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Abstract

This paper examines the explicit communication
characteristics of several sophisticated scientific
applications; which, by themselves, . constitute a
representative suite of publicly available benchmarks
for large cluster architectures. Bf~ focusing on the
Message Passing Interface (MPI) and by using
hardware counters on the microprocessor, we observe
each application’s inherent behavioral characteristics:
point-to-point and collective communication, and
floating-point operations. Furthermore, we e,xplore the
sensitivities of these characteristics to both problem
size and number of processors. Our analysis reveals
several striking similarities across, our diverse set of
applications including the use of collective ’operations,
especially those collectives with very small data
payloads. We also highlight a trend of novel
applications parting with regimented, static
communication patterns in favor of dynamically
evolving patterns, as evidenced by our experiments on
applications that use implicit linear ..solvers and
adaptive mesh refinement. Overall, our study
contributes a better understanding of the requirements
of.current and emerging paradigms of scientific
computing in terms of their computation and
communication demands.

1 Introduction
Historically, users have written scientific

applications for large distributed memory computers
using explicit communication as the programming
model. This trend crystallized with the creation of the
Message Passing Interface (MP1) specification [11, 22],
which simplified numerous issues for both application
developers and system designers. As a result,
application developers stabilized on the MPI
programming model and this has facilitated the ongoing
development of a considerable number of applications
based on MPI. Although MPI provides a common
foundation for explicit communication, its wide range
of functionality promotes a diverse set of application
communication-characteristics due to variations in
application domain, algorithm, software design, and
problem size.
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Nevertheless, these communication chm:acteristics
[9] are critically important to the design of large scale
computing systems for three reasons. First, design
tradeoffs for any computer architecture hinge, on
specific properties of the system’s proposed workload.
Second, application developers must use algorithms
appropriate for their target system architecture. Third,
system software, such as the MPI library, must be
optimized for the target architecture and the application
workload.

1.1 Key Insights and ContributiOns

The main objective of our efforts is to quantify the
communication characteristics of sevei’at scientific
applications from the perspective of MPI and’
.independent of the target architecture. In particular, for
a wide range of existing scientific applications, we
quantify their inherent behavioral characteristics: point-
to-point communication, collective communication, and
floating-point operations. To expose the key
relationships among experiment parameters, we also
study the effects of scaling both the problem size and
the number of processors. Our experiments include
applications that simulate radiation transport,
turbulence, materials modeling, and fluid dynamics. We
also compare and contrast an adaptive mesh refinement
framework against traditional uniform mesh
applications.

Earlier work [9] claimed a wide ’range of

communication characteristics across a set of smaller
applications. Our findings strengthen these results and
we contribute several new observations, for
communication characteristics, such as small collective
payload sizes, which is strikingly consistent across
applications. In addition, we highlight the impact Of
adaptive methods on communication requirements.

MPI provides a unique opportunity to study these
aspects. First, although applications can use a variety of
communication routines i~ achieve similar types of
communication, users typically strive to minimize the
amount of communication. Second, MPI provides
higher levels of abstraction that hide implementation
complexity. This allows us to identify complex
operations, such as reductions, which we previous
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studies were not able to consider.
The core of this paper discusses these issues in

more detail. In Section 2, we outline our experiment
methodology. Following this, we introduce our
applications in Section 3. Then, in Section 3.5, we
present the results of our evaluation and describe our
important observations. Section 5 describes related
work. Finally, Section 6 concludes.

2 Methodology
We empirically evaluated five scientific

applications on one platform; our results are not from
simulation or analytical modeling. In order to obtain the
results presented later in the evaluation section, we
created a list of important characteristics that We wished
to quantify. We then analyzed each application with a
number of experiments to capture characteristics of
interest, varying parameters, such as problem size, to
explore relationships among characteristics.

We characterize our applications along four
dimensions: point-to-point communication, collective
communication, memory load loperations , and floating
point operations.
¯ For point-to-point communication, we measure

distributions for number of messages, type,
payload size, and size of destination clique.

¯ For collective communication, we determine the
distributions for type, frequency, and payload size.

¯ To understand the amount of computation in the
application, we measure the number of memory
load operations and the number of floating point
operations between significant MPI ca!l sites.

In addition, we expose how these four dimensions scale

with both input problem size and the number of tasks.

2.1 Platform

We ran our tests on an IBM SP system, located at
Lawrence Livermore National Laboratory. This
machine is composed of sixteen 222 MHz IBM Power3
8-way SMP nodes, totaling 128 CPUs: Each processor
has three integer units, two floating-point units, and two
load/store units. Its 64 KB L1 cache .is 128 way
associative with 32 byte cache lines and L1 uses a
round-robin replacement scheme. The L2 cache is 8
MB in size, which is four-way set associative with its
own pri’¢ate cache bus. At the time of our tests, the
batch partition had 15 nodes and the operating system
was AIX 4.3.3. Each SMP node contains 4GB main
memory for a total of 64 GB system memory. A Colony
switch--a proprietary IBM interconnect--connects the
nodes. We compiled the various tests with..the IBM XL
and KAI Guide compilers using IBM’s MPI library in
user-space mode. Our test jobs ran on dedicated nodes,
although other jobs were concurrently using the
network.

2.2 Data collection

At the highest level, we empirically measure our
data by tracing both the MPI and computation activity
during execution. For communication, we recordI all
MPI operations with their respective parameters. For
computation, we use hardware counters on the
microprocessor to capture specific data about each
block of computation between significant MPI call
sites. This strategy allows us to collect relevant yet
limited information about application communication
and computation.

During execution, our tracer records fixed-sized
events to a local memory buffer. When this memory
buffer is filled, the tracer writes this information to a
file stored on the node’s local disk. Many of our
applications never fill their local buffer, so they never
spill to local disk. At the end of application execution,
the tracer collects these events from each node and
merges them into one trace file. We then analyzed the
trace files offline. Most trace-based performance
analysis systems, including PICL, Pablo, Tau, and
Paraver [10, 16, 19, 21], use this approach.

For communication activity, our tracing system
takes advantage of MPI’s profiling layer by capturing
information about each MPI call. For each MPI call
site, the tracer captures the type of MPI call, parameters
for that call, timestamp, call duration, and call site
stacktrace. This provides sufficient information to
identify different communication phases.

For computation, we capture data from hardware
counters periodically. This ’measurement paradigm
provides precise information with low overhead and at
a sufficient level of granularity.

To capture this data, we rely on eight hardware
counters in the IBM Power3 and program them to count
events of interest to our study. First, we capture the
number of cYCles and completed instructions. Second,
we capture the number of floating point operations,
which are typically less sensitive to compiler
optimization than other instructions. Third, we measure
the number of memory loads. From this set of hardware
events, we can calculate valuable measures that include
cycles per instruction and flop to load ratio.

This accurate information has been carefully
selected to allow us to reduce the size of our trace files
while still allowing us to relate computation to
communication. Furthermore, we can use this
information to determine scaling effects . for
computation empirically. In this work, we define a
block of computation as any work that occurs between
two significant MPI call sites. We distinctly identify
these blocks by using the call site stacktraces.

2.3 Application Phases

Virtually all scientific applications maintain a
notion of simulation time and for many applications, the



communication and computation activity for each
timestep is static. For this reason, we focus our
measurements on the activity for one timestep of each
application. For those applications that have changing
communication patterns [20], such as ataptive mesh
refinement, we pay special attention, and report the
communication characteristics for several different
timesteps of the application.

3 Applications
For our investigation, we targeted a substantial

number of very sophisticated scientific applications.
Table 1 provides an overview of our applications. The
language for the application represents the bulk of the
languages used in the application source code, although
most of these complex applications are mixed language.
Observed phase of application execution identifies the
specific phase of application?s execution we measured.
Primary MPI functionality shows the significant MPI
calls detected during the observed phase. The respective
references provide more detail on each application. In
addition, the source code for each application is also
available from the ASCI Purple Benchmark website
(www.llnl.gov/asci/platforms) with the exception 
SAMRAI, which is available from CASC

Table 1: Application Overview

sPPM . F77

SMG2000 C

F77

F77

04-+

SPHOT

Sweep3D

(www.llnl.gov/CASC).

3.1 sPPM

sPPM [18] solves a 3-D gas dynamics problem on a
uniform Cartesian mesh, using a simplified version of
the Piecewise Parabolic Method. The algorithm makes
use of a split scheme of X, Y, and Z Lagrangian and
remap steps, which are computed as three separate
sweeps through the mesh per timestep. Message passing
provides updates to ghost cells from neighboring
domains three times per timestep.

3.2 SMG2000

SMG2000 [4] is a parallel semicoarsening
multigrid solver for the linear systems arising from
finite difference, finite volume,, or finite~ element
discretizations of the diffusion equation
V- (DVu) +o-u = f on logically rectangular grids.

The code solves both 2-D and 3-D problems with
discretization stencils of up to 9-point in 2-D and up to
27-point in 3-D. Applications where such a solver is
needed include radiation diffusion and flow in porous
media. Our exammatmn includes both the setup of the
linear system and the solve itself. Note that this setup
phase can often be done just once, thus amortizing the
cost of the setup phase.over many timesteps. This trait

is relatively common in implicit

Samrai

3-D gas dynamics problem
on a uniform Cartesian
mesh using a simplified
version of the Piecewise
Parabolic Method
Semicoarsening multigrid
solver for linear systems.

2-D photon transport code
using Monte Carlo
transport

Solver for the 3-D, lime-
independent, particle
transport equation on an "
0rthogonal mesh using a
multidimensional wavefront
algorithm
3-D shock tube
implemented with
structured adaptive mesh
refinement

One double
timestep.

Solve of one
linear system
including setup
of linear
system.
One timestep.

One timestep.

One problem at
two nofi-
consecutive
timesteps.

MPl_AIIreduce
MPl_lsend
MPl_lrecv
MPl_Wait

MPl_AIIreduce
MPl_lsend
MPl_lrecv
MPl_Wait
M Pl_Waitall
MPl_Barrier
MPl_lrecv
MPl_Reduce
MPl_Send
MPl_Waitall
MPl_AIIreduce
MPl_Bcast
MPl_Send
MPl_Recv

MPl_AIIreduce
MPl_lsend
MPl_lrecv
MPl_Test
MPl_Wait

timestepping codes.

3.3 Sphot

Sphot is a 2-D photon
transport code. Photons are born
in hot matter, and ’ tracked
through a spherical domain that
is cylindrically s}c-mmetric on a
logically rectilinear, 3D mesh.
Monte Carlo transport solves

¯ the Boltzmann transport
equation by directly mimicking
the behavior of photons as they
are born in hot matter, move
through and scatter in different
materials, are absorbed or
escape - from the problem
domain. Particles are born with
an energy and direction that are
determined by using random
numbers to sample from
appropriate distributions. This
code tracks particles through a
logically rectangular, 2-D mesh
that is internally generated.



3.4 Sweep3D

Sweep3D [13, 14] is a solver for the 3-D, time-
independent, particle transport equation on an
orthogonal mesh and it uses a multidimensional
wavefront algorithm for "discrete ordinates"
deterministic particle transport simulation. Sweep3D
benefits from multiple wavefronts in multiple
dimensions, which are partitioned and pipelined on a
disti’ibuted memory system. The three dimensional
space is decomposed onto a two -dimensional
orthogonal mesh, where each processor is assigned one
columnar domaiL Sweep3D exchanges messages
between processors as wavefronts propagate diagonally
across this 3-D space in eight directions.

3.5 Samrai

The SAMRAI (Structured Adaptive Mesh
Refinement Application Infrastructure) library [23] is
an object-oriented C++ software framework for the
development of computational physics applications
using structured adaptiv e mesh refinement (AMR)
technology. SAMR dynamically adapts its hierarchy of
spatial and temporal refinement levels to follow
interesting features in the evolving simulation, focusing
computer resources on these localized regions of the
computational domain. This hierarchy consists of
several mesh levels where all cells at a particular level
have the same mesh resolution. Each level is composed
of a collection of patches, each of which is a logically
rectangular collection of comi~utational cells. A patch

, .2

--- o om ---

z

3PPM 3; 1.00 105541 2.91 265.~ 2.9~ 6887 2.93 30 0.86 26 , 1.87 5 0.88 2 1.0e 1, 1.00
~PPM 4~ 1.50 708, 1.9~ 177~ 1.95 4617 1.97 32 0.94 2C , 1.43. 5.33 0.94 2 1.0C 1, 1.00
~PPM 6z 2.00 53561 1.46 134C1.47 34831.48 33 0.97 17 1.22 5.5 0.97 2 1.0C1~ 1.00
~PPM 8( 2.50 43171 1.1,~ ,10811.1c, 2800 1.19 33 0.97 I5 1:09 5.6 0.99 2 1.0C 1~ 1.00
~PPM i 9( 3.00 36301 1.0( 90£1.0£ 234£1.00 34 1.0( 14 1.00 5.671.00 2 1.00 lz 1.00

3ohot I 3; 1.00140311 0187 28880177. 56761.00 4 1.OC 360bl 1.00 0.970.98 4 1.00 ( 1.00
Sphot I 4~ 1.50140501 0.87 28960.78 56751.00 4 1.06 360bI 1.00 0.980.99 4 1.00 ( 1.00
3phot I 6~ 2.00148411 0.9F~320£0.86 56761.00 4 1.0C 360bI 1.00 0.980.99 4 1.00 ( ’1.00
3phot ’1 8( 2.50147801 0.9,c 31850.85 5676t.00 4 1.0(i 360bI 1.00 0.991.00 4 1.00 ( 1.00
~phot 9( 3.00161511 1.0C 37271.0G5677t.00 4 1.0C 360b1 1.00 0.991.00 4 1.00 ( 1.00

.~amrai4I 3", 1.00 16771 O.78 5530.68 1712.95 131 3.05 0.871 3.009.8753.00 47 1.00 39] 1.00
~amrai4I 46 1.50 17561 0.81 6290.77 1141.97 87 2.02 0.5812.006.582.00 47 1.00 39.~1.00
~amrai41 64 2.00 24321 1.13 909 1.12 86 1.48 65 1.51 0.431 1.46 4.941.50 47 1.00 39.i 1.00
]amrai4I 8( 2.50 32981 1.53 12591.54 70 1.21 52 1.21 o.351 1.21 3.951.20 47 1.00 39.11.00
~arnrai4I 96 3.00 21581 1.00 815 1.00 58 1.00 431 1.00 0.291 1.00 3.291.00 47 1.00393 1.00

Jroblem size. Values are per task.Table 2: Task scaling results with constant global



contains data that represent simulation quantities {n the
region of the simulation domain covered by the patch
region. Because AMR problems are ext remely sensitive
to their input, we study problems at different time steps.
Our initial problem is a sinusoidal shock wave traveling
clown a 3-D robe. The importani point for this study is
that the number of grid points remains relatively
constant even though the mesh is refined and
repartitioned as the shock wave travels down the tube.
For this problem, we consider timesteps 4 and 8.

4 Evaluation and Implications
We present our evaluation along the dimensions

described in Section 2. We try to preserve a realistic
execution environment for our applications by running
them with typical input parameters and at reasonable
levels of concurrency. For example, we use a minimum
of 32 tasks for our experiments.

First, Table 2 provides an overview of the effects
of scaling the number of processors while holding the
global problem size constant for each application. Next,
Table 3 illustrates the effects of scaling the local
problem size while holding the number of processors
constant for each application. For each metric, we
report the absolute numbers and normalized values in

a:=

o ~5

9o
o

a- .$

sPPM 64 1,0C 1926

sPPM 80 1.95 3695
sPPM 96 3,3E 6272
sPPM 112 5.31~ 9864
sPPM 128 8.0C 14565

26 .........

Sohol 5 1.0( 16906

Sohol 10 4.0( 25542

Sphot 1’5 9.0C 34552
Sohol 20 16.0( 40807
Sphol 25 25.0( 53187

the left and right subcolumn, respectively.
The instruction frequency measurements illustrate

similarities and differences for our choice of a variety
of scientific applications. On average, every third to
fifth instruction is a load reference, regardless of
problem and task scaling. This indicates a good
breakdown of large-grain parallelism by the
applications while the potential. for instruction
parallelism remains constant during scaling
experiments. The varying degree of floating-point
intensity during execution illustrates our choice of a
wide ~ariety of applications, ranging from three to one
floating point operation per load (sPPM, Sphot tO
Sweep3d) over only a fraction of floating ops per fixed
op (Samrai) to largely fixed-point intensive applications
(SMG2000).

The adaptive application Samrai als0 exhibits
changing ratios with a decrease in float ops relative to
loads for an increasing number of tasks. For this
application, dynamic changes over timesteps resulted in
proportional increases in computational overhead for
each task but the ratios between instruction, types
remained constant. This illustrates the Challenge of
increasing demand for adaptive methods, which should
be met by dynamically changing support to meet these

~4~ ~ ~ ~
1.0C3842 1.00 6722 1.00 4 1.00 4E-04
1,51 5659 1.47 9231 1.61 4 1.00 4E-04
2.0,~7451 1.94130912.29 4 1.004E-04
2A1 8768 2.28156442.73 4 1.004E-04
3.1,~ 116493.03200173.50 4 1.004E-04

Table 3: Problem size scaling results at 64 tasks. Values are per task.

.o_

¯ ~ - > o

< <: z <

8.8 1.00 5.5 1.00 2 1.00 14 1.00

13.51.53 5.5 1.00 2 1.00 14 1.00
19.32.19 5.5 1.00 2 1.00 14 1.00
26 2.95 5.5 1.00 2 1.00 14 1.00

33.83.84 5,5 1.00 2 1.00 14 1.00

1.00 0.981.00 4 1.00 1.0C
1.0010.981.00 4 1.00 OI1:0C
1.0010.981.00 4 1.00 OI1.0C
J,QOi0.981.00 4 1.00 011.0C
1.00! 0.981.00 4 1.00 1.0C

o

F

1.0C 493 1.00 1226 1.00 33 1.00

1.9-~ 924 1.87 2394 1.95 33 1.00
3.2~ 1584 3.21 4066 3.32 33 1.00
5.1~"2473 5.02 6441 5.25 33 1.00
7.5~ 3743 7.59 9429 7.69 33 1.00



resource requirements.
For an increasing number of tasks (Table 2), 

decrease in computational-work can be observed for
most applications (sPPM, Sphot, Sweep3D). SMG2000
only exhibits this decrease for the number of floating
point operations during task scaling. For Samrai, the
adaptive application, an increase in computation was
observed for the total number of instructions. Loads
fluctuated for timestep 4 and increased for timestep 8
with increasing tasks. Most notably, float ops
decreased, as in most other applications, which shows
the effectiveness of task parallelism for adaptive
methods. The increase in adaptation overhead drives
this increase in overall instructions. This causes more
loads on the adaptation phase while 16ads decrease for
the floating-point intensive calculations.

For an increase in problem size (Table 3), all
instruction categories increase at the same rate for all
tested applications, except for float ops in the case of
SMG2000. SMG2000 results in dramatic increases in
float ops for problem size scaling but the overall ratio to
other oPerations is still relatively insighificant. (we had
to limit, the problem sizes for our SMG2000
experiments because, in our existing experimental
framework, tracefiles sizes grew unmanageable.)

4.1 Point-to-Point (P2P) Communication

The majority of applications in our studyuse point-
to-point communication for sending the lion’s share of
their data. Ev~en though all of the applications use
similar MPI functionality, we see a diverse set of
characteristics with respect to the patterns these
applications exploit in their utilization of point-to-point
communication.

The average number of messages sent shows the
number of point-to-point messages sent by a task while
the average send volume quantifies the amount of data
sent by one task during the observed phase. For task
scaling in Table 2, the majority of the applications show
a relationship between processor scaling and the
number of messages sent. be number of messages
decreases sharply for Samrai as the number of
processors increases. In contrast, sPPM and Sweep3D
appear to be growing yet reaching an asymptotic limit
as the task count increases. The number of messages for
SMG2000 declines as the number of tasks increases,
but the trend is relatively slow. Sphot remains constant
at 4 messages per task. The send volume for sPPM,
Sweep3D, and Samrai decreases as processor count
grows; this indicates that the amount of data sent is tied
to the local problem size as revealed by the decrease in
floating point operations. SMG2000 send volume
increases slightly as the number of tasks expands:
Interestingly, we believe that SMG2000 is suffering

from the fact that it mtist send more data because the
decomposition becomes more fragmented at higher
numbers of processors, requiring additional
communication to converge to a solution [12], even
though the amount of local work decreases. Not
surprisingly, Sphot has a constant send volume.

The average’ number of distinct destinations
approximates the number of distinct recipients of point-
to-point sends for a task. Sphot tasks always send all
data to a single master task (0.98). Predictably, sPPM
has an average number of distinct destinations that
"approach six for the 3-D mesh structure of sPPM’s data
decomposition. Likewise, Sweep3D approaches four
due to its 2-D mesh decomposition. On the other¯hand,
the number of destinations for a SMG2000 task appears
to grow in proportion with the task count. The average
number of destinations for a Samraj task decreases as
the task count increases. More important are the
differences between timestep 4 and timestep 8. At
timestep 8, Samrai has two to three times as many
destinations as at timestep 4 on average.

Table 3 shows the impact on changing problem
sizes on each application. Either the number of
messages or the message volume (or even both of
them), depending on the algorithms, increases at the
same growth rate as the input. For example, as the input
size increases by a factor of 8 (from 64! to 1283 for
sPPM), the send ;¢olume increases at approximately
one-half the rate (factor 3.84) while the number 
messages stays constant. For SMG2000 and Sweep3D,
both volume and number of messages increase with the
input, h contrast, Sphot exhibits constant overheads
independent of the problem size. In general, the
referenced end-points remain constant (except for
insignificant variations for SMG2000) with a fixed
number of tasks.

In summary, these tables show that varying the
number of processors or the problem size alters the size
of messages sent by each application. As Figure 1 (with
the corresponding numerical values in Table 4)
illustrates, there is a wide range of message sizes for
these applications when running at 64 tasks, sPPM and
Sweep3D have large messages that reflect their data
decomposition structure while SMG2000 and Samrai
have smaller messages. Traditionally, communication
overhead within the communication library dominates
performance for smaller messages, Our results show
that with this trend toward smaller messages,
communication libraries should improve support for
these messages. For example, small messages can
capitalize on eager protocols, and suffer when buffer
management algorithms use ill-suited allocation
strategies.
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Figure 1" Payload size distribution for P2P messages (64 tasks).

r/l

4 1.7 1.2 18.0 0.0 0.0 0.0
8 1.7 1.2 31.4 0.0 0.0 1.3

16 1.7 1.2 50.8 0.0 0.0 1.3
32 5.8 4.3 67.6 0.0 0.0 60.5
64 6.5 4.6 77.3 0.0 0.0 80.2
128 7.5 6.3 81.9 0.0 0.0 100.0
256 12.5 10.4 85,7 0.0 0.0 100.0
512 18.1] 15.9 95.6 0.0 0.0 100.0

1024 24.1121.3 99.8 0.0 0.0 100.0
2048 41.5141.0 100.0 0.0 0.0 t00.0
4096 75.8 75.7 100.0 0.0 0.0 100.0

¯ 8192 94.8 97.7 100.0 0.0 0.0 100.0
16384 99.5~99.7 100.0 0.0 100.0100.0
32768100.0I00.0 100.0 O.C100,0100.0
65536100.0100.0100.0 O.C100.0100.0

131072100.0IO0.O100.0 0.{3100.0100.0
262144100.0100.0100.0 66.~100.0100.0
524288100.0100.0100.0IO0.f]100.0100.0

Table 4: Cumulative distribution of payload
sizes for P2P messages (64 tasks).
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Figure 2: Payload size distribution for collective communication
(64 tasks).

4.2 Collective Communication

All of our applications use collective operations.
Many applications that simulate physical systems must
make several calculations across the domain at every
timestep to preserve the integrity of the physical system
and to determine the length of the next timestep.
Although these calculations are global, the payload size
is typically only a few double precision numbers.

In this regard, we found that virtually all of the
collective operations have very small payloads that
change neither with the number of tasks nor with the
problem size. As tigure 2 illustrates, most collective
operations send data payloads of less than 256 bytes.
One exception is Sweep3D, which it is the only outlier

_ ~ ~
ex_ ~ rY3 ~ 0’3 rd3

0 0.0 0.0 9.1 0.0 20.0 100.0
2 0.0 0.0 9.1 0.0 20.0 100.0
4 0.0 0.0 15.~ 50.0 60.0 100.0
8 10.6 45.5 94.3 50.0 80.0 100.0

16 61.7 45.5 100.0 100.0 80.0 100.0
32 74.5 45.5 100.0 100.0 80.0 100.0
64 93.6 72.7 lO0.Ol 100.0 80.0 100.0
128 100.0 t00.0 100.0 100.0 80.0 100.0
256 t00.0 100.0 100.0 100.0 100.0 100.0

Table 5: Cumulative distribution of payload
sizes for collective (64 tasks).

in Figure 2 (with the corresponding numerical values in
Table 5): it has one broadcast operation whose payload
size scales linearly with the number of tasks.

All of the communicator groups were the width of
the MPI_COMM_WORLD. Although several of the
applicatiohs did create new communicators, they did
not partition the space of the original communicator.
The collective operations that perform an operation on
the data, such as a reduction, were limited to MAX and
SUM.

New architectures with tens of thousands or even
millions of processors [ 1 ] must have special support
for these types of global operations, whether this
support draws on either hardware assistance or new



algorithms for collectives, such as MPl_AIIreduce. Our
evidence demonstrates that these applications rely on a
very limited region of the design space: simple
reduction operators and very small data payloads.
Improved performance of collectives may also
encourage their use in applications.

4.3 Computation

To correlate the communication activity with
computation, we counted several types of events
between significant MPI call sites. As Tables 2 and 3
illustrate, the number of floating point operations is
closely tied to the problem size. The execution
overhead (both instructions and floating-point only)
decreases at the same rate that the number of tasks
increases, which indicates good scaling at the local task
level. Samrai presents an exception as it exhibits
increased integer overhead for more tasks (Table 2) that
results from additional overhead of the mesh refinement
between time ste )s.

m

r/3

0 89.2
2 89.3
4 89.3
8 89.3

16 89.5
32 90.5
64 95.5
128 96.2
256 97.2
512 97.8

1024 98.2
2048 98.7
4096 98.9
8192 99.1

16384 99.2
32768 99.3
65536 99.4;

131072 99.7
262144 99.71
524288 99.1

1048576 99.~
2097152 99.~
4194304 99£
8388608 99£

16777216100.13
33554432 100.13
67108864 100.13
1.34E+08100.13
2.68E+08 100.13
5.37E+08 100.13
1.07E+09 100.13

"~ ~ ~ " S
~3 r,/3 r,~ r~ r;3

93.5 87.2 94.0 38.3 85.2
93.5 87.5 94.0 38.3 85.7
93.5 90.7 94.0 38.6 85.2
93.5 93.1 94.0 38.6 85.2
93.9 95.7 94.0 38.6 85.2
94.7 98.1 94.8 38.6 92.1
95.8 99.2 95.5 38.6 92.1
96.4 99.7 95.5 38.6 92.1
97.2 99.8 95.5 38.6 92.1
97.7 99.9 95.5 38.6 92.6
98. 100.0 95.5 44.6 92.6
98.5 100.0 95.5 44.6 92.6
98.9 100.0 95.5 62.1 92.6
99.1 100.0 95.5 69.9 92.6
99.3 100.0 95.5 71.3 92.6
99.3 100.0 95.5 71.3 92.6
99.3 100.0 95.5 71.3 92.6
99.6 100.0 95.5 71.3 93.13
99.7 100.0 95.5 71.3 93.13
99.7 100.0 95.5 71.6 93.(1
99.7 100.0 95.5 78.9 93.13
99.8 100.0 95.5 78.9 93.13
99.8 100.0 95.5 100.0 93.13
99.9 100.0 95.5 100.0 ~ 93.13

100.0 100.0 95.5 100.0 93.13
100.0 100.0 95.5 100.0 93.13
100.0 100.0 95.5 100.0 93.13
100.0 100.0 95.5 100.0 93.0
100.0 100.0 95.5 100.0 93.0
100.0 100.0 100.0 100.0 93.0
I00.0 100.0 100.0 100.0 100.0

Table 6:Cumulative distribution of blocks of floating point
operations between communication points (64 tasks).

In an effort to determine the distribution of

computation relative to communication activity, we
analyzed the number of floating point operations
performed between communication operations as Table
6 depicts. Many of the applications execute few
floating-point operations, if any, between two
communication operations. This situation often appears
when multiple communication operations occur in a
series, usually following a computational time step.

Both sPPM and Sphot show that 5-8% of their
computational blocks are very large, containing over
536M floating-point operations. In contrast, Samrai and
SMG2000 perform modest amounts of floating point
computation between communication operations.
Compared to these other applications, Sweep3D
executes over 50% of its floating-point operations in
multiple blocks of 1024 or greater.

These results indicate that the dynamic and implicit
applications tend to communicate more frequently
relative to its number of floating point operations. That
is, Samrai and SMG2000 do no more than 8M and 1024
floating-point operations, respectively, between
significant communication operations.

4.4 Observations

First, we found contemporary, large-scale scientific
applications have a wide range of characteristics, which
range from small, frequent messages to large,
infrequent messages. As similar findings were reported
for previous studies of scientific applications [9], it is
remarkable that our results not only strengthen them but
also provide novel characteristics, as discussed earlier.

Second, our experiments revealed that collective
communication operations are used by all the
applications. Further, the payload size of these
collective operations is very small and this size remains
practically invariant with respect to the problem size or
the number of tasks. Our results show that AIIreduce
and Bcast have very small payloads. This result clearly
shows that all of the applications in our study could
benefit from improvements in the performance of
collective communications, whether those
improvements come in hardware or software.
Historically, collective communication often suffered
from high performance overhead due to a lack of
scalability, which often forced application programmers
to hand-code, collectives with a series of point-to-point
messages. Once these legacy communication patterns
are transformed into collectives, the importance of
collectives is most likely to grow.

Third, we also note a substantial difference in
algorithms in terms of their increasing message and
computation activities over consecutive time steps:
implicit versus explicit methods, and uniform mesh
versus adaptive mesh. Sweep3D and sPPM use explicit
methods and uniform meshes, which lead to easily
predicted communication patterns. On the other hand,



Samrai’s adaptive mesh refinement canmake both the
communication patterns and computational load
difficult to predict as Table 2 shows. Likewise, the
implicit techniques used in SMG2000 have
considerably different communication requirements
than the explicit techniques.

5 Related Work
Characterization of applications and architectures

is an ongoing and important process as evidenced by
the considerable amount of previous work [3, 5, 7, 9,
15, 24-26]. With the broad range of design parameters
for today’s computer systems and the fact that both
applications and architectures evolve, these quantitative
evaluations help focus attention on important design
points.

In the past, synthetic kernel benchmarks were often
used to evaluate and compare architectures, e.g.,using
Linpack on parallel machines [2]. The NAS parallel
benchmarks [3] consist of small kernels and
applications; they have been used by a large number of
groups for ’performance evaluation of architectures.
These benchmarks have been adapted to a wide range
of platforms and programming models [5, 6]. The
SPLASH-2 suite of parallel applications is another
example of widely used benchmarks [25], which are
targeted toward centralized and. distributed shared2

address-space multiprocessors but does not capture the
challenges ofparallelism in cluster computing. Worley ̄
[26] presents a detailed comparison¯ of a climate
modeling application that uses explicit communication
on two different platforms. Prior work has also focuses
on the differences between commercial and scientific
workloads [8; [7]. Our choice of scientific applications
for benchmarks specifically Considers appropriate
programming paradigms for clusters with an emphasis
on message passing, large scientific codes and a
diversity in application characteristics as well as
domains.

The two most closely related papers to the work
that we present here are work by Wong and associates
[24].and by Cypher and colleagues [9]. Wong and
associates [24] studied the effectc of different
architectural parameters on the NAS parallel
benchmarks using a methodology similar to ours. They
captured information about the message and instruction
behaviors of these much smaller benchmarks to
understand communicationand simulate caching
behavior on different architectures. Cypher and
colleagues [9] quantitatively ~haracterize the behavior
of numerous scientific applications that use explicit
communication. - In particular, they report on floating-
point operations, memory size, 1/O, and communication
in order to help design well-balanced architectures.
More importantly, they demonstrate the effects of

scaling problem size and the number ot" processors for
these application characteristics. Our results strengthen
these previous results in showing their validity for
larger scientific applications on contemporary clusters
and indicate new trends in application behavior well
beyond previous work.

6 Conclusions
In this paper, we evaluated explicit communication

characteristics across a set of diverse, large-scale
scientific applications, primarily from the perspective
of message passing via MPI and independent of the
target architecture. By focusing on the MPI activity ’of
these applications along with . coarse-grain
measurements of the computation, we separate the
application behavior from the architecture behavior and
present the inherent communication signatures of these
diverse applications.

Our results do not only strengthen findings of
studies with smaller applications and reinforce
differences in application behavior. We also uncovered
striking similarities, such as the trend of small payload
sizes for collective operations, which are significant due
to the increasing accePtance of more efficient
implementation of collectives. Collectives with
competitive scaling capabilities should ensure that

collectives become more widely used. We also
highlight novel applications parting with regimented,
static communication patterns in favor of dynamically
evolving patterns as evidenced by our experiments on
applications that use implicit linear solvers and adaptive
mesh refinement. Clearly, these investigations will
continue to be important as new applications,
architectures, and software becomes available. "

Overall, our study contributes a better
understanding of the demands for current and emerging
paradigms of scientific computing in terms of their
computation and communication demands.
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