∑
k1=0

pk1

∞

∑
m1=1

. . .
∞

∑
mk1

=1

∞

∑
k2=0

k2 δ

(
k1

∑
i=1

(mi −1),k2

)
k1

∏
j=1

qm j

=
∞

∑
k1=0

pk1

k1

∑
i=1

∞

∑
m1=1

. . .
∞

∑
mk1

=1
(mi −1)

k1

∏
j=1

qm j

=
∞

∑
k1=0

k1pk1

[
∞

∑
m=1

qm

]k1−1 ∞

∑
k=0

(k−1)qk

=
∞

∑
k=0

k(k−1)pk = k2− k. (7)

This result

c2 = k2− k, (8)

is the correction we were looking for to the simple estimate
of the number of vertices two steps away.25 The number of
vertices two steps away is given by the mean square degree
minus the mean degree. The important point to notice is that
this expression depends on the average of the square of a ver-
tex’s degree, rather than the square of the average, as the sim-
ple estimate assumes. If the degrees of vertices are narrowly
distributed about their mean, then these two quantities will be
approximately equal and the simple estimate will give roughly
the right result. As mentioned above, however, many net-
works have broad degree distributions, and in this case the
average of the square and the square of the average will take
very different values. In general, we can write

c2 = k2− k+(k
2
− k

2
) = c2− c+σ2, (9)

whereσ2 is the variance of the degree distribution andc is, as
before, its mean. Normally,σ2 ≫ c and so the difference be-
tween the simple estimatec2 and the true value ofc2 is about
equal to the variance. In Section IV we give some examples
of real networks for which the variance is large—much larger
thanc2 itself—and hence for which the simple estimate gives
poor results.

III. TRANSITIVITY AND MUTUALITY

The calculation of the previous section is incomplete for a
number of reasons. Chief among these is that it misses the
effect of network transitivity or clustering. In most social net-
works, adjacent actors have strongly overlapping sets of ac-
quaintances. To put this another way, there is a strong proba-
bility that a friend of your friend is also your friend. Transi-
tivity can be measured by the quantity

C =
6× number of triangles in the network

number of paths of length two
. (10)

Here paths of length two are considered directed and start at
a specified vertex. A “triangle” is any set of three vertices
all of which are connected to each of the others. The factor
of six in the numerator accounts for the fact that each triangle
contributes six paths of length two to the network, two starting
at each of its vertices. This definition is illustrated in Fig. 2.
Simply put,C is the probability that a friend of one of your
friends will also be your friend.

The quantityC has been widely studied in the theoretical
literature, and its value has been measured for many different
networks. Watts and Strogatz10 have dubbed it thecluster-
ing coefficient. It is sometimes also known as the “fraction of
transitive triples” in the network. Eq. (10) is not in the form of
the standard definition, and so may not be immediately recog-
nizable as the same quantity discussed elsewhere. The most
commonly used definition is18

C =
3× number of triangles in the network
number of connected triples of vertices

, (11)

where a “connected triple” means a vertex that is connected to
an (unordered) pair of other vertices. It takes only a momentto
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A

C
D

B

FIG. 2: An illustration of the calculation of the clusteringcoefficient
for a small network. Vertex A has three paths of length 2 leading
from it, as marked. Similarly vertices B, C, and D have 3, 2, and 2
such paths, for a total of 3+3+2+2= 10. There is one triangle in
the network. Hence, from Eq. (10), the clustering coefficient is 6×
1
10 =

3
5 . Alternatively, one can count the number of connected triples

of vertices, of which there are five, one each centered on vertices A
and B, three on vertex C, and none on vertex D. Using Eq. (11), the
clustering coefficient is then 3× 1

5 = 3
5 again.

convince oneself that the two definitions are equivalent—see
Fig. 2 again. (Note that paths are ordered in (10) and triples
are unordered in (11), which accounts for an apparent differ-
ence of a factor of two between the two definitions.)

What effect does clustering have on our calculation of the
numberc2 of second-nearest neighbors in the network? Con-
sider a vertex with degreem lying in the first “ring” of our
ego-centered network, i.e., one of the immediate neighborsof
the central vertex. Previously we considered all but one of
this vertex’sm neighbors to be second neighbors of the cen-
tral vertex. (The remaining one is the central vertex itself.)
This is why the termm−1 appears in Eq. (7). Now, however,
we realize that in fact an average fractionC of thosem− 1
neighbors are themselves neighbors of the central vertex and
hence should not be counted as second neighbors. Thusm−1
in Eq. (7) should be replaced with(1−C)× (m−1).

Making this substitution in Eq. (7) we immediately see that

c2 = (1−C)(k2− k). (12)

This result is in general only approximate, because the prob-
ability of a vertex having a tie to another in the first ring is
presumably not independent of the degreesmi of the other ver-
tices. As we show in the following section however, Eq. (12)
gives considerably better estimates ofc2 than our first attempt,
Eq. (8).

But this is not all. There is another effect we need to take
into account if we are to estimatec2 correctly. It is also pos-
sible that we are over-counting the number of second neigh-
bors of the central individual in the network because some of
them are friends of more than one friend. In other words, you
may know two people who have another friend in common,
whom you personally don’t know. Such relationships create
“squares” in the network, rather than the triangles of the sim-
ple transitivity. To quantify the density of these squares,we
define another quantity26 which we call themutuality M:

M =
mean number of vertices two steps away

mean paths of length two to those vertices
. (13)

In words, M measures the mean number of paths of length
two leading to your second neighbor. Because of the squares

FB(c)

(b)(a)

AE

F

B

A

E

F

B

E

A

FIG. 3: (a) An example of an actor (F) who is two steps away from
the ego (E, shaded), but is friends with two of E’s friends (A and B).
F should only be counted once as a friend of a friend of E, not twice.
(b) A similar situation in which A and B are also friends of onean-
other. (c) The probability of situation (b) can be calculated by con-
sidering this situation. Since A is friends with both B and F,the
probability that B and F also know one another (dotted line),thereby
completing the quadrilateral in (b), is by definition equal to the clus-
tering coefficient.

in the network, Eq. (12) overestimatesc2 by exactly a factor
of 1/M, and hence our theory can be fixed by replacingm−1
in Eq. (7) byM(1−C)(m−1).

But now we have a problem. Calculating the mutualityM
using Eq. (13) requires that we know the mean number of in-
dividuals two steps away from the central individual. But this
is precisely the quantityc2 that our calculation is supposed to
estimate in the first place. Our entire goal here is to estimate
c2 without having to measure it directly, which would in any
case be quite difficult for most networks. There is however a
solution to this problem. Consider the two configurations de-
picted in Fig. 3, parts (a) and (b). In (a), the ego, denoted E
and shaded, has two friends A and B, both of whom know F,
although F is a stranger to E. The same is true in (b), but now
A and B are friends of one another also. For many networks
we find that situation (a) is quite uncommon. It is rare to find
four people arranged in a ring such that each knows two of the
others, but none of the four knows the person opposite them
in the ring. Situation (b) is much more common. And it turns
out that we can estimate the frequency of occurrence of (b)
from a knowledge of the clustering coefficient.

Consider Fig. 3c. The central actor E has a tie with A, who
has a tie with F. How many other paths of length two are there
from E to F? Well, if E hask1 neighbors, as before, then by
the definition (11) of the clustering coefficient, A will have
ties toC(k1−1) of them on average. The tie between actors A
and B in the figure is an example of one such. But now A
has ties to both B and F, and hence, using the definition of the
clustering coefficient again, B and F will themselves have a tie
(dotted line) with probabilityC. Thus there will on average be
C2(k1−1) other paths of length 2 to F, or 1+C2(k1−1) paths
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in total, counting the one that runs through A. This is the aver-
age factor by which we will over-count the number of second
neighbors of E because of the mutuality effect. Substituting
into Eq. (7), we then conclude that our best estimate ofc2 is

c2 = M(1−C)(k2− k), (14)

where the mutuality coefficientM is given by

M =
k/[1+C2(k−1)]

k
. (15)

Notice that both 1−C andM tend to 1 asC becomes small,
so that Eq. (14) becomes equivalent to Eq. (8) in a network
where there is no clustering, as we would expect.

In essence what Eq. (15) does is estimate the value ofM in
a network in which triangles of ties are common, but squares
that are not composed of adjacent triangles are assumed to
occur with frequency no greater than one would expect in a
purely random network.

To summarize, if we know the degree distribution and
clustering coefficient of a network—both of which can
be estimated from knowledge of actors’ personal radius-1
networks—then we can estimate the numberc2 of friends of
friends the typical actor has using Eq. (8), (12), or (14). These
three equations we expect to give successively more accurate
results forc2. Because we have neglected configurations of
the form shown in Fig. 3a and because of approximations
made in the derivation of Eqs. (12) and (14), we do not ex-
pect any of them to estimatec2 perfectly. As we will see in
the following section however, Eq. (14) provides an excellent
guide to the value ofc2 in practice, with only a small error
(less than ten percent in the cases we have examined).

IV. EXAMPLE APPLICATION

In this section we test our theory by applying it to two net-
works for which can directly measure the mean number of
second neighbors of a vertex and compare it with the predic-
tions of Eqs. (8), (12), and (14).

Academic coauthorship networks are one of the best doc-
umented classes of social networks. In these networks the
vertices represent the authors of scholarly papers, and two
vertices are connected by an edge if the two individuals in
question have coauthored a paper together.27 With the advent
of comprehensive electronic databases of published papers
and preprints, large coauthorship networks can be constructed
with good reliability and a high degree of automation. Coau-
thorship networks are true social networks in the sense that
two individuals who have coauthored a paper are very likely
to be personally acquainted. (There are exceptions, particu-
larly in fields such as high-energy physics, where author lists
running to hundreds of names are not uncommon. We will not
be dealing with such exceptions here, however.)

We examine two different coauthorship networks:

1. A network of collaborations between 1.5 million scien-
tists in biomedicine, compiled by the present author15,19

1 10 100 1000
number of collaborators

10
−2

10
0

10
2

10
4

10
6

nu
m

be
r 

of
 a

ut
ho

rs

mathematics
biomedicine

FIG. 4: Degree distributions of the two academic coauthorship net-
works discussed in the text. Axes are logarithmic.

from all publications appearing between 1995 and 1999
inclusive in the Medline bibliographic database, which
is maintained by the National Institutes of Health.

2. A network of collaborations between a quarter of a mil-
lion mathematicians, kindly provided to the author by
Jerrold Grossman and Patrick Ion,20,21who compiled it
from data provided by the American Mathematical So-
ciety.

In Fig. 4 we show the degree distributions of these networks.
As the figure shows, neither is narrowly distributed about its
mean. Both in fact are almost power-law in form, with long
tails indicating that there are a small number of individuals
in the network with a very large number of collaborators. In
the network of mathematicians, for instance, a plurality (about
a third) of individuals who have collaborated at all have de-
gree 1, i.e., have collaborated with only one other. But there
is one individual in the network, the legendary Hungarian
Paul Erdős,22 who collaborated with a remarkable 502 oth-
ers. (This number is a lower bound; even though Erdős died
in 1996, new collaborations of his are still coming to light
through publications he coauthored that are just now appear-
ing in print.)

We have calculated the number of second neighbors of the
average vertex in these networks in five different ways: us-
ing the simple estimate discussed in the introduction, using
the three progressively more sophisticated estimates, Eqs. (8),
(12), and (14), developed here, and directly by exhaustive
measurement of the networks themselves. The results are
summarized in Table I. As expected, the simple method of es-
timatingc2, which assumes it to be equal to the square of the
mean degree, gives an underestimate for both networks, by a
factor of more than two for the mathematicians and more than
five for the biomedical scientists. Moreover, we have been
quite generous to the simple method in this calculation, omit-
ting from the formulas any correction for transitivity, such as
the lead-in factors discussed in the introduction. Including
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estimate ofc2
network actors mean degree clusteringsimple good better best actualc2
mathematics 253339 3.92 0.150 15.4 47.9 40.7 33.8 36.4
biomedicine 1520251 15.53 0.081 241.1 2006.0 1843.6 1357.6 1254.0

TABLE I: Summary of results for collaboration networks of mathematicians and biomedical scientists.

such a correction gives estimates ofc2 = 10.9 and 163.3 for
the two networks. These estimates are too low by factors of
over 3 and 7 respectively—large enough errors to be problem-
atic in almost any application.

By contrast, the new method does much better. The “good”
and “better” estimates, Eqs. (8) and (12), give figures of the
same general order of magnitude as the true result, and pro-
vide good rule-of-thumb guides to the expected value ofc2.
But the best estimate, Eq. (14), making use of Eq. (15) to cal-
culate the mutuality coefficientM, does better still, giving fig-
ures forc2 which are within 8% and 9% of the known correct
answers for the mathematics and biomedicine networks re-
spectively. Clearly this is a big improvement over the simple
estimate. Eq. (14) appears to be accurate enough to give very
useful estimates of numbers of friends of friends in real social
networks.

V. CONCLUSIONS

There are a number of morals to this story. Perhaps the most
important of them is that your friends just aren’t normal. No
one’s friends are. By the very fact of being someone’s friend,
friends select themselves. Friends are by definition friendly
people, and your circle of friends will be a biased sample of
the population because of it. This is a relevant issue for many
social network studies, but particularly for studies usingego-
centered techniques such as snowball sampling.

In this paper we have not only argued that your friends are
unusual people, we have also shown (in a rather limited sense)
how to accommodate their unusualness. By careful consid-
eration of biases in sampling and correlation effects such as
transitivity in the network, we can make accurate estimatesof
how many people your friends will be friends with. We have
demonstrated that the resulting formulas work well for real
social networks, taking the example of two academic coau-
thorship networks, for which the mean number of a person’s
second neighbors in the network can be measured directly as
well as estimated from our equations.

It is important to note however that application of the for-
mulas we have given requires the experimenter to measure

certain additional parameters of the network. In particular, it
is not enough to know only the mean number of ties an ac-
tor has. One needs to know also the distribution of that num-
ber. Measuring this distribution is not a trivial undertaking, al-
though some promising progress has been made recently.3,5,11

One must also find the clustering coefficient of the network,
which requires us to measure how many pairs of friends of an
individual are themselves friends. This may require the inclu-
sion of additional questions in surveys as well as additional
analysis.

To return then to the question with which we opened this
paper, can we estimate how many friends of friends a person
will have on average who fall into a given group or who were
involved in a given event? If the number involved in the event
is e as before, and the total population ist, then the number we
want, call itm2, is given bym2 = c2e/t. Thus, once we have
c2 we can answer our question easily enough. Using figures
appropriate for the United States and the simple estimate of
c2 that it is equal to the squarec2 of the number of acquain-
tances the average person has, we getc2 = 2902 = 84100,
t = 280 million, andm2 = e/3330. As we have seen here,
however, this probably underestimates the actual figure con-
siderably. The real number could be a factor of five or more
greater than this formula suggests. Unfortunately, as far as we
know, the necessary data have not been measured for typical
personal acquaintance networks to allow us to estimatec2 by
the methods described here. In particular, measurements of
the clustering coefficient are at present lacking. We encour-
age those involved in empirical studies of these networks to
measure these things soon.
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