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Abstract

In order to address the multi-directional nature of constraint logic programs, recent opti-

mizing compilers generate several versions of a procedure and optimize them independently.

Reordering, i.e., moving constraints towards the end of a clause, plays a fundamental role

in this optimization: it may lead to signi®cant improvements in performance by bypassing

the constraint solver entirely. This paper focuses on CLP over linear real constraints, and stud-

ies two abstract domains, i.e., LSign and LInt, which can be used to decide at compile time

when constraints can be safely reordered. The domain LSign was originally proposed by Mar-

riott and Stuckey. Its fundamental ideas consist of abstracting coe�cients by signs and of

keeping multiplicity information on constraints. LInt is a new, and in®nite, domain which

is similar in nature to LSign, except that signs are replaced by intervals of rational numbers.

A comprehensive description of the two domains is given, together with some very preliminary

evidence showing that the domains are precise enough to perform the intended optimizations

on small programs. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Constraint logic programming (CLP) [19] is a generalization of logic program-
ming, where constraint solving over a suitable domain replaces uni®cation as the ba-
sic operation of the language. Many CLP languages have been de®ned in the last
decade on computation domains such as linear real constraints (e.g., Refs.
[20,38,4] integers (e.g., Ref. [37]), Booleans (e.g., Refs. [3,4] ), and nonlinear real con-
straints (e.g., Ref. [30]).
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CLP languages o�er many challenges for optimizing compilers since constraint
solving, its basic operation, may be quite expensive in general. It is thus natural
to try to specialize it whenever appropriate. The optimization problem is also exac-
erbated by the fact that CLP programs can be multi-directional (i.e., they may be
used with di�erent combinations of input/output parameters). Hence, a given pro-
gram may be appropriate for some uses, while being ``sub-optimal'' for some
others.

This paper focuses on CLP(RLin) programs [20,39,35], i.e. on constraint logic
programs over linear real constraints, and the approach to CLP optimization pro-
posed in Ref. [27]. This methodology consists of re®ning constraints into tests and
assignments, of removing redundant constraints (i.e., constraints which are implied
by the constraint store), and of reordering constraints to maximize re®nements
and removals, while preserving the same search space. The optimizations are spe-
ci®c to the domain R of real constraints but similar optimizations can be applied
to other domains as well. These optimizations are global in nature, and require
information about the macro properties of the program in order to be automated
successfully.

Among these various optimizations, reordering is probably the most fundamental.
The need for reordering comes from the multi-directional nature of CLP programs.
A traditional technique to address this issue in recent optimizing compilers (e.g.,
Refs. [31,23,24,32]) consists of generating one version of each procedure for each
use and of specializing each version independently. Reordering is fundamental in this
optimization: it consists of moving constraints toward the end of the clause so that
they can be turned into tests or assignments. Of course, reordering should only be
applied when postponing the constraints does not change the search space explored
by the program (and thus does not change the termination behaviour of the pro-
gram). In other words, reordering makes it possible to bypass the constraint solver
while preserving the same search space, thus improving the performance of the pro-
gram in many cases.

This paper studies two abstract domains, LSign and LInt, which can be used to
decide when to reorder CLP programs. LSign is an abstract domain originally
proposed in Ref. [28] and further studied in Ref. [33]. Its fundamental ideas con-
sist of abstracting coe�cients by signs and of keeping multiplicity information on
constraints. LInt is a new, and in®nite, domain which is similar in nature to
LSign, except that signs are replaced by intervals of rational numbers. Note that
other domains have been proposed for the analysis of CLP(RLin) programs (e.g.,
Refs. [10,11,14,15]) and these domains are potentially useful for reordering as well.
However, as acknowledged in Ref. [15], they are less precise than LSign and, as
shown later in this paper, applying LSign itself is not easy in practice. Hence,
the study of LSign and LInt gives another entry point on the analysis of
CLP(RLin) programs.

The focus of the paper is to give a comprehensive presentation of these domains
together with their correctness proofs and their application to reordering. As shown
in Ref. [33], LSign raises some interesting issues and obtaining correct abstract op-
erations is non trivial. In addition, as shown later on in this paper, applying LSign in
a naive way in an optimizing compiler is unsatisfactory: ``obvious'' optimizations
cannot be performed automatically if no special care is taken. The paper illustrates
these problems, proposes solutions, and provides some preliminary empirical evi-
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dence that the resulting algorithms are precise enough to optimize small programs.
This paper does not discuss the reordering algorithm and its correctness proof: they
are discussed in Ref. [36] and deserve an independent treatment.

As far as LSign is concerned, the paper rede®nes the domain of [28] to ®x some
loose ends and to simplify the correctness proofs. It proposes a new ordering captur-
ing the intended meaning of [28] and shows that two LSign descriptions can be or-
dered in polynomial time. It also proposes a more precise algorithm for projection.
Finally, the paper discusses how LSign can be used to detect the conditional satis®-
ability of constraint stores, an operation which is fundamental to reorder CLP(RLin)

programs. This operation, which was never discussed previously, raises some subtle
practical issues which are studied at length.

As far as LInt is concerned, the paper contains the ®rst presentation of the
domain, and proposes a practical and precise widening operator. The operator
has the original property of using LSign to guide the widening process. The paper
also contains some preliminary empirical evidence of the overhead of LInt over
LSign.

The rest of this paper is organized as follows. Section 2 explains why reordering is
so fundamental in CLP(RLin) optimizations. Section 3 describes the concrete objects
and operations. Section 4 and Section 5 give a detailed presentation of the abstract
domains LSign and LInt, respectively. Section 6 presents the preliminaries experi-
mental results. Section 7 concludes the paper. The proofs of the results can be found
in the technical report version of this paper [34]. Only sketches of these proofs are
given here for space reasons.

2. Why reordering is important?

To motivate the paper, it is interesting to study an example of optimization in
some detail. Consider the following CLP(RLin) program [20] which relates various
parameters in a mortgage computation. This program will be used as running exam-
ple in the paper.

Example 2.1.

mg�P; T; R; B� : - T � 0; B � P;
mg�P; T; R; B� : - T > 0; PP 0; P1 � P � 1:01ÿ R; T1 � Tÿ 1;

mg�P1; T1; R; B�:
The predicate mg relates the principal (P), number of monthly installments (T),
monthly repayment (R) and ®nal balance (B) of a mortgage that has a ®xed monthly
interest rate of 1%. The most interesting feature of this program is its multi-direc-
tionality. For example, the query

: - mg�P; 4; 200; 0�
computes the principal of a mortgage having four installments of 200 units each,
with a ®nal balance of 0. The answer is P � 780.39. The program can also be used
to compute the monthly repayment given the principal. For example, the query

: - mg�800; 4; R; 0�
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gives the answer R � 205.02. An even more interesting query is to ®nd out the re-
payments such that each repayment is less than 200 units and there are at most six
installments. This is given by

: - R < 200; T6 6; mg�800; T; R; 0�
and gives the answers T � 5, R � 164.83 and T � 6, R � 138.04.

In general, the predicate mg above can be used to compute the (complicated) re-
lations between any of the parameters in the mortgage computation because of
the general constraint solver embedded in the language. For some of the above uses,
however, this generality is not needed and it is possible to generate a completely de-
terministic program which does not even resort to constraint solving. In the rest of
this section, we present how this is achieved by the ®rst pass of the optimizing com-
piler [36]. The ®rst pass of the compiler may be viewed as a source to source trans-
formation, transforming the source program into another (richer) source program
which may contain, not only constraints, but also assignments and tests as basic op-
erations. The source to source transformation is organized in three main phases: re-
ordering, removal, and re®nement.

Consider the case where mg is used with P and R ®xed (i.e., they are constrained to
take a value) and T and B are unconstrained. The ®rst step of the compiler tries to
move constraints to a place in the clause where, roughly speaking, they can be spe-
cialized into tests or into assignments. More precisely, an inequality is moved to a
place where all its variables are ®xed at runtime, while an equation is moved to a
place where all its variables or all its variables but one are ®xed at runtime. In reor-
dering goals in a clause, the compiler should make sure that the search space ex-
plored by the program is preserved in order to guarantee termination and to
avoid signi®cant slowdowns. On our running example, the compiler postpones
T > 0 in the second clause until after the recursive call. Informally speaking, this
is possible due to the fact that T > 0 is always consistent with the constraint stores
occurring in the recursive call to mg and, consequently, T > 0 does not prune the
search space. This information can be formally derived through an LSign or LInt

analysis. Note also that, when postponed until after the recursive call, T > 0 may
be specialized into a test, since T is ®xed. Similarly, T1 � T - 1 can be moved until
after the recursive call, since T is now unconstrained before the recursive call and
hence it cannot prune the search space. The resulting program becomes:

mg�P; T; R; B� : - T � 0; B � P;
mg�P; T; R; B� : - PP 0; P1 � P � 1:01ÿ R; mg�P1; T1; R; B�;

T � T1� 1; T > 0:

Once the program is reordered, other optimizations can take place. A second step
consists of detecting redundant constraints (i.e., constraints implied by the constraint
store each time they are selected). These constraints can be removed, since they do
not add information to the constraint store. In our running example, this is the case
of T > 0 after reordering, since informally speaking, the second argument is assigned
to zero in the ®rst clause and incremented by one in the recursive clause.1 Once
again, this fact can be proven formally through abstract interpretation using the do-

1 Note that this constraint is useful for other uses of the program.
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main LSign or LInt or other domains such as the convex hull domain of [8]. The
resulting program is as follows:

mg�P; T; R; B� : - T � 0; B � P;
mg�P; T; R; B� : - PP 0; P1 � P � 1:01ÿ R; mg�P1; T1; R; B�; T � T1� 1:

Finally, the last step of the source to source transformation specializes constraints
into tests and assignments whenever possible. A constraint can be specialized into
a test if the compiler shows that, at runtime, all its variables are ®xed. An equation
Var � Exp can be transformed into an assignment if the compiler shows that, at run-
time, Var is unconstrained and Exp is a ®xed expression. In our running example, it
can be shown that, after reordering and removal, T and B are unconstrained in all
calls to mg. Once again, this information can be deduced from domains such as LSign
and LInt. Also P and R are constrained to take a value in all calls to mg. As a con-
sequence, the constraints in the ®rst clause becomes assignments, while the second
clause has two assignments and a test.

mg�P; T; R; B� : - T :� 0; B :� P;
mg�P; T; R; B� : - P? P 0; P1 :� P � 1:01ÿ R; mg�P1; T1; R; B�; T :� T1� 1:

It is interesting to observe that the resulting program does not invoke the constraint
solver. It is essentially a Prolog program enhanced with a rational arithmetic com-
ponent. As a consequence, traditional Prolog transformations and optimizations
can now be applied. For instance, the techniques of [9] can be used to transform
our ®nal program into a tail-recursive program. Similarly, e�cient instructions
can be generated for the tests and assignments [21].

3. The concrete domain

Abstract interpretation [6] is a general methodology to design static analyses of
programs. The basic intuition is to infer some properties of a program, not by exe-
cuting it on its traditional computation domain, but rather on an abstract domain.
The abstract domain should of course be designed to approximate the properties of
interest with reasonable precision and with reasonable computer resources. Tradi-
tionally, an abstract interpretation is constructed in four steps: a semantics of the
language is de®ned, called the standard semantics; the standard semantics is trans-
formed into a collecting (concrete) semantics; 2 the collecting semantics is abstrac-
ted into an abstract semantics; the abstract semantics (or a subset of it) is
computed.

This paper follows this methodology for the analysis of CLP programs. The paper
does not describe each of these steps in detail, since the focus here is on the abstract
domains. It su�ces to say that the concrete semantics for CLP is a natural extension
to CLP of the logic programming semantics presented in many papers. It captures
the top-down execution of CLP programs using a left-to-right computation
rule, and ignores the clause selection rule. The concrete semantics is de®ned for

2 This second step is needed in general because the analysis aims at giving some information about the

results of a computation for a set of input values, not a single input value.
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normalized CLP programs and it manipulates sets of constraint stores (multisets of
linear constraints). The rest of this section formally de®nes the concrete concepts
necessary for this paper. Readers interested in a comprehensive presentation of the
various steps should refer to [36]. See also Refs. [11,14,15,24,23] for applications
of static analysis to CLP.

Programs. A CLP(RLin) program is a (possibly empty) sequence of clauses in
which each clause has a head and a body. A head is an atom, i.e. an expression of
the form p(t1,. . .,tn) where t1,. . .,tn are terms. A term is a variable (e.g. X) or a
rational number. A body is either true (the empty body), a goal (procedure call),
a constraint (constraint solving) or a sequence of these. In the following, variables
are denoted by uppercase letters, constraints by the letter c, possibly subscripted
or superscripted. The constraints of CLP(RLin) can be speci®ed as follows:

De®nition 3.1. Let t1 and t2 be two linear expressions constructed with variables, ra-
tional numbers, and the operations �; �;ÿ and =. A constraint is a relation t1 d t2

with d 2 f>; P ;�; 6�; 6 ; <g:

It is convenient to normalize CLP(RLin) programs in order to simplify the analysis.
Normalized programs are de®ned in terms of sets Pi (i P 0) representing the set of
predicate symbols of arity i and of an in®nite sequence of variables x1; x2; . . . A nor-
malized program is a (possibly empty) sequence of clauses, in which each clause has a
head and a body. The head of a clause has the form p�x1; . . . ; xn�, where p 2 Pn. The
body of a clause is a (possibly empty) sequence of literals where each literal is either a
predicate call or a linear constraint. A predicate call has the form p�xi1 ; . . . ; xim�,
where p 2 Pm and the variables xi1 ; . . . ; xim are all distinct. Linear constraints are de-
®ned below. Any given CLP(RLin) program may be transformed into an equivalent
normalized program by simple rewriting rules [2].

Concrete objects. The concrete objects manipulated by our concrete semantics are
linear constraints and multisets of linear constraints. Given a set of variables
D � fx1; . . . ; xng, a linear constraint over D is an expression of the form
c0 d

Pn
i�1 cixi, where ci are rational numbers and d 2 f�; <; 6 ; >; P ; 6�g. The set

of linear constraints over D is denoted by CD. A constraint store over D is simply
a multiset of linear constraints over D. The set of constraint stores over D is denoted
by CSD and is ordered by standard multiset inclusion.3 In the following, we denote
multiset union by [, linear constraints by the letter k, constraint stores by the letter
h and sets of constraint stores by the letter H, all possibly subscripted. If k is a linear
constraint c0 d

Pn
i�1 cixi, k�i� denotes the coe�cient ci, and op�k� denotes the oper-

ator d. We denote the set of variables fx1; . . . ; xng by Dn for any n. If h is a constraint
store over the set of variables D, dom�h� � D. The projection of a constraint store h
on the set of variables D is denoted h=D. If h is a constraint store over
D � fx1; . . . ; xng and x 2 D, h�x , hÿx and h0

x represent all constraints k in h whose co-
e�cient for variable x is respectively strictly positive, strictly negative, and zero. We

3 Observe that this is a partial order, and that constraint stores, not comparable by the order relation,

can be equivalent. This is harmless, as the analysis is always conservative, but it may introduce some

redundancies.
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use Var�h� to denote the set of variables with non-zero coe�cients in h. We also de-
note by I the set fi j xi 2 Dg.

Concrete operations. The concrete semantics of CLP programs requires three main
concrete operations: addition of a constraint to a constraint store, projection of a
constraint store on some variables, and union of constraint stores. We now de®ne
these concrete operations in more detail.

Upper bound. Let H1; . . . ;Hm be sets of constraint stores on Dn.
UNION�H1; . . . ;Hm� returns a set of constraint stores that represents all the constraint
stores in Hi �16 i6m�. Operation UNION is used to compute the result of a predicate
given the results of its individual clauses. It is speci®ed as follows.

Speci®cation 1. Let H1; . . . ;Hm be sets of constraint stores on Dn. Then

UNION�H1; . . . ;Hm� � H1 [ � � � [ Hm:

Addition of a constraint. Let H be a set of constraint stores on Dn and k be a con-
straint on Dn. AI ADD�k;H� returns a set of constraint stores that represents the result
of adding the constraint k to each of the constraint stores in H. Operation AI_ADD is
used when a constraint is encountered in the program.

Speci®cation 2. Let H be a set of constraint stores on Dn and k be a constraint on Dn.

AI ADD�k;H� � fh [ fkg j h 2 Hg:
Projection of a constraint store. Let H be a set of constraint stores on variables D,
and let V be a subset of these variables. PROJECT SET�H; V � returns the set of con-
straint stores obtained by projecting H on R � D n V . It is speci®ed as follows.

Speci®cation 3. Let H be a set of constraint stores on D, V � D, and R � D n V . Then

PROJECT SET�H; V � � fh=R j h 2 Hg:
This operation is used in many phases in the concrete semantics, e.g. just before a
procedure call to project the constraint stores on the call variables, or at the exit
of a clause to project the constraint stores on the head variables.

4. The abstract domain LSign

In this section, we present the abstract domain LSign. First, Section 4.1 pre-
sents the abstract domain used to approximate linear constraints and multisets
of linear constraints. Sections 4.2 and 4.3 contain the operations and applications
of the domain. This is followed by a brief presentation of the power domain in
Section 4.4.

4.1. The domain

As mentioned in the introduction, the domain was ®rst introduced in Ref. [28]
and then revisited in Ref. [33]. The presentation here is based on [33] which clearly
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separates multiplicity information from the abstract constraints.4 The presentation is
motivated by the fact that it makes it easy to de®ne the concretization function com-
positionally by identifying the semantic objects clearly. In contrast, [28] uses an ap-
proach based on an abstraction function and approximation relations.

The ®rst key idea is the notion of an abstract constraint which abstracts a concrete
constraint by replacing each coe�cient by its sign.

Our de®nitions assume D � fx1; . . . ; xng. An operator is an element of
Op � f<; 6 ;�g. Operators are denoted by the letter d.

De®nition 4.1 (Signs). A sign is an element of Sign � f0;�;	;>g. Sign is ordered
by s1 v s2 () �s1 � s2� _ �s2 � >�: The (monotone) concretization function
Cc : Sign! 2R is de®ned as

Cc�0� � f0g; Cc��� � fc j c 2 R ^ c > 0g;
Cc�	� � fc j c 2 R ^ c < 0g; Cc�>� � R:

De®nition 4.2 (Abstract constraints). An abstract constraint over D is an expression
of the form s0d

Pn
i�1 sixi, where si is a sign and d is an operator. The set of abstract

constraints over D is denoted by AD and is partially ordered by

s0d
Xn

i�1

sixi v s00d
Xn

i�1

s0ix
0
i ()

n̂

i�0

�si v s0i�:

The (monotone) concretization function Cc : AD ! CD is de®ned as:

Cc s0d
Xn

i�1

sixi

 !
� c0d

Xn

i�1

cixi j ci 2 Cc�si� �1
(

6 i6 n�
)
:

Abstract constraints are denoted by the letter r, possibly subscripted.

Example 4.1. The abstract constraint > � �P��R represents both the constraint
3 � P� R and ÿ3 � 2P� 5R but not the constraint 3 � ÿP� R.

The second key concept is the notion of an abstract constraint with multiplicity
which represents a multiset of constraints. The multiplicity information speci®es
the size of the multiset. We consider three multiplicities, One, ZeroOrOne, and Any,
which are used respectively to represent a multiset of size 1, a multiset of size 0 or
1, or a multiset of arbitrary size.

De®nition 4.3 (Multiplicities). A multiplicity is an element of Mult � fOne;
ZeroOrOne; Anyg. Mult is ordered by One v ZeroOrOne v Any: Multiplicities are de-
noted by the letter l, possibly subscripted.

We now turn to abstract constraints with multiplicities. Recall that elements of
CSD are multisets of linear constraints.

4 This was motivated by previous work on sequences [1] which separates properties of the elements of the

sequences from properties of the sequence.
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De®nition 4.4 (Abstract constraints with multiplicity). An abstract constraint with
multiplicity over D is an expression of the form hr; li, where r is an abstract con-
straint over D and l is a multiplicity. The set of abstract constraints with multiplicity
over D is denoted by AMD and is ordered by

hr1; l1i v hr2; l2i () r1 v r2 ^ l1 v l2:

The (monotone) concretization function Cc : AMD ! CSD is de®ned as:

Cc�hr;Onei� � ffkg j k 2 Cc�r�g;
Cc�hr; ZeroOrOnei� � f;g [ ffkg j k 2 Cc�r�g;
Cc�hr; Anyi� � f;g [ ffk1; . . . ; kmg j m P 1 ^ ki 2 Cc�r� �16 i6m�g:

Abstract constraints with multiplicities5 are denoted by the letter c, possibly sub-
scripted. Moreover, if c is hr; li, cons�c� denotes r and mult�c� denotes l.

Example 4.2. The abstract constraint with multiplicity h> � �P��R; Onei repre-
sents only multisets of size 1, e.g., f3 � P� Rg. h06 � P�	R; Anyi represents mul-
tisets of any size, e.g., ;, f06 3Pÿ Rg and f06 3Pÿ R; 06 2Pÿ 3Rg.

We are now in position to de®ne the abstract stores of the domain, which abstract
the constraint stores in the concrete domain.

De®nition 4.5 (Abstract stores). An abstract store over D is a set b of abstract con-
straints with multiplicities. The set of abstract stores is denoted by ASD. The concre-
tization function Cc : ASD ! CSD is de®ned in two stages. The ®rst captures the
syntactic form of the abstract store.

Cci�;� � f;g;
Cci�fcg [ b� � fh1 [ h2 j h1 2 Cc�c� ^ h2 2 Cci�b�g c 62 b:

The second captures the extension to equivalence classes in the concrete domain.

Cc�b� � fh j h$ hi ^ hi 2 Cci�b�g:
Abstract stores are denoted by the letter b, possibly subscripted.

Example 4.3. The abstract store b � fh> � �P��R; Onei; h06 � P�	R; Anyig
represents constraint stores with at least one constraint, and their equivalence class-
es. For example f3 � P� Rg 2 Cci�b� and f3 � P� R; 06 2Pÿ 3Rg 2 Cci�b�. Fur-
ther, f3 � P� R; 96 5Pg 2 Cc�b� because f3 � P� R; 96 5Pg $ f3 � P� R;
06 2Pÿ 3Rg.

It remains to de®ne the ordering on abstract stores. Our goal is to make sure that
b1 v b2 implies that Cc�b1� � Cc�b2� to obtain a monotone concretization function.
The ordering relation is non-trivial and requires the following concepts.

5 Ref. [28] contains one additional multiplicity OneOrMore which is obtained easily in our domain by

including one constraint with multiplicity One and one constraint with multiplicity Any. Note also that all

inequalities are de®ned with a multiplicity Any in Ref. [28].
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De®nition 4.6 (Definite, possible and indefinite constrains). Let c be an abstract con-
straint with multiplicity. c is a definite abstract constraint i� mult�c� � One. c is a pos-
sible abstract constraint i� mult�c� � ZeroOrOne. It is an indefinite abstract
constraint otherwise. The definite portion of b, denoted by Def�b�, is the set of def-
inite constraints of b. The possible portion of b, denoted by Pos�b�, is the set of pos-
sible constraints of b. The indefinite portion of b, denoted by Indef�b�, is the set of
inde®nite constraints of b.

De®nition 4.7 (Ordering function). Let b1 and b2 be two abstract stores. An ordering
function of b1 to b2 is a function f : b1 ! b2 satisfying
1. 8c 2 b1 : c v f �c�,
2. 8c1; c2 2 b1 : c1 6� c2 ) f �c1� 6� f �c2� _ f �c1� 2 Indef�b2�,
3. Def�b2� � range� f �.

De®nition 4.8 (Ordering on abstract stores). Let b1 and b2 be two abstract stores.
b1 v b2 if there exists an ordering function f of b1 to b2.

This de®nition of ordering indicates that we reason only on the syntactic form of
the abstract stores. The ®rst condition states that, for each abstract constraint with
multiplicity in b1, say c, there exists an abstract constraint with multiplicity in b2, say
f �c�, that approximates it. The next two conditions concern the number of con-
straints. The second condition requires that each de®nite constraint and each possi-
ble constraint in b2 be used at most once. The third condition requires that each
de®nite constraint in b2 be used at least once.6

Example 4.4. Consider the following abstract constraints with multiplicity.

c1 � h� � �P��R; Onei; c4 � h� � �P��R; Onei;
c2 � h� � 	P��R; Onei; c5 � h� � 	P�>R; Anyi;
c3 � h� � 	P��R; Anyi; c6 � h� � �P�>R; Oneii:

fc1; c2g v fc4; c5g and the ordering function is de®ned by f �c1� � c4 and f �c2� � c5.
Moreover, fc1; c2; c3g v fc4; c5g and the function is de®ned by f �c1� � c4, f �c2� � c5,
and f �c3� � c5. Finally, fc3; c4g6vfc1; c5; c6g, since there is no function that can cover
both c1 and c6 with only fc3; c4g.

It can be proved that the ordering on abstract stores is transitive and re¯exive,
leading to the following theorem.

Theorem 4.1 (The ordering relation). v: ASD � ASD is a pre-order.

We now turn to the ®rst main result of this section: the monotonicity of the con-
cretization function for abstract stores. The proof uses several lemmas, one of them

6 Notice that fh� � �x1 ��x2; Oneig is smaller than fh� � �x1 �>x2; Oneig, and fh� � �x1�
	x2; Oneig is smaller than fh� � �x1 �>x2; Oneig, but it is not true that fh� � �x1 ��x2; Onei;
h� � �x1 �	x2; Oneig is smaller than fh� � �x1 �>x2; Oneig. The latter holds in Ref. [28], but

apparently it is not what was intended. This problem showed up when trying to prove the correctness of

the abstract operations of LSign using the ordering de®ned in Ref. [28], and made it impossible, obviously.
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(i.e., the lifting function lemma) being fundamental in all consistency proofs. Note
that we sometimes abuse notation by writing expressions like k1 6� k2 to mean that
k1 and k2 are two di�erent constraints or two di�erent occurrences of the same con-
straint in a multiset. These abuses should be clear from the context. We also write jSj
to denote the cardinality of a set or of a multiset. We de®ne the notion of lifting func-
tion which is the counterpart of the ordering function for a pair (concrete store, ab-
stract store).

De®nition 4.9 (Lifting function). Let b be an abstract store and h a concrete con-
straint store. A lifting function of h to b is a function f : h! b satisfying:
1. 8k 2 h: k 2 Cc�cons� f �k���;
2. 8k1; k2 2 h: k1 6� k2 ) � f �k1� 6� f �k2� _ f �k1� 2 Indef�b��;
3. Def�b� � range� f �.

As mentioned, the following lemma is the cornerstone of most proofs in this sec-
tion.

Lemma 4.1 (Lifting function lemma). Let b be an abstract store and h a concrete
constraint store. h 2 Cci�b� if and only if there exists a lifting function f of h to b.

Proof (sketch). The proof proceeds by induction on jbj. The basic case is obvious.
For the induction step, assume that the hypothesis holds for all abstract stores whose
cardinality is not greater than n. We show that it holds for abstract stores of cardi-
nality n� 1. Consider an abstract store b satisfying jbj � n� 1 and let b be fcg [ b0,
where c 62 b0 and jb0j � n. By De®nition 4.5,

Cci�b� � Cci�fcg [ b0� � fh1 [ h0 j h1 2 Cc�c� ^ h0 2 Cci�b0�g:
�)� Let h 2 Cci�b�. Hence h � h1 [ h0, where h1 2 Cc�c� ^ h0 2 Cci�b0�. By hy-

pothesis, there exists a lifting function f 0 of h0 to b0. De®ne a function f : h! b as

f �k� � f 0�k� if k 2 h0;
c if k 2 h1:

�
The proof consists of showing that f is a lifting function of h to b.
�(� Let f be a lifting function of h to b � fcg [ b0. Let h1 � fk j k 2

h ^ f �k� � cg. Then 8k 2 h1 : k 2 Cc�cons�c�� by De®nition 4.9 and h1 2 Cc�c� by
De®nition 4.1. Let h � h1 [ h0 and consider the function f 0 : h0 ! b0 de®ned by
f 0�k� � f �k� for all k 2 h0. The proof consists of showing that f 0 is a lifting function
of h0 to b0. Then, by hypothesis, h0 2 Cci�b0� and, by De®nition 4.5, h1 [ h0 2
Cci�fcg [ b0�. �

Example 4.5. Consider the following abstract constraints with multiplicity

c1 � h� � �P��R; Onei; c2 � h� � �P��R; Onei;
c3 � h� � 	P�>R; Anyi; c4 � h� � �P�>R; Onei;

and concrete constraints

k1 � 2 � 2P� 3R; k2 � 3 � ÿ2P� 2R;
k3 � 1 � ÿ3P� 2R; k4 � 4 � 4P� 3R:

V. Ramachandran et al. / J. Logic Programming 42 (2000) 217±256 227



fk1; k2g 2 Cci�fc2; c3g� and the lifting function is de®ned by f �k1� � c2 and
f �k2� � c3. Moreover, fk1; k2; k3g 2 Cci�fc2; c3g� and the function is de®ned by
f �k1� � c2, f �k2� � c3, and f �k3� � c3. Finally, fk3; k4g 62 Cci�fc1; c2; c4g�, since there
is no function that can cover all three of c1; c2 and c4 with only k3 and k4.

We are now in position to state the ®rst main result of this section.

Theorem 4.2 (Monotonicity of concretization function w.r.t. ordering relation). If
b1 and b2 are two abstract stores then

(i) b1 v b2 ) Cci�b1� � Cci�b2�.
(ii) b1 v b2 ) Cc�b1� � Cc�b2�.

Proof (sketch). (i) Let b1 v b2 and h 2 Cci�b1�. We need to show that h 2 Cci�b2�. By
Lemma 4.1, there exists a lifting function f of h to b1. By De®nition 4.8, there exists
an ordering function g of b1 to b2. Consider the function g � f . The proof just shows
that g � f is a lifting function of h to b2. (ii) Let b1 v b2 and h 2 Cc�b1�. By de®nition
of Cc, there exists hi 2 Cci�b1� s.t. h$ hi. By part (i), hi 2 Cci�b2�. Hence, by de®ni-
tion of Cc, h 2 Cc�b2�. �

For subsequent sketches of proof where the result is stated in two parts, the ®rst
part relating to Cci and the second part relating to Cc, we only give the sketch of
proof for the ®rst part. The extension for Cc follows the outline of the proof above.

4.2. Abstract operations

We now study the implementation of the abstract operations of LSign. We start
by the implementation of the ordering relation, continue with the addition of a con-
straint and the upper bound operation, and conclude with projection.

The problem of ordering abstract stores, i.e. of deciding whether b1 v b2, could be
solved simply by enumerating all functions from b1 to b2 to determine whether one
of them is an ordering function. However, this would lead to an exponential algo-
rithm in the size of the stores. In this section, we show that we can do much better
by reducing the ordering problem to a maximum weighted bipartite graph matching
problem.

De®nition 4.10 (Bipartite graph). A graph G � �V ;E� is bipartite if V can be parti-
tioned into two sets V1; V2 such that �u; v� 2 E implies either u 2 V1 ^ v 2 V2 or
u 2 V2 ^ v 2 V1.

De®nition 4.11 (Maximum weighted bipartite graph matching problem). Let
G � �V ;E� be a weighted bipartite graph. A matching M on G is a set of edges no
two of which have a common vertex. The weight of M is the sum of its edge weights.
The maximum weighted bipartite graph matching problem is that of ®nding a match-
ing of maximum weight.

The key ideas behind the reduction are as follows. The ®rst set of vertices corre-
sponds to the constraints of b1. The second set of vertices contains a vertex for each
constraint in Def�b2�, a vertex for each constraint in Pos�b2�, and jb1j vertices for

228 V. Ramachandran et al. / J. Logic Programming 42 (2000) 217±256



each constraint in Indef�b2�, since these constraints can be used several times and
the matching problem requires that each vertex appears at most once in a solution.
The edges connect vertices from the ®rst set to vertices of the second set only if the
constraint in the ®rst set is smaller or equal to the constraint in the second set. This
requirement makes sure that the ®rst property of ordering is guaranteed. To ensure
the third property, we specify the weights in a special way to encourage the covering
of the de®nite constraints in b2. The second property will follow from the de®nition
of a matching.

De®nition 4.12. Let b1 and b2 be two abstract stores. The matching graph of b1 to b2

is a (weighted bipartite) graph G � �V ;E� such that

V � V1 [ V2 [ V3 [ V4;

V1 � fc1 j c1 2 b1g;
V2 � fc2 j c2 2 Def�b2�g;
V3 � fc2 j c2 2 Pos�b2�g;
V4 � fcc1

2 j c2 2 Indef�b2� ^ c1 2 b1g;

E � E2 [ E3 [ E4;

E2 � f�c1; c2� j c1 2 V1 ^ c2 2 V2 ^ c1 v c2g;
E3 � f�c1; c2� j c1 2 V1 ^ c2 2 V3 ^ c1 v c2g;
E4 � f�c1; c

c1

2 � j c1 2 V1 ^ cc1

2 2 V4 ^ c1 v c2g;

weight�e� � 2 if e 2 E2;
1 if e 2 E3 [ E4:

�
8e 2 E;

Implementation 1 (Ordering). Let b1 and b2 be two abstract stores. Let G be the
matching graph b1 to b2. b1 v b2 returns true i� the maximum matching of G has
weight jb1j � jDef�b2�j.

We now prove the correctness of the implementation.

Lemma 4.2. Let b1 and b2 be two abstract stores and G be a matching graph of b1 to
b2. b1 v b2 if and only if G has a matching of weight jb1j � jDef�b2�j.

Proof (sketch). �)� Let b1 v b2. By De®nition 4.8, there exists an ordering function
f of b1 to b2. Consider the set given by M � M2 [M3 [M4 where,

M2 � f�c1; c2� j c1 2 V1 ^ c2 2 V2 ^ c2 � f �c1�g;
M3 � f�c1; c2� j c1 2 V1 ^ c2 2 V3 ^ c2 � f �c1�g;
M4 � f�c1; c

c1

2 � j c1 2 V1 ^ cc1

2 2 V4 ^ c2 � f �c1�g:
The proof consists of showing that M is a matching of the appropriate weight.
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�(� Let G have a matching M of weight jb1j � jDef�b2�j. Then M � M2 [M3

[M4, where

M2 � f�c1; c2�jc1 2 V1 ^ c2 2 V2g;
M3 � f�c1; c2�jc1 2 V1 ^ c2 2 V3g;
M4 � f�c1; c

c1

2 �jc1 2 V1 ^ cc1

2 2 V4g:
We de®ne f by f �c1� � c2 if �c1; c2� 2 M2, or �c1; c2� 2 M3, or �c1; c

c1

2 � 2 M4 and
f �c1� � undefined otherwise. The proof consists of showing that f is a total function
from b1 to b2, and that f is an ordering function of b1 to b2. �

Theorem 4.3. The implementation of ordering satisfies its definition.

Proof. This follows from Lemma 4.2 and the fact that there cannot exist a matching
of cost greater than jb1j � jDef�b2�j when testing b1 v b2. �

Example 4.6. Consider the abstract stores b1 � fc1; c2g and b2 � fc3; c4g, where

c1 � h� � �P�>R; Onei; c2 � h� � �P�	R; Anyi;
c3 � h� � >P�>R; Onei; c4 � h� � �P�>R; Anyi:

The matching graph G of b1 to b2 is given below:

We have that b1 v b2 because the maximum matching of G has weight 3.

The following result gives the complexity of the ordering implementation.

Theorem 4.4. Let b1 and b2 be two abstract stores. The complexity of checking if
b1 v b2 is not more than O�jb1j2jb2j2 log jb1jjb2j�.

Proof. This follows from Ref. [13] which proved that the weighted bipartite matching
problem can be solved in time O�jV j2 log jV j � jV jjEj� i.e. O�jb1j2jb2j2 log jb1jjb2j�
and the de®nition of the matching graph. �

We now turn to the basic operation of CLP languages: adding a constraint to a
constraint store. We make the operation slightly more general than needed to simpli-
fy the rest of the section.

Speci®cation 4 (Adding an abstract constraint with multiplicity). Operation
] : ASD � AMD ! ASD should satisfy the following consistency condition.
8h1; h2 2 CSD; 8b 2 ASD; 8c 2 AMD :

h1 2 Cc�b� ^ h2 2 Cc�c� ) h1 [ h2 2 Cc�b ] c�:

230 V. Ramachandran et al. / J. Logic Programming 42 (2000) 217±256



De®nition 4.13. Let b be an abstract store and c be an abstract constraint with multi-
plicity. The operation to add an abstract constraint to an abstract store is de®ned by

b ] c � b [ fcg if c 62 b;
b [ fhr; Anyig if c � hr; li 2 b:

�
Informally speaking, the operation adds c to b if c is not in b. Otherwise, the mul-
tiplicity needs to be adjusted to take into account the new constraint. This is done
by setting the multiplicity to Any. Although the operation is very simple, the proof
of its consistency is non-trivial and indicates why it is convenient to consider multi-
sets (and not sets) of constraints in the concrete semantics.

Example 4.7. Let b � fh� � �T; Onei; h06 � P; Oneig. Adding the abstraction of
06 2R� 3B, i.e. h06 � R��B; Onei, to b leads to

b0 � fh� � �T; Onei; h06 � P; Onei; h06 � R��B; Oneig:
Adding the abstraction of 06 3R� 4B, i.e. h06 � R��B; Onei, to b0 gives the store
fh� � �T; Onei; h06 � P; Onei; h06 � R��B; Onei; h06 � R��B; Anyig:
Theorem 4.5. Let b be an abstract store and c be an abstract constraint with multipli-
city.

(i) If h1 2 Cci�b� and h2 2 Cc�c�, then h1 [ h2 2 Cci�b ] c�.
(ii) If h1 2 Cc�b� and h2 2 Cc�c�, then h1 [ h2 2 Cc�b ] c�.

Proof (sketch). Let c � hr; li. If h1 2 Cci�b�, then there exists a lifting function f of
h1 to b by Lemma 4.1. Consider the function f 0 : h1 [ h2 ! b ] c given by

f 0�k� � f �k� for all k 2 h1;

f 0�k� � c if c 62 b;

hr; Anyi if c � hr; li 2 b:

�
for all k 2 h2:

The proof consists of showing that f 0 is a lifting function of h1 [ h2 to b ] c. Oper-
ation ] is useful for the implementation of other operations. In fact, it is convenient
to generalize it further. �

De®nition 4.14. Let b and b0 be abstract stores.

b
]

b0 � b if b0 � ;;
�b ] c�U b00 if b0 � fcg [ b00; c 62 b00:

�

Lemma 4.3. Let b and b0 be abstract stores.
(i) If h 2 Cci�b� and h0 2 Cci�b0�, then h [ h0 2 Cci b

U
b0� �.

(ii) If h 2 Cc�b� and h0 2 Cc�b0�, then h [ h0 2 Cc b
U

b0� �.

Example 4.8. The following example is based on the mortgage program mg/4 of
Example 2.1. We have that h 2 Cci�b�, where h � f0 < T; 06 P; 0 � P � 1:01ÿ
Rÿ P1; 1 � Tÿ T1g and b � fh0 < �T; Onei; h06 � P; Onei; h0 � �P�	R
� 	 P1; Onei; h� � �T�	T1; Oneig: Also h0 2 Cci�b0�, where h0 � f0 � T1;
0 � Bÿ P1g and b0 � fh0 � �T1; Onei; h0 � �B�	P1; Oneig: This gives by Lemma
4.3 that h [ h0 2 Cc b

U
b0� �.
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We now turn to the upper bound of constraint stores. The operation UNION:

ASD � ASD ! ASD is speci®ed as follows.

Speci®cation 5. UNION: ASD � ASD ! ASD should satisfy the following consistency
condition. 8h 2 CSD; 8b1 2 ASD; 8b2 2 ASD :

h 2 Cc�b1� _ h 2 Cc�b2� ) h 2 Cc�UNION�b1; b2��:
We ®rst de®ne the upper bound of signs and multiplicities.

De®nition 4.15 (Upper bound on signs). The upper bound operation on signs
t:Sign� Sign! Sign is de®ned as s1 t s2 � s1 if s1 � s2, > otherwise

De®nition 4.16 (Upper bound on multiplicities). The upper bound operation on mul-
tiplicities t:Mult� Mult! Mult is de®ned as l1 t l2 � max�l1; l2�.

We now turn to the upper bound operation on abstract stores. Note ®rst
that LSign has no least upper bound operation. If b1 is fh� � �x1 ��x2; Oneig
and b2 is fh� � �x1 �	x2; Oneig, both b3 � fh� � �x1 ��x2; ZeroOrOnei;
h� � �x1 �	x2; ZeroOrOneig and b4 � fh� � �x1 �>x2; Oneig are upper bounds
of b1 and b2 but they are incomparable. This problem cannot be avoided and indi-
cates the inherent tradeo� between the accuracy of the signs and the accuracy of the
multiplicity. In practice, one should choose an upper bound appropriate to the ap-
plication at hand. For this reason, we design a general scheme to generate upper
bound operations. Any operation built along the scheme is an upper bound. We
use the notation c :: b to denote the set fcg [ b with c 62 b.

Implementation 2 (Upper bound on abstract stores). An upper bound operation on
abstract stores UNION: ASD � ASD ! ASD is any operation obtained by applying in
a nondeterministic way the following set of rules.

1] UNION�;; ;� � ;,
2(i)] UNION�hr; Onei :: b01; b2� � UNION�b01; b2� ] hr; ZeroOrOnei;
�ii�] UNION�b1; hr; Onei :: b02� � UNION�b1; b

0
2� ] hr; ZeroOrOnei;

3�i�] UNION�hr; li :: b01; b2� � UNION�b01;b2� ] hr; li if l 6� One,
�ii�] UNION�b1; hr; li :: b02� � UNION�b1; b

0
2� ] hr; li ifl 6� One,

4] UNION�hs0d
Pn

i�1 sixi; li :: b01; hs00d
Pn

i�1 s0ixi;l0i :: b02� �
UNION�b01; b02� ] h�s0 t s00�d

Pn
i�1 �si t s0i�xi; l t l0�i

Rules 2i and 2ii trade the precision of the multiplicity information for the preci-
sion of the coe�cients, since the constraint is no longer required but its coe�cients
remain the same. Rules 3i and 3ii do not lose information. Rule 4 trades the precision
of the coe�cients for the precision of the multiplicity. It is appropriate whenever l
and l0 are not Any, since they preserve the information that at most one constraint
(or possibly exactly one) is represented.

Example 4.9. Given the abstract stores fh0 � �T; Oneig and fh� � �T; Onei;
h0 < �T; Oneig, both fh0 � �T; ZeroOrOnei; h� � �T; ZeroOrOnei; h0 < �T;
ZeroOrOneig (applying rule 2 thrice) and fh> � �T; Onei; h0 < �T; ZeroOrOneig
(applying rules 4 and 2) are upper bounds.
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The following theorem states that the implementation of the upper bound opera-
tion satis®es its speci®cation.

Theorem 4.6. Let b1 and b2 be abstract stores and h be a constraint store.
(i) h 2 Cci�b1� _ h 2 Cci�b2� ) h 2 Cci�UNION�b1; b2��:
(ii) h 2 Cc�b1� _ h 2 Cc�b2� ) h 2 Cc�UNION�b1; b2��:

We now turn to the projection of a contraint store. Fig. 1 describes a simple pro-
jection algorithm based on the traditional Gaussian and Fourier eliminations which

Fig. 1. Concrete projection algorithms.
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are standard in this area. Fig. 2 presents the abstract algorithm. The algorithms are
close to those in Ref. [28] but they are simpli®ed thanks to the introduction of oper-
ations Csplit and Asplit which avoids much of the tedious case analysis. The
algorithms are also more precise.

Fig. 2. Abstract projection algorithms.
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The intuition behind the concrete version is as follows. Cproject nondeterminis-
tically chooses a constraint in the store. If the constraint is an equation whose coef-
®cient for xv is non-zero, Gaussian elimination is performed. Otherwise, Fourier
elimination is used. Gaussian elimination uses the equation or its negation to elimi-
nate xv from each of the other constraints in the store. The elimination is achieved by
applying Celiminate on a pair of constraints. Fourier elimination considers each
constraint in turn, partitions the store once again, and uses Fourier elimination on
the compatible pairs.

The abstract version mimics almost line by line the concrete version showing the
bene®ts of using operations Csplit and Asplit. The only place where we deal with
> is precisely in Asplit_top, which is used in the abstract version in order to sim-
plify the handling of > coe�cients in Fourier elimination. Before eliminating vari-
able xv through Fourier elimination, Asplit_top is used to change the >
coe�cients of xv in the store to 0;� or 	.

CSplit_basic and ASplit_basic split a (concrete or abstract) store into three
partitions with the coe�cient of xv positive, negative, or zero. Operation Csplit

partitions the store into three sets depending upon the coe�cient of xv. Its ab-
stract version needs to deal with the case where the coe�cient of the abstract
constraint is >. This is handled in Asplit_top whereby, Asplit_basic mimics
Csplit_basic almost line by line. Similarly, operation Afourier closely mimics
operation Cfourier. The main di�erence comes from the fact that we avoid com-
bining a constraint with multiplicity One or ZeroOrOne with itself, contrary to the
algorithm in Ref. [28]. This is achieved by testing the multiplicity of the con-
straint.

Of course, in the abstract algorithm, operations and relations on signs replace op-
erations and relations on coe�cients. We need to assume operations like �;ÿ;� on
signs; these operations must be consistent approximations of the corresponding op-
erations on R. For instance, c1 2 Cc�s1� ^ c2 2 Cc�s2� ) c1 � c2 2 Cc�s1 � s2�. Oper-
ations Aneg, Aeliminate, and Acombine mimic Cneg, Celiminate, and Ccombine

respectively, by performing operations on signs instead of on coe�cients. Operation
Agauss mimics operation Cgauss line by line. Contrary to the algorithm in Ref. [28],
the abstract Gaussian elimination algorithm does not split the > coe�cients of the
variable being eliminated into 0, � and 	. This enables it to be more precise in some
cases.

Example 4.10. Let c1 � h06 � R��B; Onei, c2 � h0 � �P�>R�	B; Onei and
b � fc1; c2g. Then

Asplit�fc1g; R� � hb0
1; b

�
1 ; b

ÿ
1 i � h;; fh06 � R��B; Oneig; ;i;

Asplit�fc2g; R� � hb0
2; b

�
2 ; b

ÿ
2 i � hfh0 � �P�	B; ZeroOrOneig;

fh0 � �P��R�	B; ZeroOrOneig;

fh0 � �P�	R�	B; ZeroOrOneigi:
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According to the algorithm,

Afourier�b; R� � b0
1

]
Afourier step�b�1 ; bÿ2 ; R�

]
Afourier step�b�2 ; bÿ1 ; R�

]
Afourier�fc2g; R�

� ;
]
fh06 � P�>B; ZeroOrOneig

]
;
]

Afourier�fc2g; R�:

By similar reasoning, we have that

Afourier�fc2g; R� � fh0 � �P�	B; ZeroOrOneig:
This gives

Afourier�b; R� � fh06 � P�>B; ZeroOrOnei; h0 � �P�	B; ZeroOrOneig:
Finally, Cproject_set and Aproject_set merely extend the projection operation

to project a set of variables from a store, rather than just one variable. The correct-
ness proofs of the operations above can be found in Ref. [36].

Theorem 4.7 (Project). Let v 2 I, h be a store and b be an abstract store.

h 2 Cc�b� ) Cproject�h; v� 2 Cc�Aproject�b; v��:

Corollary 4.1 (Project set). Let V 2 2I, h be a store and b be an abstract store.

h 2 Cc�b� ) Cproject set�h; V � 2 Cc�Aproject set�b; V ��:
Discussion. It is interesting to discuss some of our improvements over [28]. The

®rst improvement is on the accuracy of abstract Fourier elimination. In Ref. [28],
when Fourier eliminating x from a constraint that contains x with coe�cient >, that
constraint is always combined with itself (as it may represent two concrete con-
straints with opposite coe�cients for x). This is avoided in our domain by explicitly
checking the multiplicity of the constraint and combining it with itself only if its mul-
tiplicity is Any. For example, projecting x from fh> � >x��y; ZeroOrOneig leads
to the store fh> � �y; ZeroOrOnei; h> � �y; Anyig using the algorithm of [28].
The ®rst abstract constraint in this store comes from taking the > coe�cient of x
to be 0, while the second constraint comes from taking the > coe�cient of x to be
� and 	 and combining the two. This store cannot be deduced to be de®nitely satis-
®able by projecting y as it potentially contains more than one di�erent assignment of
a value to y. Our improved algorithm would lead to the store fh> � �y;
ZeroOrOneig, which can be easily seen to be de®nitely satis®able.

The second improvement is on the accuracy of abstract Gauss elimination. Con-
sider the following example. Using the algorithms of Ref. [28], projecting x from
fh� � �x; Onei; h> � >x��y; Oneig involves considering the cases 0, � and 	
for the > coe�cient of x in the second constraint, leading to fh> � �y;
ZeroOrOnei; h> � �y; Anyig which may or may not be satis®able. However, by di-
rectly substituting h� � �x; Onei into the second constraint, we get a simpler abstract
store fh> � �y; Oneig that accurately describes the result of projecting x and which
can be deduced to be de®nitely satis®able. Our abstract Gauss elimination algorithm
produces the above store by avoiding the imprecise splitting of the coe�cient >.
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4.3. Satis®ability

Reordering algorithms for CLP programs [36] are based on one fundamental op-
eration: testing if a constraint store h1 [ h2 is satis®able whenever h1 is satis®able.
This operation makes it possible to determine if a constraint can prune the search
space in a goal. This section discusses how to use LSign for abstracting this opera-
tion.

Consider ®rst the problem of determining whether a constraint store is satis®able.
In the concrete domain, this problem can be formalized by a function Cis sat :
CSD ! Boolean which takes a constraint store h and returns a Boolean value which
is true if h is satis®able and false otherwise. An implementation of Cis_sat is given
in Fig. 3. It consists of the well known technique of projecting all the variables
from the store and checking if the resulting ground constraints (i.e. constraints
with zero coe�cients for all variables) are all trivially satis®able. Its abstract coun-
terpart Ais_sat, also given in Fig. 3, makes a conservative approximation to
Cis_sat.

Theorem 4.8 (Is satis®able). Let h be a store and b be an abstract store.
h 2 Cc�b� ) �Ais sat�b� ) Cis sat�h��:

Example 4.11. Projecting all the variables from f06 R� B; 0 � B; 3 � Rg gives the
constraint store fÿ36 0g, indicating that the original constraint store is satis®able.

Projecting all the variables from fh06 � R��B; Onei; h0 � �B; Onei;
h� � �R; Oneig gives the abstract store fh	6 0; Oneig, indicating that all the con-
straint stores in its concretization are satis®able.

Projecting all the variables from fh>6 � R��B; Onei; h0 � �B; Onei;
h� � �R; Oneig gives the abstract store fh>6 0; Oneig, indicating that some of
the constraint stores in its concretization may not be satis®able.

Consider now the problem of determining whether a constraint store is unsatis®-
able. In the concrete domain, this problem can be formalized by the function
Cis unsat : CSD ! Boolean which takes a constraint store h and returns a Boolean

Fig. 3. Satis®ability algorithms.
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value which is true if h is unsatis®able and false otherwise. The function Cis_unsat
is exactly the logical negation of the function Cis_sat. The de®nition of Cis_unsat
(Fig. 4) is de®ned by projecting all the variables from the store and checking if any
of the resulting ground constraints (i.e. constraints with zero coe�cients for all vari-
ables) is trivially unsatis®able. Its abstract counterpart Ais_unsat, also given in
Fig. 4, makes a conservative approximation to Cis_unsat.

Theorem 4.9 (Is unsatis®able). Let h be a store and b be an abstract store.
h 2 Cc�b� ) �Ais unsat�b� ) Cis unsat�h��:

Note that Ais_unsat is not the logical negation of Ais_sat, unlike in the concrete
domain.

Example 4.12. Projecting all the variables from f06 R� B; 0 � B; ÿ3 � Rg
gives the constraint store f36 0g, indicating that the original constraint store is
unsatis®able.

Projecting all the variables from fh06 � R��B; Onei; h0 � �B; Onei;
h	 � �R; Oneig gives the abstract store fh�6 0; Oneig, indicating that all the con-
straint stores in its concretization are unsatis®able.

Projecting all the variables from fh>6 � R��B; Onei; h0 � �B; Onei;
h� � �R; Oneig gives the abstract store fh>6 0; Oneig, indicating that some of
the constraint stores in its concretization may not be unsatis®able.

Finally, consider the problem of conditional satis®ability of constraint stores. In
the concrete domain, this problem can be formalized by the function
Cis cond sat : CSD � CSD ! Boolean which takes two constraint stores h1 and h2

and returns true if the conjunction h1 [ h2 is satis®able whenever h1 is satis®able.
In other words,

Fig. 4. Unsatis®ability algorithms.
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Cis cond sat�h1; h2� � Cis sat�h1� ) Cis sat�h1 [ h2�
� Cis unsat�h1� _ Cis sat�h1 [ h2�:

The need for such an operation arises when it is necessary to verify that adding any
constraint store in the concretization of b2 to any satis®able constraint store in the
concretization of b1 does not cause the resulting constraint store to become unsatis-
®able. The operation is the cornerstone of the analysis for reordering constraints in
CLP(RLin) programs. While the de®nition of Cis_cond_sat is straightforward, it
does not lend itself to a straightforward satisfactory abstraction. A naive implemen-
tation of Ais_cond_sat is

Ais cond sat�b1; b2� � Ais unsat�b1� _ Ais sat b1

]
b2

� �
:

However, this naive implementation is not su�ciently accurate in practice because
the operations Ais_sat and Ais_unsat are not logical negations of one another. It
becomes necessary to transform the store b1 to remove sources of unsatis®ability in
b1 before checking the satis®ability of b1

U
b2. More formally, we are looking for-

ward an implementation like

Ais cond sat�b1; b2� � Ais unsat�b1� _ Ais sat b0
]

b2

� �
;

where b0 is an abstract description of fh 2 Cc�b1� j Cis sat�h�g as accurate as pos-
sible. At this aim, we introduce four transformations to remove possible sources of
unsatis®ability. Two of these, i.e., eliminating with equations and projecting irrele-
vant variables, serve to make the information available on the constraint store more
explicit. The third, i.e., reducing top coe�cients, corresponds to making the signs of
the abstract store more accurate. It is to be performed before eliminating with equa-
tions so that the sign information in inequalities is not lost. The ®nal transformation,
i.e., removing ground constraints is to be applied last as the previous transforma-
tions may introduce ground constraints.

Removing ground constraints. In the concrete domain, the transformation
Cred_gnd (Fig. 5) removes all ground constraints (i.e. constraints with zero coe�-
cients for all variables) from a constraint store, and it is an equivalence transforma-
tion for satis®able constraint stores.

Proposition 4.1. Let h be a constraint store. Then h satisfiable) �h$ Cred gnd�h��:

While Cred_gnd is not a very useful transformation for constraint stores, the
following example indicates why its abstraction Ared_gnd (given in Fig. 5) is im-
portant to improve the accuracy of conditional satis®ability in the abstract do-
main.

Example 4.13. Let b1 � fh> � �X; Onei; h> < 0; Oneig and b2 � fh0 � �X��Y;
Onei. Because b2 only represents stores that have a simple linear relation between
X and Y, and b1 represents stores that do not involve Y at all, it can be seen that
for any satis®able constraint store h1 2 Cc�b1� and constraint store h2 2 Cc�b2�,
we have that Cis sat�h1 [ h2� is true. We expect therefore that Ais cond sat

�b1; b2� returns true. However we see that
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Ais cond sat�b1;b2� � Ais unsat�b1� _ Ais sat b1

]
b2

� �
� false _ Ais triv sat�fh> < 0; Oneig�
� false:

Fig. 5. Reduction algorithms.
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This inaccuracy arises because of the possibly unsatis®able ground constraint
h> < 0; Onei in b1. However, there is another abstract store b01 � fh> � �X ; Oneig
which includes all the satis®able constraint stores of Cc�b1� in its concretization
and such that Ais sat b01

U
b2

ÿ �
is true. Moreover, b01 � Ared gnd�b1�.

An improved implementation of Ais_cond_sat, may therefore be given by

Ais cond sat�b1; b2� � Ais unsat�b1� _ Ais sat Ared gnd�b1�
]

b2

� �
:

Eliminating equations. In the concrete domain, the transformation Cred_eqn
(Fig. 5) looks for an equation for each variable and, if possible, uses the equation
to eliminate the variable from the rest of the store (operation Cred_eqn_step). This
corresponds to substituting the value of the variable in the rest of the store, but not
removing the equation used to perform the substitution. Cred_eqn is an equivalence
transformation on stores, i.e., the following proposition holds.

Proposition 4.2. Let v 2 I; V 2 2I and h be a store. Then

h$ Cred eqn step�h; v� $ Cred eqn set�h; V � $ Cred eqn�h�:
The following example indicates why the abstraction of Cred_eqn, i.e. Ared_eqn
(given in Fig. 5) is important for the accuracy of conditional satis®ability.

Example 4.14. Let b1 � fh� � �X ; Onei; h> < �X ; Oneig and b2 � fh0 � �X �
�Y ; Oneig. For any satis®able constraint stores h1 2 Cc�b1� and h2 2 Cc�b2�, we have
that Cis sat�h1 [ h2� is true. However we see that

Ais cond sat�b1;b2� � Ais unsat�b1� _ Ais sat b1

]
b2

� �
� false _ Ais triv sat�fh> < 0; Oneig�
� false:

This inaccuracy arises because the two abstract constraints in b1 may be potentially
unsatis®able together (combining to produce > < 0). It can be observed however
that there is another abstract store b01 � fh� � �X ; Oneig which includes all the satis-
®able constraint stores of Cc�b1� in its concretization (under equivalence closure)
and such that Ais sat b01

U
b2

ÿ �
is true. Moreover, b01 � Ared gnd�Ared eqn�b1��.

It is important to ®rst use the equations to simplify the store and then use
Ared_gnd to remove ground constraints. This is because Ared_eqn may introduce
ground constraints when it eliminates with equations. An improved implementation
of Ais_cond_sat, may therefore be given as

Ais cond sat�b1; b2� � Ais unsat�b1�
_ Ais sat�Ared gnd Ared eqn�b1��

]
b2

� �
:

Reducing top coe�cients. The third transformation does not have any counterpart
in the concrete domain. It consists of reducing the number of top coe�cients in the
abstract store b1 so as to improve its accuracy. The following example motivates the
transformation.
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Example 4.15. Let b1 � fh> � �X ; Onei; h0 < �X ; Oneig and b2 � fh0 � �X ��Y ;
Oneig. Again it can be seen that for any satis®able constraint store h1 2 Cc�b1� and
constraint store h2 2 Cc�b2�, we have that Cis sat�h1 [ h2� is true. However we see
that

Ais cond sat�b1;b2� � Ais unsat�b1� _ Ais sat b1

]
b2

� �
;

� false _ Ais triv sat�fh> < 0; Oneig�;
� false:

This inaccuracy arises because of the top coe�cient in b1. It can be observed that
there is another abstract store b01 � fh� � �X ; Onei; h0 < �X ; Oneig which includes
all the satis®able constraint stores of Cc�b1� in its concretization and such that
Ais sat b01

U
b2

ÿ �
is true.

The basic idea is to consider the cases 0, � and 	 for each > coe�cient in the store
b1 and see if any two of them make the store unsatis®able (using Ais_unsat). In that
case, the > coe�cient can be replaced by the third sign. To do this in general for a
store would be a very expensive operation. We therefore present a more speci®c ver-
sion of the transformation which captures most of the cases that occur in practice. The
transformation Ared_top (Fig. 5) uses any inequality that restricts the sign of a vari-
able, to re®ne any equation that assigns > to that variable. It is important to perform
Ared_top before performing Ared_eqn, in order that any sign restricting inequality
be used to make an equation more accurate before eliminating with that equation.

Reduction operation. The above transformations, aimed at removing unsatis®able
stores, can all be put together in a transformation called the de®nite satis®ability re-
duction (Fig. 5). The de®nition of Areduce retains all the satis®able stores in the con-
cretization, as stated by the following theorem.

Theorem 4.10 (Reduce). Let h be a store and b be an abstract store. Then

h 2 Cc�b� ^ h satisfiable) h 2 Cc�Areduce�b��:
Using Areduce, the operation Ais_cond_sat can be implemented in a more accurate
fashion as follows:

Ais cond sat�b1; b2� � Ais unsat�b1� _ Ais sat Areduce�b1�
]

b2

� �
:

Projecting irrelevant variables. Even the above implementation of Ais_cond_sat
is not su�ciently accurate, as can be seen by the following example.

Example 4.16. Let b1 � fh> < >X ; Oneig and b2 � fh0 � �X ��Y ; Oneig. It is ob-
vious that for any satis®able constraint store h1 2 Cc�b1� and constraint store
h2 2 Cc�b2�, we have that Cis sat�h1 [ h2�. We expect therefore that
Ais cond sat�b1; b2� returns true. However we see that

Ais cond sat�b1;b2� � Ais unsat�b1� _ Ais sat Areduce�b1�
]

b2

� �
;

� false _ Ais triv sat�fh> < 0; ZeroOrOneig�;
� false:
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Intuitively, the inaccuracy is caused because b1 contains unsatis®able stores in its
concretization, however the transformations performed by Areduce are not able
to remove these unsatis®able stores.

To understand how to overcome this limitation it is instructive to look at the con-
crete domain. If h1 2 Cc�b1� and h2 2 Cc�b2�,

Cis sat�h1 [ h2�;
� Cis triv sat�Cproject set�h1 [ h2;I��;
� Cis triv sat�Cproject set�Cproject set�h1; Var�h1� n Var�h2�� [ h2;I��;
� Cis sat�Cproject set�h1; Var�h1� n Var�h2�� [ h2�

This suggests our ®nal implementation for conditional satis®ability.

De®nition 4.17 (Is conditionally satisfiable). The abstract conditional satis®ability
operation Ais cond sat : ASD � ASD ! Boolean is given as

Ais cond sat�b1;b2�;� Ais unsat�b1�
_ Ais sat�Areduce�Aproject set�b1; Var�b1� n Var�b2���

]
b2�:

where Var�b� is the set of variables of b that have a nonzero coe�cient in b.

Note that Areduce is applied to b1 after projecting the variables of b1 that do not
occur in b2. This is because the projection may make explicit sources of inconsistency
(eg. ground unsatis®able constraints) that can then be removed by Areduce. The
above implementation of conditional satis®ability satis®es its speci®cation.

Theorem 4.11 (Conditional satis®ability). Let h1; h2 be stores and b1; b2 be abstract
stores. Then

h1 2 Cc�b1� ^ h2 2 Cc�b2�
) �Ais cond sat�b1; b2� ) Cis cond sat�h1; h2��:

4.4. The power domain 2LSign

In practice, the LSign domain is not always su�ciently accurate to perform a
practical analysis of CLP programs. In particular, the upper bound operation may
lose too much information to be of practical use. It may therefore be necessary to
move to the power domain 2LSign in order to get the required accuracy. This is a fairly
standard construction in abstract interpretation [12]. The technical details of this do-
main lifting can be found in Ref. [34]. Here, we show the computation of the goal
independent (or online) output in the 2LSign domain, for the mortgage program
mg=4 of Example, as it results by our prototype implementation.

Example 4.17 (Computation of 2LSign output description for mg/4). The abstract sub-
stitution describing the output of the ®rst clause is

ffh0 � �T; Onei; h0 � �P�	B; Oneigg:
The abstract substitution describing the constraint store just before the recursive call
in the second clause is
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ffh0 < �T; Onei; h06 � P; Onei; h0 � �P�	R�	P1; Onei;
h� � �T�	T1; Oneigg:

Extending this with the denormalized output of the recursive call (when the recursive
call returns the previous output) gives the abstract substitution

ffh0 < �T; Onei; h06 � P; Onei; h0 � �P�	R�	P1; Onei;
h� � �T�	T1; Onei; h0 � �T1; Onei; h0 � �P1�	B; Oneigg:

Restricting this to the head variables gives the following abstract substitution as the
output of the second clause

ffh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneigg:

The union of this with the previously computed output of the ®rst clause7 gives the
following abstract substitution as the updated output of the predicate mg.

ffh0 � �T; Onei; h0 � �P�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneigg:

This new output can be used as the output of the recursive call to mg, in order to re-
compute the output of the second clause of mg. This gives

ffh0 < �T; Onei; h06 � P; Onei; h0 � �P�	R�	P1; Onei;
h� � �T�	T1; Oneigg U
ffh0 � �T1; Onei; h0 � �P1�	B; Oneig;
fh0 < �T1; Onei; h� � �T1; Onei; h06 � P1; Onei;
h0 � �P1�	R�	B; Oneigg

for the program point after the recursive call. Restricting this to the head variables
gives

ffh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Onei; h06 � R��B; Oneigg:

The union of this with the previously computed output of mg gives the updated out-
put

ffh0 � �T; Onei; h0 � �P�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Onei; h06 � R��B; Oneigg:

The process can be repeated until it gives the following set of abstract store (multi-
store) as the ®xpoint for the computation of the output of mg.

7 Of course, the analyser takes care of distinguishing ``old'' and ``new'' abstract equations, as usual in

many abstract interpretation frameworks. See, for instance, Ref. [25] for a detailed discussion.
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ffh0 � �T; Onei; h0 � �P�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Onei; h06 � R��B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Onei; h06 � R��B; Onei; h06 � R��B; Anyigg:

As the fourth abstract store in the above multi-store subsumes the third store, we can
simplify the output description of mg to

ffh0 � �T; Onei; h0 � �P�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Oneig;
fh0 < �T; Onei; h� � �T; Onei; h06 � P; Onei;
h0 � �P�	R�	B; Onei; h06 � R��B; Onei; h06 � R��B; Anyigg:

Now, the reader may go back to the motivating discussion of Section 2, and check
that the analysis is accurate enough to support every optimization step applied to the
program of Example 2.1.

Finally, observe that a systematic normalization (removing redundancies through
the ordering relation) may be applied at each step of the analysis to avoid the growth
of abstract multi-stores.

4.5. Discussion

To conclude the section, it is instructive to point out a limitation of the domain
LSign. On the one hand, consider the constraint store h1 � f3 � x; 0 < xg and its
LSign abstraction b1 � fh� � �x; Onei; h0 < �x; Oneig. It is easy to see that h1 is
satis®able (i.e. Cis_sat(h1) is true). Also we have that Ais_sat(b1) is true, and so
we can make the same conclusion from the abstract domain. On the other hand, con-
sider the constraint store h2 � f3 � x; 2 < xg and its LSign abstraction b2 �
fh� � �x; Onei; h� < �x; Oneig. It is easy to see that Cis_sat(h2) is true, however
Ais_sat(b2) is false. While this does not violate the speci®cation of Ais_sat, it
means that the LSign domain is not able to approximate the store h2 su�ciently ac-
curately for applications that need to reason about satis®ability in the abstract do-
main. Similar examples can be constructed to show loss of accuracy for
conditional satis®ability. This suggests the need for a ®ner analysis than signs and
the natural solution is to use intervals instead of signs to approximate numbers. This
is explored further in the next section.

5. The abstract domain LInt

The abstract domain LInt, generalizes the domain LSign by using intervals in-
stead of signs to abstract coe�cients. Technically, the main di�culty arises because
LInt is an in®nite domain unlike LSign. This requires the de®nition of one more ab-
stract operation, viz. the widening operation.

The section is organized as follows. Section 5.1 introduces the abstract objects of
the domain LInt. Section 5.2 brie¯y presents the operations and applications of the
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domain. The power domain and the widening are presented in Section 5.3. Section
5.4 concludes by discussing how LInt addresses the limitations of LSign.

5.1. Abstract objects and concretization

We consider the set of real numbers R and its extension R1 � R [ fÿ1;1g.
The ordering on R is extended to R1, as usual. We also consider a ®nite subset
F of R containing 0 and the extension of F viz. F1 �F [ fÿ1;1g. In practice,
F is a set of ¯oating point numbers or rational numbers used in the implementation.

The ®rst key idea is the notion of an abstract constraint which abstracts a concrete
constraint by replacing each coe�cient by an interval over F1.

De®nition 5.1 (Intervals). An interval is an element of

Intv �
f�al; ar� j al; ar 2F ^ al6 arg[;
f�al; ar� j al 2F [ fÿ1g ^ ar 2F ^ al < arg[;
f�al; ar� j al 2F ^ ar 2F [ f�1g ^ al < arg[;
f�al; ar� j al 2F [ fÿ1g ^ ar 2F [ f�1g ^ al < arg:

Intervals are denoted by the letter s, possible subscripted. The monotone concreti-
zation function Cc : Intv! 2R is as expected. For instance, Cc��al; ar�� �
fc j c 2 R ^ al6 c < arg.

We assume the existence of functions left : Intv!F1 and right :
Intv!F1 which return respectively the left and right endpoint of an interval.
We also assume the existence of Boolean functions open left and open right

which indicate whether an interval is open to the left or to the right. In addition,
it is convenient to de®ne two relations increase : Intv� Intv and decrease :
Intv� Intv as follows:

increase�s1; s2� () 9c1 2 Cc�s1� 8c2 2 Cc�s2� : c1 > c2;
decrease�s1; s2� () 9c1 2 Cc�s1� 8c2 2 Cc�s2� : c1 < c2:

The ordering on Intv is de®ned by s1 v s2 () :increase�s1; s2� ^
:decrease�s1; s2�, and it satis®es the monotonicity criterion s1 v s2 ) Cc�s1� �
Cc�s2�:

We also assume operations like �;ÿ;�;t;u on intervals which are consistent
approximations of the corresponding operations on R1. For instance, c1 2 Cc�s1�
^ c2 2 Cc�s2� ) c1 � c2 2 Cc�s1 � s2�.

We say that an interval is positive (negative, resp.) if it contains only positive (neg-
ative, resp.) real numbers. Moreover, we say that an interval s is zero if s � �0; 0�.
These properties are represented by the boolean functions pos, neg, zer. We also
de®ne the boolean function contains_pos (contains_neg, resp.) to indicate wheth-
er an interval contains at least one positive (negative resp.) number. Moreover, we
de®ne the boolean function contains_zer to indicate whether an interval contains
the number zero. The de®nitions of operators, abstract constraints, multiplicities, ab-
stract constraints with multiplicities, and abstract stores of the domain are complete-
ly parallel to those in the domain LSign. The only di�erence is that signs are replaced
by intervals in the abstract constraints. We limit ourselves to some examples to ex-
plain these concepts in the domain LInt.
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Example 5.1. The abstract constraint �ÿ1;�1� � �1; 1�P� �1; 1�R represents both
the constraint 3 � P� R and ÿ3 � P� R but not the constraint 3 � 2P� 3R. The ab-
stract constraint with multiplicity h�ÿ1;�1� � �1; 1�P� �1; 1�R; Onei represents
only multisets of size 1, e.g., f3 � P� Rg. h06 �1:01;�1�P� �ÿ1;ÿ1�R; Anyi rep-
resents multisets of any size, e.g., ;, f06 3Pÿ Rg and f06 3Pÿ R; 06 2Pÿ 3Rg. The
abstract store b � fh�ÿ1;�1� � �1; 1�P� �1; 1�R; Onei ; h06 �1:01;�1�P� �ÿ1;
ÿ1�R; Anyig represents constraint stores with at least one constraint, and their equiv-
alence classes. For example f3 � P� Rg 2 Cci�b� and f3 � P� R ; 06 2Pÿ 3Rg
2 Cci�b�. Further, f3 � P� R; 96 5Pg 2 Cc�b� because f3 � P� R; 96 5Pg $
f3 � P� R; 06 2Pÿ 3Rg.

5.2. Operations and applications

The algorithms for various operations (ordering, addition of a constraint, up-
per bound and projection) as well as the applications (satis®ability and condition-
al satis®ability) of LInt are for the most part identical to the corresponding
algorithms in LSign. The only di�erence is that the various operations on signs
are replaced by the corresponding operations on intervals. For example, a test
r�v� � � would be replaced by the test pos�r�v��, while an assignment r�v� :� 0
would be replaced by the assignment r�v� :� �0; 0�. The only algorithm that under-
goes a non-trivial change is the algorithm for operation Asplit_top. It can be
more precise due to the more precise information available about the coe�cient
of the variable being eliminated. The algorithm for Asplit_top in LInt is given
in Fig. 6.

Fig. 6. Modi®ed Asplit top algorithm for LInt.
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5.3. The power domain 2LInt and widening

Just like LSign, the upper bound operation in LInt may not be su�ciently accu-
rate to perform a practical analysis of CLP programs. It may become necessary to
move to the power domain 2LInt in order to get the required accuracy. The de®nition
of the various concepts in the domain 2LInt is completely parallel the corresponding
de®nitions in the domain 2LSign. However, as 2LInt is an in®nite domain, it becomes
necessary to introduce a widening operator.8 The use of widening operators was pro-
posed in Ref. [6], further discussed in Ref. [7], and has been used in domains such as
type graphs for Prolog [40].

Naive widenings for 2LInt induce a substantial loss of precision, even on small ex-
amples. The main contribution of this section is to show how LSign can be used to
guide the widening of LInt. The basic intuition behind our widening is to try to guess
where the constraint stores are growing. A fundamental observation here is the fact
that, in general, the growth preserves the shape of the LInt constraint store when it is
viewed as a LSign constraint.

The de®nition of the widening operator proceeds systematically at each level of
abstract objects. For each abstract object, it is convenient to de®ne the shape of that
object, which is obtained by replacing intervals in that object by the corresponding
signs.

De®nition 5.2 (Shape and widening of intervals). The shape of an interval s is de®ned
as

shape�s� �
� if pos�s�;
	 if neg�s�;
0 if zer�s�;
> otherwise:

8>><>>:
Let sold and snew be intervals s.t. shape�snew� � shape�sold�. Then

snewrsold � s0 such that;

left�s0� �
0 if decrease�snew; sold� ^ pos�sold�;
ÿ1 if decrease�snew; sold� ^ :pos�sold�;
left�sold� otherwise

8<:
open left�s0� � decrease�snew; sold� _ open left�sold�;

right�s0� �
0 if increase�snew; sold� ^ neg�sold�;
1 if increase�snew; sold� ^ :neg�sold�;
right�sold� otherwise

8<:
open right�s0� � increase�snew; sold� _ open right�sold�

The widening is de®ned only for intervals that have the same shape, an can be seen
as an extension of the widening on interval domains as de®ned in Ref. [7]. We discuss

8 In fact, it is necessary to de®ne a widening for the LInt domain as well, but we shall focus on the 2LInt

domain, as it is used in our compiler.
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how the left endpoint of the intervals is widened. The right endpoint is similar. If the
new interval snew is growing at the left endpoint relative to the old interval sold ,
the widened left endpoint is set to the minimum possible value that does not alter
the shape of the interval. This means that if a positive interval is growing at the left
endpoint, its widened left endpoint is set to 0 and made open. If a non-positive in-
terval is growing at the left endpoint, its widened left endpoint is set to ÿ1. Other-
wise the left endpoint is not changed. The reason for distinguishing between positive
and non-positive intervals is to make sure that the widened interval has the same
shape as the original intervals. Also the intervals are not made smaller by the wid-
ening and so the following lemma applies.

Lemma 5.1. Let sold and snew be intervals s.t. shape�snew� � shape�sold�. Then
(i) shape�sold� � shape�snewrsold�:
(ii) c 2 Cc�sold� _ c 2 Cc�snew� ) c 2 Cc�snewrsold�:

The notion of shape and widening can be easily lifted to abstract constraint with
multiplicities, abstract stores, and abstract multistores (see Ref. [34] for complete
details). For each such abstract object, normalization operations are introduced
that avoid redundancies (with respect to the shape), leading to the following de®-
nitions:

De®nition 5.3 (Normalized abstract multistore). An abstract multistore a is said to be
normalized if
· 8b 2 a : 8c1; c2 2 b : shape�c1� 6� shape�c2�;
· 8b1; b2 2 a : shape�b1� 6� shape�b2�.

Given an abstract multistore a, it is possible to transform it into a corresponding
normalized multistore normal�a� such that h 2 Cc�a� ) h 2 Cc�normal�a��:

De®nition 5.4 (Shape and widening of abstract multistores). The shape of an normal-
ized abstract multistore a is de®ned as shape�a� � fshape�b� j b 2 ag:

Let aold and anew be normalized abstract multistores. Then

anewraold

�
aold ; ifanew v aold ;
fbold j bold 2 aold ; shape�bold� 62 shape�anew�g [ otherwise;
fbnew j bnew 2 anew; shape�bnew� 62 shape�aoldg[
fbnewrbold j bnew 2 anew; bold 2 aold ; shape�bnew� � shape�bold�g:

8>><>>:
Intuitively, the widening for abstract multistores is a generalization of the upper
bound operation. The abstract stores belonging to aold and anew need to be added
to anewraold , however if there are two abstract stores with the same shape, their wid-
ening needs to be computed ®rst. The following lemma states that the widening for
abstract multistores preserves the normalized form and that the widened multistore's
concretization includes the concretizations of aold and anew.

Lemma 5.2. Let aold and anew be normalized abstract multistores. Then
(i) anraold is normalized.
(ii) h 2 Cc�aold� _ h 2 Cc�anew� ) h 2 Cc�anewraold�: The following theorem states
the correctness of the operator r.
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Theorem 5.1 (Widening). Operation r is a widening operator.

To conclude the section, we show the resulting output description for the mort-
gage program mg/4 of Example 2.1 on this domain.

Example 5.2 (Computation of 2LInt Output Description for mg/4). The abstract sub-
stitution describing the output of the ®rst clause is

ffh�0; 0� � �1; 1�T; Onei; h�0; 0� � �1; 1�P� �ÿ1;ÿ1�B; Oneigg:
At the end of the analysis of both clauses, requiring the application of the widening
operation, the computation leads to the following multistore, which is the ®xpoint of
the computation and represents the output of the predicate mg:

ffh�0; 0� � �1; 1�T; Onei; h�0; 0� � �1; 1�P� �ÿ1;ÿ1�B; Oneig;
fh�0; 0� < �1; 1�T; Onei; h�1; 1� � �1; 1�T; Onei;
h�0; 0�6 �1; 1�P; Onei; h�0; 0� � �1:01; 1:01�P� �ÿ1;ÿ1�R� �ÿ1;ÿ1�B; Oneig;
fh�0; 0� < �1; 1�T; Onei; h�0; 0�6 �1; 1�P; Onei; h�2; 3� � �1; 1�T; Onei;
h�0; 0� � �1:0201; 103:0301�P� �ÿ303:01;ÿ2:01�R� �ÿ100;ÿ1�B; Onei;
h�0; 0�6 �1; 201�R� �1; 100�B; Onei; h�0; 0�6 �1; 201�R� �1; 100�B; Anyig;
fh�0; 0� < �1; 1�T; Onei; h�0; 0�6 �1; 1�P; Onei; h�3;�1� � �1; 1�T; Onei;
h�0; 0� � �1:030301;�1�P� �ÿ1;ÿ3:0301�R� �ÿ1;ÿ1�B; Onei;
h�0; 0�6 �1; 201�R� �1; 100�B; Onei; h�0; 0�6 �1; 201�R� �1; 100�B; Anyi;
h�0; 0�6 �1:01;�1�P� �ÿ1;ÿ1�R; Onei;
h�0; 0�6 �1:01;�1�P� �ÿ1;ÿ1�R; Anyigg

Comparing this multistore with the one shown in Example 4.17, we may observe
how more accurate the analysis using 2LInt is with respect to the analysis on 2LSign.
For instance, in the ®rst two stores (that correspond strictly, in the two examples),
there is no loss of information when using 2LInt with respect to the concrete compu-
tation, whereas 2LSign analysis immediately looses track of any numeric value.

5.4. Discussion

The domain LInt enables us to overcome the limitation of the domain LSign that
was pointed out in the previous section. Consider the constraint store
h � f3 � x; 2 < xg. Its LSign abstraction is b � fh� � �x; Onei; h� < �x; Oneig.
While h is satis®able, Ais sat�b� is false because the abstract store obtained by pro-
jecting all the variables is fh> < 0; Oneig. Moving to the domain LInt, the abstrac-
tion of h is b0 � fh�3; 3� � �1; 1�x; Onei; h�2; 2� < �1; 1�x; Oneig. Projecting all the
variables gives the abstract store fh�ÿ1;ÿ1� < 0; Oneig and so Ais sat�b0� is true,
which represents the concrete operation more accurately. Similar examples can be
constructed for the other abstract applications such as conditional satis®ability.

6. Preliminary experimental results

The purpose of this section is to give very preliminary evidence that the domain
2LSign is su�ciently precise to perform the intended optimizations. It shows that an
optimizing compiler can indeed use the domain and perform the intended optimiza-
tions on small programs and it gives the magnitude of the speed-ups. The section
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also gives some preliminary information on the price to pay when using 2LInt instead
of 2LSign. The compilation times given in this section should be interpreted with care.
The compiler is not incremental and restarts the analysis as soon as a reordering
takes place. Obviously, a practical compiler should be incremental and the tech-
niques presented in Ref. [17] should be helpful here to obtain a fast implementation.
Our benchmarks are relatively small, since most large CLP(RLin) programs use ®rst-
order terms in addition to linear constraints and our analyzer is not able to handle
them at this stage. Most of the programs are also multi-directional and they are run
with various modes: u stands for an unconstrained variable while f stands for a ®xed
variable. Program Integer(N) is used to verify if 25 000 is an integer and to generate
the ®rst 250 integers. The next three programs, Exp(N,E), Sum(N,S) and Fib-

onacci(N,F) are programs that compute 2N, the sum of the ®rst N integers, and
the Nth Fibonacci number, respectively. Mortgage relates the various parameters of
a mortgage computation, and we have two versions of it. The ®rst is the running ex-
ample used in the paper. The second is a syntactically nonlinear version which has
the interest rate as an argument. We have used an interest rate of 1% per month
and a monthly repayment of 2 units; the ®nal balance is unconstrained. The value
of the principal and time period vary to illustrate various tradeo�s in the optimiza-
tions. Ode-Euler [29] is a program solving the ordinary di�erential equation y0 � t.
Triangular is a benchmark that involves simultaneously solving a sparse system of
N equations, subsystems of which are in upper triangular form. Table 1 summarizes
the usage modes of the various test programs.

Table 1

Test programs: description of usage in various modes

Program Mode Description

Integer f Is 25000 an integer?

u Generate 0 . . . 250

Exp fu Compute 225

uf Compute lg 225

uu Generate �0; 1� . . . �25; 225�
Sum fu Compute 0� 1� � � � � 500

uf Find N s.t. 0� 1� � � � � N � 125250

uu Generate �0; 0� . . . �500; 125250�
Fibonacci fu Compute 15th Fibonacci number

uf Find N s.t. 987 is N th Fibonacci number

uu Generate �0; 1� . . . �15; 987�
Mortgage �fu (1) Principal � 100, Time � 50; ®nd Balance

(Linear) �fu (2) Principal � 200, Time � 100; ®nd Balance

fufu (1) Principal � 100, Time � 0 . . . 50; ®nd Balance

fufu (2) Principal � 200, Time � 0 . . . 100; ®nd Balance

Mortgage ��u (1) Principal � 100, Time � 50; ®nd Balance

(Nonlinear) ��u (2) Principal � 200, Time � 100; ®nd Balance

fu�u (1) Principal � 100, Time � 0 . . . 50; ®nd Balance

fu�u (2) Principal � 200, Time � 0 . . . 100; ®nd Balance

Ode-Euler ��u Compute ®nal y value

fu�f Compute initial y value

fu�u Relate initial and ®nal y values

Triangular, 2000 Solve N equations, N � 2000

4000 Solve N equations, N � 4000

8000 Solve N equations, N � 8000
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The benchmarks are used to compare the optimizing compiler (Opt.) with the
standard compiler (Unopt.). Both compilers generate code for the same runtime
system which is a WAM-based system with special instructions for tests and assign-
ments. The architecture of the system was described in Ref. [39]. The runtime sys-
tem uses in®nite precision integers to guarantee numerical stability. Table 2 reports
the computation times (in milliseconds on a SUN-SPARC-10) for the optimized
and unoptimized versions of the benchmarks for various modes on 2LSign. It also
gives the ratio of the unoptimized execution time to the optimized execution time
(speedup). The table also speci®es which optimizations have been performed. REO
indicates that constraints were reordered, REF indicates that constraints were re-
®ned to tests or assignments and REM indicates that (redundant) constraints were
removed from the program. The ®nal column in the table indicates whether the op-
timizations enabled the execution to bypass the constraint solver entirely (i.e per-
form only tests and assignments in the engine and interface). A

p
indicates that

the unoptimized program utilized the constraint solver to perform constraint solv-
ing, while the optimized program bypassed the constraint solver entirely. For
all these programs, 2LSign-analysis is su�cient to get maximal precision for reorder-
ing, and passing to 2LInt does not bring any improvement with that respect.
However, it is su�cient to slightly modify their code (e.g. moving the basic case

Table 2

Comparison of running times in ms.: optimized vs unoptimized using 2LSign-analysis

Program Mode Unopt. Opt. Speedup Annotation Bypass?

(1) (2) (1)/(2)

Integer f 1380 1280 1.08 REF �
u 4810 280 17.18 REO,REF,REM

p
Exp fu 10 10 1.00 REO,REF

p
uf 100 10 10.00 REO,REF,REM

p
uu 120 10 12.00 REO,REF,REM

p
Sum fu 200 40 5.00 REO,REF

p
uf 19220 17270 1.11 REO, REM �
uu 31490 2180 14.44 REO,REF,REM

p
Fibonacci fu 720 240 3.00 REO,REF

p
uf 8570 1950 4.39 REO, REF �
uu 7880 810 9.73 REO, REF �

Mortgage �fu (1) 410 390 1.05 REF �
(Linear) �fu (2) 30 20 1.50 REF �

fufu (1) 880 420 2.10 REO,REF,REM
p

fufu (2) 870 70 12.43 REO,REF,REM
p

Mortgage ��u (1) 800 690 1.16 REF �
(Nonlinear) ��u (2) 50 40 1.25 REF �

fu�u (1) 1750 1100 1.59 REO,REF,REM
p

fu�u (2) 1590 140 11.36 REO,REF,REM
p

Ode-Euler ��u 1260 1120 1.13 REF �
fu�f 1540 1440 1.07 REO,REF �
fu�u 1330 1210 1.10 REO,REF �

Triangular, 2000 520 130 4.00 REF,REO
p

4000 1660 210 7.90 REF,REO
p

8000 4490 290 15.48 REF,REO
p

Ar. Mean 5.68
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from 0 to 1) to see that 2LInt still supports the optimization while LSign looses
most of its accuracy.

The speedups vary from 1.00 on one of the Exp queries to 15.48 on the Triangu-

lar program, when 8000 equations are solved. Seven programs exhibit speedups of
at least 10, while eleven programs exhibit speedups lower than two. The average
speedup observed was 5.68.

Finally, we investigated the price the pay to move from 2LSign to 2LInt. Table 3
gives the optimization time (in milliseconds) for 2LSign, separately for each of the
three phases, as well as for the total of the three phases; then, it compares the opti-
mization times for the benchmarks when 2LInt is used in the analyzer instead of 2LSign.
For our benchmarks, the average penalty paid by the 2LInt analysis over the 2LSign

analysis is a factor of 7.39.

7. Conclusions

This paper has studied two abstract domains, LSign and LInt, which can be used
at compile time to determine when it is safe to reorder CLP programs. As far as
LSign is concerned, the paper rede®ned the domain of [28] to simplify the correctness
proofs. It proposed a new ordering capturing the intended meaning of [28] comput-
able in polynomial time. It proposed a more precise algorithm for projection. Final-
ly, it discussed how LSign can be used to detect the conditional satis®ability of
constraint stores, an operation which is fundamental to reorder CLP(RLin) programs.

Table 3

Optimization times in ms: 2LSign and LInt

Program Mode Reord. Removal Re®n. Total 2LSign LInt Ratio

(1) (2) (3) (4) � Ri�1::3�i� (5) (5)/(4)

Integer f 120 20 10 150 800 5.33

u 400 10 10 420 2150 5.12

Exp fu 510 10 10 530 4110 7.75

uf 690 10 10 710 5140 7.24

uu 980 10 20 1010 7020 6.95

Sum fu 1200 10 10 1220 8060 6.61

uf 1470 20 20 1510 10340 6.88

uu 1530 10 10 1550 11180 7.21

Fibonacci fu 4280 30 20 4330 43910 10.14

uf 7900 90 80 8070 120750 14.96

uu 6150 70 50 6270 76610 12.22

Mortgage �fu 1420 20 20 1460 14410 9.87

(Linear) fufu 3060 30 10 3100 42420 13.68

Mortgage ��u 3350 50 40 3440 25070 7.29

(Nonlinear) fu�u 9480 50 30 9560 62180 6.50

Ode-Euler ��u 1680 40 10 1730 11110 6.42

fu�f 1650 30 20 1700 11070 6.51

fu�u 1140 20 20 1180 7200 6.10

Triang., 2000 360 20 10 390 1350 3.46

4000 480 30 10 520 1510 2.90

8000 2320 80 50 2450 3920 1.60

Ar. Mean 7.39
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This operation, which was never discussed previously, was shown to raise some sub-
tle practical issues which are studied at length. As far as the new domain LInt is con-
cerned, the paper proposed in particular a precise widening operator. The paper also
described some very preliminary evidence showing that the domains are precise en-
ough to perform the intended optimizations on small programs.

There are of course many avenues for future research. Of immediate concern is the
development of a fast and incremental optimizing compiler using the technology de-
scribed in Ref. [17]. Equally important are the enhancement of the domains to sup-
port ®rst-order terms, and their integration in the generic Pattern domain [5] to
optimize the interaction with uni®cation constraints. These developments will make
it possible to apply the domains on large programs and to give a de®nitive assess-
ment on their practical value.
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