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Abatract : Spatially invariant point spread functions are a common model

for image and signal degradation. In general, the process of reversing

gaussian blur is unstable, and cannot be represented as a convolution

filter in the spatial domain. However, if we restrict the domain of

allowable functions to polynomials of degree no greater than N, then an

inverse filter exists. We use Herraite polynomials to represent kernels

which can be used to deblur polynomial data which has been degraded by

a known amount of gaussian blur. For fixed N, the corresponding kernel

gives stable deblurrlng among the class of functions which are gaussian

filtered versions of data well approximated by polynomials degree N and

less.
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I. Introduction

Realistic Imaging and signal sampling systems necessarily

Introduce spatial degradation of the original data. Frequently, the

degradation process is modeled as a spatially invariant gausslan

convolution. Thus if f(x) Is the original data, x e R", then the

observed data is

h(x) =
i K(x - x', t) f (x') dx'

,

R"
where

K(x.t) = 1 e-l-1'/^^
(ATit)"/2

is the gausslan kernel, whose extent is parameterized by t > 0, and is

normalized to have unit mass. How can the oiginal data £(x) be

reconstructed when only h(x) and the amount of blurring t is known?

As is well known, in general the data f(x) cannot be reconstructed

from h(x). Not all functions h(x) arise as blurred versions of some

original data f(x), and even if an Ideal function f(x) exists,

arbitrarily small inaccuracies in the representation of h(x) can lead

to large inaccuracies in the reconstruction of f(x).

Nonetheless, as is also well known, deblurring can in practice be

accomplished by high-emphasis filtering. The inherent numerical

instabilities in general cause no problems. This apparent

contradiction is resolved by the observation that the deblurring

process is stable when restricted to a suitable class of functions, and

that this class subsumes most naturally occurring signals.

In this paper, we present kernels which can be used to deblur a

fixed amount of gausslan blur, and accomplish this inverse process

Ci
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stably among original functions f(x) that are well approximated by

polynomials of fixed degree. These kernels will provide exact

reconstructions of (sufficiently low order) polynomial original data.

The existence and use of these kernels has been presented elsewhere

[John]; our analysis is new only in that we emphasize the use of

Hermite polynomials, and give explicit formulas in terms of Hermite

polynomials.

The problem of reconstructing f(x) given h(x) and t is the inverse

heat equation problem, since the function h(x) represents a

distribution of heat after t units of time, where f(x) is the initial

t = distribution. Solving Che heat equation backwards in time is an

interesting inverse problem with applications in image enhancement,

signal and image representation, and perhaps even modeling of neural

processes for analyzing data.

In the next section, we formulate the deblurring problem in one

dimension. For data in higher dimensions, we shall simply appeal to

the separability of the gaussian kernel. Our formulation is strictly

in a continuous Euclidean domain. A separate analysis for discrete

data is possible (see, e.g., Pratt], but presents different

difficulties.

rJ
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II. Formulating the Deblurring Problem

Consider the opertor Tl^ defined on L (R) bv the equation

(fi^fXy) = ] -1_ e"'^ /^^ f(y-x) dx
-co Z/tTE

For t > 0, n^ Is a compact symmetric bounded linear ooerator on L (R)

mapping into L (R). This operator has many special properties, such as

"t ° "s ="t+s

and

u(x,t) = (n^f)(x) satisfies Au = u^ , u(x,0) = f(x);

see [Bars, John, Schechter] . If we denote the Fourier transform of a

function g(x) by g(a)), then fi^. is a multiplier operator given by

in^ffCoi) = e-i'^ ^ f(u))

By means of this formula, ^ can be extended to operate on the Schwartz

class S^' of Fourier transformable distributions [Rudin, Funotlonal

Analysirs ] « In particular, Q ^f is defined for any polynomial f.

We will specialize to the case t = 1/^, and set

Tf = fij/^f = -L e"'^ * f . (2.1)

By suitably scaling the spatial parameter x e R, f^^
, t > 0, can be

seen to be equivalent to T operating on a rescaled version of f, i.e.,
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(n^fXy) = (Tf)(y/2/t)
,

where ?(x) = f(2 ft x).

Thus the Invertlbi llty of ^^ is settled by Inverting T.

From the Fourier multiplier formula

(Tf)'(u)) = e^ /^ f(a))
, (2.2)

and the fact that e~^ '^ / for all oj , it is clear that T is

one-to-one on any space of Fourier transformable functions. Further,

since the inverse of the multiplier e*^ '^ has no Inverse Fourier

transform, the inverse of T is not representable as a convolution, nor

can be applied to the general space of all Fourier transformable

functions. Instead, we can restrict the domain of T, and then

respesent its inverse as a convolution on the range of T. Many such

restricted domains are possible. In the next section, we consider T

restricted to the class of polynomials of degree N or less.
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III. Polynomial Domains

Let Pm denote the space of polynomials over R of degree less than

or equal to N. The monomials { 1 , x.x^ , . . .
,x^} form a basis for V^ . If

this basis is orthonormalized with respect to the inner product

2

(f,g) =
J f(x) g(x) e '^ dx

,
(3.1)

then the basis of Hermite polynomials { H^^.H^ . . . ,Hf^} result. The

Hermites can be represented explicitly;

V-) = "' ^
(-1)" ?;„\,p '

.

^3-2^
n - m! (n-/m)

!

m=0

or by the Rodrigues formula;

H fx) = (-1)" e^^ il (e-'^S ,
(3.3)

"
dx"

see, e.g., [Courant & Hilbert] or [Lebedev].

Observation 1 : T is closed on P^ .

Proof ; We will show that TH^ e P^^ for n < N.

/^ (TH„)(y) =
i e-^y-""^ H„(x) dx

J e-y^ e^^y (-1)" — (e"''") d

dx"

2y I e-y^ e^^^ (-1)""^ -^ (e'^^S d
^ j„n-l
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= ^7 . 2y(THj^_i)(y)

Thus

(TH^)(x) = l^x"" . • (3. A)

As a result of Observation 1 , T is an isomorphisra of ?^ . The

inverse of T on P^. is clearly given by

i=0 i=0

Our main result is that T"^ restricted to Pj^. can be represented by a

convolution with an explicit kernel K^.(x):

Theorera : For f c Pj^ and g = Tf, then

f = S^
* g (3.5)

where

2 ^^2 .k

Kj,(x) ^ e-'^ I _ilii-- H2j,(x) . (3.6)

k-O ^ k! 2^

We will give a proof below using direct integration (as opposed to

using Fourier transform distributions). Note, however, that K^,(x) is

not the unique function representing T"^ on P^ . In general, the

kernel can be translated by any function which yields a zero

convolution against P^, . This includes all functions of the form
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e Hj^(x), n > N. The stated kernel (3.6) Is unique among the class of

2
functions of the form e ^ P(x), where P(x) is a polynomial of degree N.

It is interesting to compare the form of Kj,(x) with standard

enhancement filters. For example, for N = 3,

K.(x) = i_ e"'^ (1 - x2)

nr 2 dx2 /7

1 „-x2 _ 1
d^

(.Le-'^")

Thus

K3 * g =
[ 1 -

J -^-J Tg
,

dx*^

which is a not uncommon high emphasis filter (see, e.g., the papers by

E. Machln [Ratliff], and [Rosenfeld and Kak]. In Figure 1, we display

plots of Kvj for several values of N.

The proof of the theorem depends on several lemmas.

Lemma 1 ; ^n ~ J
i. e"'^^ x" dx = .

, n odd

/?
nl

2"(n/2)!
n even

Proof: For n odd, e~^ x" Is an Integrable odd function, and so clearly

Aj^ = 0. For n = 2p, p > 1 ,

/7 A. -
i e"^ x2P dj

^2p

- i/ (-2x) e-'^ x2p-l d:
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= iPlL
J e-' x2p-2 dx = /7 iP;i

'2p-2

Since Aq = 1
,

2p
(2p-l)(2p-3) ... 1 _ r2p)

>m 22"'p!

The formula holds for p > .

Lemma 2

:

^2k,2p = I ^^'"^ "Zk^'^)
^^'^ dx =

(2p)l

, P < k

22p-2k
(p_i,)!

, P > k

Proof; For k > 1 , p > 1

,

/V
-2k, 2p y e-^^ [(-1)21^ e-^i!i(e-^S]x2P dx

^ dx^^

,2k
=

i (e"'^ ) x2P d:

dx2k

,2k-l
- 2p i i (e-^ ) x2p-ldx

dx2k-

1

= /V (.2p)(2p-l) C2j,_2,2p-2

Clearly, C2i^,^q - 0, k > 1. Using Lemma 1, Co^2p ' (2p) !
/(Z^P/p

! ) , for p

> 0. Combining, C2j^^ 2p " ^ ^°^ P < k, and for p > k.
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=2k,2p = (2p)(2p-l) ... (2p-2k+l) . Co^2p-2k

(2p)! (2p-2k)! ^ (2p)!
(2p-2k)! 22p-2k(p_^,),

'
22p-2k(p_k),

Lemma 3

:

For N > k,

, k odd

'^^^ 2'^(k/2)!

Proof : For k odd, we observe from (3.6) that Kv,(x)x Is an odd

integrable function, and so Integrates to zero. For k = 2p,

i K^(x)x^dx =
i e"'^ Z J"^^ H2i(x) x^P dx

-«> -« 1=0 '''tt i ! 2

= E
^ (-l)i (2p)I

i=0i!2i 22p-2i(p-i)!

= ^2p)t !* P' (_ni d)P-i

^'
(_ 1)P = (-l)P ^'

2Ppl 2 2*^pl

Proof- of the Theorem ; By equation (3.4), it suffices to show that

Kj^ * (2"x") = Hj^(x), n < N. We have

(K^ * 2"x")(y) -
J 2"K^(x)(y-x)"dx

00 n

i 2%(x) Z (-1)^
[ {J J

y""^ ^^ dx

— k=0
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n

= I . f"' ,

(-1)^ • y"-!^ . d^^

k! (n-k) !

*^

k=0

n/2 (_j)2m2n (,^), _2^
l! i- -rr:—r-n r—f:- V~W

m- =

(2m)!(n-2m)! yln^,

n! Z .
.

"^^
^,

2"-2"' y"-2™ = H^(y)
- m! (n-2m)

!

m=0
•

The theorem above could have been proved using the convolution

theorem and by computing the Fourier transform of K^{x) . We will

nonetheless compute V.^ in order to show that the multiplier for Kj^

approaches, pointwise, the inverse of the multiplier for the operator T

(see (2.2)).

Observation 2 : Kj^(u) ) * e"^
'^ pointwise as N -»• »

.

N/2 . .k 2

Proof : K„(co) = E J-lii—. rf e"^ H2,^(x)] (u) , where F stands for the

k=0 -^ k!2'^
'

Fourier tansform operator. Now,

F[e-A2i,(x)J(a3) = f[ (-1)2^^ i^ (e"^ )]M

= (io))2k/;r. e^^/'' .

Thus

%' (-^^"
. (-1)^ .2^ /7 e-'/^

k=0 ^ 1^1 2^

e -<ij

9 N/2,2

k-0

^^2/4 ^^2/2 _ ^o)2/A
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As a consequence of Observation 2, we see that K„(X) does not

converge polntwlse to any function as N -> ^
, since otherwise the

Fourier transforni of that function would be e'^ '
, which is impossible.

2 _ 2
Kj^(x) does converge in L (e '^ dx) , but that does not imply polntwlse

convergence to any function. We accordingly have stable deblurring

when using the kernels Kj^(x), where stability is measured in terms of

9-2
deviation from a polynomial of degree N, and the L (e ^ dx) norm is

used as the metric.
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IV. Higher Dimensions

The gaussian blur operator is given by

2

Tf(x) - / it""/2 e-(^-y) f(y) dy . (A.l)

Due to the separability of the kernel and Fubini's theorem, T can be

decomposed into n iterated blurrings:

T = Tj o Tj o ... o T^ (A. 2)

(T^f)(x) = ] ±e~^''^~-^^'^ f^'^l •••' ^i '
•••• '^n)'^yi

(^-5)

-oo /tT

Consider a polynomial in R*^:

f(x) = I a„x° (^.^)

|a |<N

a = ia^,...,a^) , a^ e Z , a^ > ,

a 1 a^
|a|=Iaj^, X =X]^...x^

For fixed x, the function of one real variable

g(yj) = fCxj,..., yj , .... Xj^)

is a polynomial of degree no greater than N, so

Kj, * (Tg) - g ,
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where T is the standard one dimensional blurring operator (2.1).

Combining, we find that

f(x) = / %(yi) KN(y2) ••• %(yn) (Tf)(x-y) dy (A. 5)

for any polynomial f(x) of form (A. 4). Thus deblurring of blurred

polynomials of degree N can be accomplished by convolution against the

kernel

kJ(x) = Kf^Cxj) • K^(X2) ... K^Cx^). (^-6)

Thus the situation in higher dimensions is similar to the one

dimensional case. The deblurring convolution kernel is separable, and

2

will be of the form e~^ P(x), where P(x) is a polynomial of degree nN

in X e R". Figure 2 shows a plot of Kj^(x) for n = 2, N = 3.
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V. Some Experimental Results and Comments

In Figure 3, we show a 512 by 512 pixel array digitized to 256

gray levels, focused and imaged as carefully as possible. The two

dimensional blurring operator T was applied to obtain Figure A, using

an Interplxel distance of 0.2 in both dimensions. A VICOM Systems,

Inc., image processing computer was used to perform the convolution,

using 12 bits of significance in the calculation. The convolution was

performed in each dimension separately, since the kernel is separable,

using coefficients obtained by integrating 0.2 intervals of the

2

gaussian function 1 //JT (e"'^ ). In a similar manner, deblurring kernels

kJJ^Cx) were applied to obtain Figures 5, 6 and 7. Again, a 0.2

interplxel distance was used, so that the deblurring extent matched the

blurring operator.

We observe that as N Increases, successively better deblurrings

are obtained. In no case, however, is the reconstruction visually

Indistinguishable from the original (Figure 3). Further, as N

increases, the fluctuations in K„(x) become more violent, and will lead

to numerical inaccuracies in the deblurring process.

This inabiity to accurately reconstruct, and the artifacts that

appear as a result of the deblurring process, reflect the fact that

natural Image data Is not represented well locally by Nth order

polynomials. This does not preclude the possibility that some

Invertible transformation of the image data j^ well represented locally

by polynomials, and so will perform better. Classes of signals other

than natural Images may admit better approximations by polynomials.

Perhaps a treatment of the same deblurring problem using a class of
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analytlc functions different than Nth order polynomials Is possible,

and will lead to better performance on Image data.

The real issue of this paper Is the search for an Intermediate

representation of signal data In a fashion that preserves only that

information essential to the interpretation of the data. For imagery,

this means that reconstruction of a visually similar picture should be

possible from a good representation. This paper has shown that a

blurred version of data is a suitable representation when the original

data is well approximated locally by polynomials of bounded degree.

While this may not describe general Images, it may nonetheless be the

key to alternate representations involving gaussian blurrlngs.

The supervision of this work by Professor Steven Zucker of McGill

University is gratefully acknowledged.
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Figure 1. One dimensional

deblurring kernels K^(x),

N=3,5,9.
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Figure 2. Two dimensional deblurring kernel, N - 3,
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Figure 3: Original image, the Saltair resort, circa 1930.

(Photo from the Utah State Historical Society.)
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Figure 4: Blurred version of the original image in

Figure 3

.
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Figure 5: Deblurring kernel K applied to the blurred

image in Figure 4

.
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Figure 6: Deblurring kernel K applied to the blurred

image in Figure 4.
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Figure 7: Deblurring kernel K applied to the blurred

image in Figure 4

.
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