J. Symbolic Computation (1993) 15, 705-744

On the Mechanical Derivation of Loop Invariants

RITU CHADHA! AND DAVID A. PLAISTED?}

t Bell Communications Research, Morristoun NJ, U.S.A.
t Department of Computer Science, University of North Carolina at Chapel Hill, U.S.A.

(Received 18 May 1992)

We describe an iterative algorithm for mechanically deriving loop invariants for the pur-
pose of proving the partial correctness of programs. The algorithm is based on resolution
and a novel unskolemization technique for deriving logical consequences of first-order for-
mulas. Our method is complete in the sense that if a loop invariant exists for a loop in a
given first-order language relative to a given finite set of first-order axioms, then the a}-
gorithm produces a loop invariant for that loop which can be used for proving the partial
correctness of the program. Existing techniques in the literature are not complete.

1. Introduction

A loop invariant of a loop is a predicate that is true at the beginning of every iteration of
the loop. To prove that a program with given input and output specifications is partially
correct, loop invariants have to be supplied for every loop in the program. This enables
us to partition the program into a finite number of execution paths whose extremities
are annotated with predicates that are true at that point in the program. Verification
conditions can then be written for each path (Manna, 1974). These verification conditions
are formulated so that a proof of the validity of a verification condition shows that if the
predicate at the beginning of the path is true, then after executing the statements along
the path, the predicate at the end of the path will be true. If such verification conditions
can be proved for all program paths, then, by a simple induction argument, the program
is partially correct.

The objective of this paper is to describe a method for mechanically deriving loop
invariants for a loop in a flowchart program for the purpose of proving the partial cor-
rectness of the program. Not all loop invariants will satisfy this purpose; e.g. the predicate
“true” is a loop invariant for any loop, but will not always serve the purpose of proving
partial correctness. Therefore, whenever the term “loop invariant” is used in this paper,
it refers to a loop invariant that can be used to prove the partial correctness of the
program.

No complete method can exist for automatically deriving loop invariants for all possi-
ble loops, since by Cook’s completeness result (Cook, 1978), there exist loops for which
no suitable loop invariants exist, unless the language being used is “expressive” in some
sense (see (Loeckx and Sieber, 1987) for a detailed coverage of this topic). Any calculus
based on attaching first-order formulas to arcs of flowchart programs may be incomplete

0747-7171/93/5-6705 + 40 $08.00/0 © 1993 Academic Press Limited

706 R. Chadha and D. A. Plaisted

because the set of possible values on an arc of the flowchart may not be first-order defin-
able (Wand, 1978). Most of the attempts made at developing methods for automatically
generating loop invariants have been heuristic in nature, so none of these methods have
been complete in any sense. In contrast, we make the following completeness claim about
our method: given any loop, if a loop invariant exists for that loop in a given first-order
language relative to a given finite set of first-order axioms, then our method produces a
loop invariant for that loop which can be used for proving the partial correctness of the
program. Of course, not all theories of interest can be expressed by a finite collection of
first-order axioms.

In what follows, we first describe past work in the area of program verification. We
then describe a method for deriving logical consequences of first-order formulas using res-
olution and unskolemization, analyze some of the properties of this method, and explain
how to apply it for mechanically generating loop invariants. The method for deriving
loop invariants is intimately tied in with the technique for derivation of logical conse-
quences; thus for a complete presentation of the method, it is necessary to describe the
technique for generation of logical consequences in some detail. This method is applicable
when there exists an axiomatization of the model of the data structures and primitive
operations of the language (see Section 5).

2. Past work

The inductive-assertion method for program verification, developed by Floyd in 1967
(Floyd, 1967), is now the basis for a large number of automated program verification
systems. This method requires that the user annotate the loops of the program with
inductive assertions (also called loop invariants) that are invariants of the loops. The
automatic derivation of loop invariants is of great interest and of potentially great use.

Existing program verification systems can be divided, for our purposes, into two cat-
egories: those in which the user has to supply loop invariants and those in which the
program verifier provides assistance in deriving loop invariants.

In his pioneer system, King (King, 1969) describes the program verifier of his Ph.D.
dissertation. Loop invariants have to be provided by the programmer. The formal analysis
of the program produces verification conditions that must be proved to be theorems over
integers. These theorems are proved by formula simplification routines and specialized
techniques for integer expressions. Deutsch describes the interactive program verifier
PIVOT (Programmer’s Interactive Verification and Organizational Tool) in (Deutsch,
1973). PIVOT is based on Floyd’s method. Another program verification system in which
the user provides loop invariants is described by Cooper (Cooper, 1971). Cooper states
that iterating a loop a few times soon gives the programmer a good idea of what a suitable
invariant might be, but he does not give a program to do this automatically. Good et
al. (Good, London and Bledsoe, 1975) report the development of an interactive program
verification system for verifying Pascal programs. In their system, the user is primarily
responsible for correctness proofs for programs. All loop invariants are provided by the
programmer. Good also describes the Gypsy verification environment, a large, interactive
computer program that supports the construction of formal, mathematical proofs about
the behavior of software systems (Good, 1985).

Some heuristic methods for mechanically generating loop invariants have been devel-
oped. German and Wegbreit (German and Wegbreit, 1975) describe a system that pro-
vides assistance to the user in synthesizing them. In (Wegbreit, 1973), Wegbreit describes

Derivation of Loop Invariants 707

heuristic methods for mechanically deriving loop invariants from their boundary condi-
tions and for mechanically completing partially specified loop invariants. The method
uses the output predicate to derive suitable loop invariants by dragging the output pred-
icate backwards through the program and modifying it suitably when passing through
the statements of the program. Another alternative he gives is to take a programmer-
supplied loop invariant, that contains the “essential idea” of a loop and mechanically fill
in the details. Wegbreit describes some domain-dependent and some domain-independent
heuristics for deriving loop invariants. He starts by using the weakest possible loop in-
variant for a particular loop that will satisfy one of the verification conditions and tries
to strengthen it using a number of heuristics. The efforts of Katz and Manna (Katz and
Manna, 1973) are also directed towards automatically deriving loop invariants. They
describe two general approaches. The first is a top-down approach, similar to that of
(Wegbreit, 1973). The second is a bottom-up approach, in which the loop invariant is
generated directly from the statements in the loop, finding general expressions for the
values of the program variables after n loop iterations and then eliminating n from these
expressions. In (Seiichiro and Yamaguchi, 1989), a synthesizer of loop invariants is de-
scribed that provides assistance to the user in discovering loop invariants. The system
makes use of a difference-equation solver, symbolic execution, and an expression general-
izer. Others have done research on methods for antomatically deriving loop invariants for
specific types of programs. Caplain (Caplain, 1975) describes a technique applicable to
numerical programs, which is based on expressing the transformation of the n variables
in a loop by an n x n matrix.

The iterative algorithm that we describe may appear similar to the abstract imple-
mentation approach (Cousot and Cousot, 1977), (Wegbreit, 1975); however, there are
significant differences. Wegbreit (Wegbreit, 1975) gives a method for mechanically deriv-
ing certain classes of predicates for loops by symbolic execution of the program. Provided
the class of predicates obeys certain constraints, symbolic execution is guaranteed to ter-
minate. He deals with weak interpretations, i.e. models chosen to be appropriate for
specific optimizations. This approach is valid but fundamentally incomplete. However,
because the set of predicates useful to an optimizing compiler is generally fixed for that
compiler, this incompleteness may be acceptable for the purpose of deriving predicates
relevant for optimization purposes. Our approach is complete within the framework of
first-order logic; a proof of this is provided in the appendix.

3. Derivation of logical consequences

3.1. RELATION TO PROGRAM VERIFICATION

The problem of deriving a loop invariant for a while loop is basically that of expressing
an infinite disjunction of formulas in a closed form. To see this, suppose W is a loop
invariant for a loop. Let A; be the formula that holds before iteration i of the loop. Then
we have:

(Vi:0<i: Aj => W)

A loop invariant at this point would be

W =V, Ai.

Thus we have to find a way of expressing V:’;l A; in a finite form. We know that

Ai=>W, A, = W, A3 => W, ..., and so on, i.e. W is a logical consequence of each A;,

708 R. Chadha and D. A. Plaisted

for all ¢, 1 < 7. Thus we need to develop a method for finding logical consequences of
first-order formulas. We now describe the development of such a method. Suppose we
want to find a certain, unknown, consequence W of a first-order formula H. It may not
be possible to derive W from H by resolution (Robinson, 1965) without using tautologies
and unskolemization, as will be shown in Section 3.2.1. Since the use of tautologies is
undesirable (due to the enormous increase in search space that it creates), we will not
attempt to derive W from H, but instead will try to derive a formula F' with the property
that

H=>F= W

However, if this is the only constraint on F, then why not take FF = H? One obvious
reason is that H may be infinite. Also, we want F to be as “close” as possible to W,
in a certain sense. To define the concept of “closeness”, we will define a relation “more
general than” on first-order formulas and will require F' to be “more general than” W.
Relation “more general than” is defined in such a way that the number of formulas F'
that satisfy a given syntactic condition and are more general than a given formula W
is finite up to variants; also, a formula F' that is more general than W is structurally
“similar” to W. Thus, we can only derive a finite number of formulas F' satisfying both
the following conditions:

()H=>F=>W

(ii) F is more general than W.

Of course, if H is more general than W, then we could have F = H. We will show that
this method is complete, i.e. for any two formulas H and W, it is possible to derive F
from H by our method such that (i) and (ii) above hold.

In the next section, we show why certain logical consequences of first-order formulas
cannot be derived without using tautologies or unskolemization and describe an un-
skolemization algorithm. The algorithm is analyzed in Section 3.3, and some properties
of formulas derived using this algorithm are given.

3.2. THE UNSKOLEMIZATION PROCESS
3.2.1. PRELIMINARIES

Unskolemization has been defined as the process of eliminating Skolem functions from
a formula without quantifiers, replacing them with new existentially quantified variables,
and transforming the resulting formula into a closed formula with quantifiers (for details
about skolemization, see (Chang and Lee, 1973) or (Loveland, 1978)). McCune (McCune,
1988) presents an algorithm to solve the following problem: given a set S of clauses and
a set F of constant and function symbols that occur in the clauses of S, obtain a fully
quantified (closed) formula S’ from S by replacing expressions starting with symbols in
F with existentially quantified variables. S’ is unsatisfiable if and only if S is unsatisfi-
able. McCune’s algorithm is sound but not complete. Cox and Pietrzykowski (Cox and
Pietrzykowski, 1984) present an algorithm for unskolemization, but their algorithm is
applicable only to literals.

We expand the meaning of unskolemization slightly. In our definition, ordinary function
applications can also be “unskolemized” by treating them as if they were Skolem func-
tions. Thus, a function application may be replaced by an existentially quantified vari able
during the unskolemization process. To illustrate, suppose we want to unskolemize the

Derivation of Loop Invariants 709

formula Vz(P(f(z)) vV Q(g(a), z)) where f and a are (non-Skolem) function symbols, and
suppose we want to treat f and a as if they were Skolem functions. The resulting formula
would be 3zVzIy(P(y) V Q(g(2),z)). Note that skolemizing 3zVzIy(P(y) V Q(g(2), z))
yields the original formula (up to names of Skolem functions). In practice, the situa-
tion may be more complicated, since the formula being unskolemized may not be the
skolemized form of any formula. Our algorithm shows how to cope with such situations.
Also, unskolemization as presented here does not necessarily preserve unsatisfiability. For
example, the formula 3z(succ(z) = 0) is false under the usual interpretation of “succ”
as the successor function over natural numbers; however, if we unskolemize this function
we get the formula 3y(y = 0) which is true. Henceforth, the term “function symbol” will
denote function symbols and their applications.

We motivate the development of the unskolemization algorithm by the following ex-
ample. Suppose we want to derive an unknown logical consequence B of A. Denote the
Skolem form of a formula F by “Sk(F)”. Since A = B, A A =B is unsatisfiable, so
Sk(A A —B) is unsatisfiable (since skolemization preserves unsatisfiability), i.e. Sk(A)A
Sk(—B) is unsatisfiable. Therefore by the completeness of resolution, we can derive the
empty clause from Sk(A)A Sk(—~B). Now, B is unknown, and we want to derive it from
Sk(A). It may not be possible to derive B from Sk(A) without using tautologies or
unskolemization, as is demonstrated by the following two examples:

(i) Suppose A = P and B =PV QV R. Clearly A = B. But the only way to derive
B from A by resolution is by resolving A with the tautology - PVPVQ@QVR.

(ii) Suppose A = P(a) and B = JzP(z). Then B (or even Sk(B)) cannot be derived
from A by resolution. Obtaining B from A requires unskolemizing A by replacing “a” by
an existentially quantified variable. Unskolemizing P(a) results in 3z P(z). In practice,
there may be many function symbols in A, some of which may have to be replaced by
existential quantifiers and some of which should not be thus replaced. This explains why
our unskolemization algorithm will be nondeterministic.

In conclusion, B can be derived by resolution from Sk(A) (by the completeness of the
resolution principle), but such a derivation can entail the use of tautologies and unskolem-
ization. Using tautologies would increase the size of the search space tremendously, since
there are an infinite number of tautologies; thus the use of tautologies is best avoided.
Also, it is unclear how to handle unskolemization without a formal algorithm for doing
so. This is best illustrated by an example: Suppose A = VaVzP(z, f(a,z),2,9(z)) and
B = Vz3yV¥z3wP(z,y, z,w). Clearly A = B. Obtaining B from A requires replacing
the terms f(a,z) and g(z) in A by existentially quantified variables, say z; and z;. The
question remains where to place the existential quantifiers dz; and 32; in the quantifier
string for A. Since f(a,z) was replaced by z;, 3z; should come after Vz (since a is a
ground term, its presence as an argument of f is inconsequential); similarly, since g(z)
was replaced by z;, Jz; should come after Vz. There are thus several choices for the
unskolemized version of A, one of which is Vz3z,V232z, P(z, 21, 2, 21), which corresponds
to B in this case.

In order to address the above issues formally, we present an unskolemization algorithm
U with the following specifications:

INPUT: a first-order formula H
OUTPUT: set £ of formulas such that for any logical consequence W of H, algorithm U
can produce a formula F in £ such that

()H=>F=>W

710 R. Chadha and D. A. Plaisted

(i) F is more general than W
where relation “more general than” is defined later with the property that {F l F is
more general than W} is finite up to variants under certain syntactic constraints.

The algorithm U unskolemizes a set of clauses D derived by resolution from Sk(H) to
give a set of formulas £. Briefly, the objective of unskolemizing D is to replace function
symbols of D that do not occur in W by existentially quantified variables. That is, if for
some literal L in D, an argument d of L has a function symbol that does not appear in W,
then that function symbol of d is unskolemized during the unskolemization of D, yielding
a set L of new formulas. Thus any F € £ will contain a new existentially quantified
variable in place of d. Since W is unknown, this procedure will have to be carried out
nondeterministically. This process will make the unskolemized formula “more general
than” W (this term will be defined later).

NoTEks. 1. The following algorithm makes use of the guarded command for conditional
statements (Gries, 1981). Briefly, the general form of a conditional statement is

if B1 g Sl

[} B2 — S2

I] B, — 5,

fi
where n > 0 and each B; — S; is a guarded command. Each S; can be any statement.
The command is executed as follows. First, if any guard B; is not well-defined in the state
in which execution begins, abortion occurs. Second, if none of the guards is true, then
abortion occurs; and finally, if at least one guard is true, then one guarded command
B; — S; with true guard B; is chosen and S; executed. Note that if more than one guard is
true, then one of the guarded commands B; — S; with true guard B; is chosen arbitrarily
and S; is executed. Thus execution of such a statement can be nondeterministic. In steps
3 and 4 of the following algorithm, two of the guards are identical. This serves as a
convenient way of representing nondeterminism: if the two identical guards are true in
one of the steps, then one of the actions specified is performed and this action is picked
arbitrarily from the two available actions.

2. The following notation is used:

(i) L = SIGN(L) P(ai1,a2,...,an) is a literal whose sign (negated or unnegated) is
represented by “SIGN(L)”; e.g. for L=Q(a), SIGN(L) is the null string, and for L=
—Q(a), SIGN(L) is —~ .

(ii) Let X be a term. FUNC(X) is defined to be the function symbol of X if X is not a
variable, and is defined to be X otherwise. For example, FUNC(f(z,y)) = f; FUNC(a)
= a; FUNC{z) = 2, where z is a variable.

(iii) In what follows, we refer to first-order formulas simply as formulas, when this
does not cause any ambiguity; also, we assume that all the quantifiers of a formula
appear at the beginning of the formula. This is not restrictive because there are well-
known procedures for converting a formula with embedded quantifiers into one with all
quantifiers at the beginning (Chang and Lee, 1973).

Derivation of Loop Invariants Tt

3.2.2. THE UNSKOLEMIZATION ALGORITHM

ALGORITHM U

Step 1. Skolemize input formula H. Let SK be the set of all Skolem symbols in Sk(H).
Derive a set D of clauses by resolution from Sk(H).

Comment : This step is nondeterministic; there could be more than one such set D.
Also, D can contain resolvents of Sk(H) as well as clauses from Sk(H).

Step 2. Make i) copies of every clause Cj of D, where i) is some integer (chosen non-
deterministically). Call the resulting bag of clauses M_CLAUSES.

Comment : We may need multiple copies of clauses because multiple instances of a
clause may be needed to derive the empty clause from Sk(H A -=W). It is possible to
bound #; by the number of resolutions performed when deriving the empty clause from
Sk(H A—~W). The reason for this is demonstrated in the proof of Theorem 3.1. In practice,
for each k, we can try setting i; to 1, then 2, then 3, and so on, and eventually i; will
become large enough.

Step 3. For every literal L in every clause of M_CLAUSES, process the arguments of
L as follows. Suppose L=SIGN(L) P(d,,ds,...,d,). For each i, 1 < ¢ < s, perform the
following:
if FUNC(d;) € SK —
replace d; by X « d;, for some fresh variable X
[] FUNC(d;) € SK A d; is not a variable —
replace d; by X « d;, for some fresh variable X
[FUNC(d;) ¢ SK A d; is not a variable — skip
[] d; is a variable — skip
fi
Call the resulting set of processed clauses MARK.

Comment : If FUNC(d;) ¢ SK and d; is not a variable, then d; is either replaced by X
«— d; or left unchanged. This choice is made nondeterministically. The replacement of d;
by X « d; is just a way of marking d; with a variable name. This will be changed later.
Any argument of the form “X — d;” is called a marked argument.

Step 4. For every pair of marked arguments “X — a”, “Y — ” in MARK do
if a, § are unifiable — unify all occurrences of X and Y
[] true — skip
fi

Comment: In the next step, C is the set of constraints on the ordering of new existential
quantifiers relative to universal quantifiers that will be introduced in Step 6. The presence
of an ordered pair (y, z) in C signifies that “Jz” must come after “Vy” in the quantifier
string of the unskolemized formula.

Step 5. Let set C be initially empty, and let Q be an initially empty quantifier string. Let
FREE be the set of all free variables in MARK (this does not include marked arguments).
For every marked argument “z «— &” do
{Collect all marked arguments with the same variable on the left-hand side of
the “—” sign. Suppose these are
T —Qa1,T — Q2,..., T — Qpn.

Let {y1,¥2,...,y-} be the set of all variables occurring in a1, aj,...,an. Then

712 R. Chadha and D. A. Plaisted

replace “z — a;”, for 1 < i < n, everywhere by a new variable z (say) and add
the r ordered pairs (y;, 2) to C. If r = 0, place “3z” at the head of the partially
completed quantifier string Q.

}
Step 6. (i) For every y in FREE, define DEP(y) = {z|(y, z) €C}. This is the set of all
variables z such that “Jz” must come after “Vy”.
Define partial order PO on set FREE by:
(z,y) € PO iff DEP(z) D DEP(y)
(ii) Extend partial order PO to a linear order on FREE in all possible ways, yielding a
set LIN of linear orders.
(iif) Let QUANT be an initially empty set of quantifier strings. For every linear order O
in LIN do
{P:=Q;
add universal quantifiers for every variable in FREE to P in the order prescribed
by O (i.e. if z < y in O, then Vz precedes Vy in P). These quantifiers come after
any existential quantifiers already present in Q;

QUANT := QUANT U {P}

This yields a set QUANT of quantifier strings.

(iv) Let set £ be initially empty. For every Q in QUANT do
{Insert an existential quantifier for every z such that (y,z) € C (for some y)
as far forward in Q as possible, subject to the constraint that “3z” comes after
“Yy” for every y such that (y,2) € C;
Rewrite MARK in conjunctive normal form by rewriting the set of clauses MARK
as a conjunction of all its clauses and a clause as the disjunction of its literals;
Add the formula “Q MARK” to L.
} 0

EXAMPLE 1. Let
H = VoV NVt (Q(y) V L, 3, 1) A=Qa(8) A L(9(2), a,8) A (R(z, g())V ~P(z, 9(£))) A
(=R(w, 2) V=D(w, 2))),

W = Vs3uVu(L(b, u,s) A L(u, a,s) A (—=P(v,u) V ~D(v,u) V M(a))).

It is easy to see that H = W. We show how algorithm U derives a formula F' from H
such that H = F = W. We show later that F' is more general than W. Let us reiterate
that formula W is not normally available when performing the unskolemization. The
choices made here based on properties of W are made nondeterministically by the algo-
rithm. We are using W t0 show that there exist choices that will result in the derivation
of a formula F' with the desired properties. Now,

—W = 3sVudv((~L(b, u,s) V-L(u,a,s)V P(v,u)) A(~L(b,u,s) V-L(u,a,s)V D(v,u)) A
(=L(b,u,s) VvV -L(u,a,s) V-M(a)))

Sk(-W) = {{-L(b,u,c),~L(u,a,c), P(f(u),u)} , {~L(b,u,c),-L(u,a,c), D(f(u),u)},
{~L(b,u,c), =L(u, a, ¢), "M (a)}}.

In Sk(~-W), f and c are Skolem functions that replace the existentially quantified vari-

ables v and s of =W, respectively. The five clauses of Sk(H) and the three clauses of

Sk(~W) are listed below, in that order. Variables in Sk(—=W) have been renamed so that

no two clauses in Sk(—~W) share the same variables.

1. {Q(y), L(b) yat)}

Derivation of Loop Invariants 713

-A{~Q(s(¥))}

. {R(.’B,g(t)),—!P(I,g(t))}

. {~R(w, z),~D(w, 2)}

. {=L(b, u,c), = L(u, a, c), P(f(u),u)}

. A{~L(b,w, ¢),~L(w, a, c), D(f(w), w)}
. {=L(bd, z,¢), 7 L(z,a,c),~"M(a)}

O O O N

A resolution proof of the empty clause from Sk(H)A Sk(-W) is given below:

9. {L(b,g(2),1)} from clauses 1 and 2
10. {~P(z, ¢(t)), ~D(z, 9(t))} from clauses 4 and 5
11. {-L(g(¢), a,), D(f(g(c)), g(c))} from clauses 9 and 7
12. {~L(g(c), a, c), P(f(g(c)), 9(c))} from clauses 9 and 6
13. {D(f(g(c)), g(c))} from clauses 3 and 11
14. {P(f(g(c)),g(c))} from clauses 3 and 12
16. {=P(f(g(c)), 9(c))} from clauses 10 and 13
16 from clauses 14 and 15.

This sequence of resolutions is depicted pictorially in Figure 1. The clauses in the
figure are numbered as above. Resolutions among clauses of Sk(H) were performed first
and then some of these clauses were used during the remainder of the resolution process.
We define set DCSk(H) to consist of the three clauses {{L(b,g(t),%)}, {L(9(t),a,t)},
{~P(z,g(t)),~D(z, g(t))}}, which were obtained from Sk(H) and were used to derive
the empty clause from Sk(H) A Sk(=W). These clauses are enclosed in boxes in Figure
1. Note that L(g(t), a,t) belongs to Sk(H), and the other two clauses were derived by
resolution from Sk(H).

We now perform algorithm U.
INPUT : Formula H given above.

Step 1: We define set D to consist of the three clauses below, as explained above.

1. {L(b, g(2), 1)}
2. {L(g(t), a,)}
3. {~P(z,9(2)),~D(z,9(2))}.

Step 2: Since the clauses {L(b, g(t),t)} and {L(g(t), a,t)} are both used twice during the
resolution in Figure 1, we make two copies each of these clauses, and we make one copy
of the clause {—P(z, g(t)), ~D(z, g(t))}. Thus, bag M_CLAUSES consists of the following
five clauses:

1. {L(b, g(t),)}
2. {L(b, 9(t),1)}
3. {L(g(t),a,1)}
4. {L(g9(t),a,t)}
5. {-P(z,9(t)), ~D(z,9(t))}-

714 R. Chadha and D. A. Plaisted

® ® © S,

{Q(»), L(by,1)} 1 Q(g(1) {R(x.g(1)), 1 P(x,g(1))} {WR(w,2)1 D(w,z)}

(D it L2 Ptrg(0). "D (]
........ N ""'--..._..“ o 6 “'.“
AL uc) Linac), P(flu)w)}

{1 L(g(c).a,c), D(fig(c)), g(c)}

\@

{D(flg(c)), g(c))}

{1 L(g(c).ac), P(fig(c)), glc)}

a0t

{P(fig(c)). g(c))}

{1 P(flg(c)), gle)}

{}

indicates resolutions
pairs literals of 2 and Sk(7W) which are resolved against each other

Figure 1. Derivation of the empty clause from Sk(H) and Sk(~W) by resolution for Example 1

Step 3: Now “mark” arguments of elements of M_CLAUSES as follows. Look at which
literal of Sk(—W) each of the above literals resolves against in Figure 1. Pairs of literals
of D and Sk(—W) that resolve against each other are linked by dotted lines in the figure.
We see that

L(b, g(t),t) resolves against —~L(b, w, c)

L(b, g(t),1) resolves against ~L(b, u, ¢)

L(g(t), a,1) resolves against ~L(w,a,c)

L(g(t),a,t) resolves against ~L(u, a,c)

—P(z, g(t)) resolves against P(f(u),u)

-D(z, g(t)) resolves against D(f(w), w).

Note: By looking at (for instance) the resolution between clauses 3 and 11, which yields
clause 13, it appears that L(g(t), a,t) (from clause 3) resolves against =L(g(c), a, ¢) (from
clause 11). However, the literal ~L(g(c),a,¢c) in clause 11 is an instance of the literal
~L(w,a,c) in clause 7. Clause 7 belongs to Sk(~W) (and clause 11 doesn’t). Thus the
literal in Sk(~W) that L(g(t), a,t) resolves against is ~L(w, a,) in this case.

For any function symbol F in a literal of M_CLAUSES that resolves against a variable
X in Sk(-W), mark it by replacing F by “X « F”. This yields the following set of marked
clauses MARK:

Derivation of Loop Invariants 715

P {L(b,w — g(2),1)}
2. {L(b’ U g(t),t)}
3. {L(w « g(t),q,t)}
4. {L(u — g(t),a,t)}
5. {~P(z,u — g()),~D(z,w — g(t))}.

Step 4: Unify some of the variables on the left hand side of the “~” in marked arguments.
To decide which variables will be unified, we look at variables in unmarked arguments
of MARK. There are two such variables: z and ¢. These variables were unified with
{f(u), f(w)} and {c} respectively (see the analysis in the previous step). Since z was
unified with both f(u) and f(w), we unify f(u) with f(w); thus v and w get unified.
MARK now consists of:

r. {L(b’u = g(t),t)}
2’ {L(b,u ~ g(t),1)}
3. {L(u —g(t),a,t)}
4. {L(u — g(t),a,1)}
5. {=P(z,u « g(t)),~D(z,u — g(t))}.

Since MARK is actually a set, we can eliminate two duplicates; MARK consists of:

1’ {L(b,u — g(¢),t)}
3. {L(u « g(t),a,t)}
5. {=P(z,u — g(t)),~D(z,u — g(t))}.

Step 5: Here FREE = {t,z} The marked arguments in MARK are “u «— g(t)”. We
replace these arguments by a fresh variable Z and add the pair (¢, Z) to C. This yields
C = {(t,Z)} and MARK consists of the clauses

1. {L(b, Z,t)}
3. {L(Z,a,t)}
5. {-P(z,Z),~D(z,Z2)}.

Step 6: (i) Here DEP(t) = {Z}, DEP(z) = { }. Since DEP(t) O DEP(z), PO = {(t,z)}.
(ii) Partial order PO is a linear order on FREE, so LIN = {PO}.
(iii) QUANT = {ViVz}
(iv) The existential quantifier for Z must be placed after V¢, as far forward as possible;
thus
QUANT = {vt3zVz}
and the resulting set of formulas is
L = {Vt3AZVz(L(b, Z,t) A L(Z,a,t) A (mP(z,2Z2) V ~D(z, Z)))}.

Thus £ contains only one formula for this example; call it F. It can easily be verified

that H=F => wW. O

716 R. Chadha and D. A. Plaisted

3.3. ANALYSIS OF UNSKOLEMIZATION ALGORITHM U

This section defines relation “more general than” and lists some theorems that prove
that algorithm U satisfies its specification. Proofs for the theorems in this section can be
found in the appendix.

THEOREM 3.1. Let H, W be formulas such that H = W. If suitable non-deterministic
choices are made, given H as input, algorithm U produces a set L of formulas such that
for any formula F in L, for any literal L = SIGN(L) P(di,ds,...,ds) of Sk(F), there
exists a literal M of W such that M = SIGN(M) P(by,bs,...,b,), SIGN(M) = SIGN(L),
and such that for alli,1 <i<s,
(i) If d; is a Skolem function, then b; is ezistentially quantified in W.
(ii) If di is a non-Skolem function, then one of the following holds:
(a) b; is the same function symbol with the same number of arguments, and
(i) and (ii) here hold recursively for each corresponding argument of d; and
b;.
(b) b; is ezistentially quantified and the function symbol of d; (with the
same arity as d;) appears in W. O

Intuitively, we are trying to say that Skolem symbols in D (where D is as specified
in Step 1 of algorithm U) are replaced by existentially quantified variables in W ((i) in
the theorem statement), and non-Skolem function symbols in D which do not appear in
W are also replaced by existentially quantified variables. Thus any non-Skolem function
symbol that remains in an unskolemized formula F must appear somewhere in W ((ii)
in the theorem statement). This is crucial because it allows us to define a relation “more
general than” (based on the theorem statement) such that the number of formulas more
general than a given formula is finite under certain elementary syntactic constraints.
Also, the fact that every literal L in Sk(F') has a corresponding literal M in W with the
same predicate, arity, and sign shows that formula F is similar to W in the predicates
that it contains. The following example illustrates the theorem.

EXAMPLE 2. In Example 1, we had
H = VaVy¥zvuvi((Q(y) V L(b, 3, 1)) A—Q(9(2)) A L(g(2), a,) A(R(x, g(£)) V—P(z, 9(2)))A
(~R(w, z) V ~D(w, 2)),
W = Vs3uVu(L(b,u,s) A L(u,a,s) A (-P(v,u) V ~D(v,u) V M(a)))
and algorithm U yielded

F =Vt3zvz(L(b, Z,t) A L(Z,a,t) A (—~P(z,Z)V ~D(z, Z)))}.

Here SK(F) = {{L(b, £(t),)}, {L(f(®),a, 1)}, {~P(z, ()}, ~D(z, F{&))}},
where f is a Skolem function replacing the existentially quantified variable Z. For every
literal in Sk(F'), we have a corresponding literal in W such that the conditions (i) and
(ii) of Theorem 3.1 hold. These correspondences are:

Literal in Sk(F') Corresponding literal in W
1. L(b, f(2),1) L(b,u,s)
2. L(f(t), a,t) L(u,a,s)
3. ~P(z, f(t)) -P(v,u)
4. = D(z, f(t)) —D(v,u)

Derivation of Loop Invariants 717

For the first pair of literals, (ii) (a) holds for the first pair of arguments (“d” and “b”);
(i) holds for the second pair of arguments (“f(t)” and “u”); neither (i) nor (ii) applies
to the third pair of arguments (“t” and “s”).

For the second pair of literals, (i) holds for the first pair of arguments (“f(¢)” and
“u”); (ii) (a) holds for the second pair of arguments (“a” and “a”); neither (i) nor (ii)
applies to the third pair of arguments (“¢” and “s”).

For the third pair of literals, neither (i) nor (ii) applies to the first pair of arguments
(“” and “v”); (i) holds for the second pair of arguments (“f(t)” and “u”).

For the fourth pair of literals, neither (i) nor (ii) applies to the first pair of arguments
(“«” and “v”); (i) holds for the second pair of arguments (“f()” and “u”).

Note that the literal M(a) in W has no corresponding literal in Sk(F). O

Motivated by Theorem 3.1, we introduce the following definition.

DEFINITION. A formula F is more general than a formula W if for every literal L of
F, there exists a literal M of W such that if L = SIGN(L)P(ay, as, ...,a,), then M =
SIGN(M)P(by, bs, ..., b,), where SIGN(L) = SIGN(M), and for all 7 such that 1 <7 <s,
(i) If a; is an existentially quantified variable, then so is b;.
(ii) If a; is a function symbol followed by u arguments e;, ey, ..., €y, then either
(a) b; is the same function symbol followed by the same number of argu-
ments, say fi, f2, ..., fu, and conditions (i) and (ii) hold for every pair of
arguments e; and fi,1 <k < u, or
(b) b; is an existentially quantified variable and a; has a function symbol
that occurs in W. O

Note the similarity between the statement of Theorem 3.1 and the above definition.
As we shall see in the next theorem, the number of formulas more general than a given
formula is finite under certain elementary syntactic constraints. The reason we want this
to be true is the following. Recall that the problem being solved is that we are given a
formula H that implies some (unknown) formula W, and we are trying to derive a logical
consequence F' of H such that

H=F=>W.

Now, some additional constraint must be placed on F, since otherwise we could simply
take F' = H, if H is finite. We want F to be “close” to W, in some sense. One way to
ensure this is to define some constraint on F' so that only a finite number of formulas
satisfy this constraint, and so that these formulas are “similar” to W in some sense. Thus
only a finite number of formulas F' satisfying this constraint and such that H = F => W
can be derived. This finiteness will insure the termination of our algorithm for deriving
loop invariants, as will be seen in the proof of its completeness. This is the reason for
defining the “more general then” term above. Note that the definition of “more general
than” given above does not allow function symbols that do not appear in W to appear
in F if F' is more general than W.

COROLLARY TO THEOREM 3.1 For every F' € L, F is more general than W.
ProoF. Follows directly from Theorem 3.1. (0

DEFINITION. Let F, W be two first-order formulas. We say that F < W if and only if

718 R. Chadha and D. A. Plaisted

(i) F is more general than W
(i) F=>w. 0

ExaMmPLE 3. The following examples illustrate the meaning of the relation “more general
than”.
(i) F=Vz3yVz(P(z,y) AQ(y,2))

W =VulvP(u,v)

F is not more general than W because for the literal Q(y, z) in F, there is no literal
in W with the specified properties, since W does not even have a literal with predicate
symbol @.

(i) F =VzIyvz(P(z,y) AQ(y,2))

W = VYu3v(P(u,v) A Q(v,v))

Here F is more general than W, because for P(z,y) in F, there is a corresponding
literal P(u,v) in W with the specified properties; similarly, for Q(y, z) in F, there is a
corresponding literal Q(v, v) in W with the specified properties.

Also, F = W; therefore F < W.

(ili) F =Vz3yVz(P(z,y) vV Q(y,2))
W = Vu3u(P(u,v) A Q(v,v)
As in (ii) above, F' is more general than W. However, F 7 W; therefore F A W.

(iv) In Example 1, we had

F =W3ZVz(L(b,Z,t) A L(Z,a,t) A (~P(z, Z2)V =D(z, 2))),

W = Vs3uVu(L(b, u, s) A L(u,a,s) A (-P(v,u) V - D(v, u) V M(a))).

In Example 2, we saw the correspondences between literals of Sk(#) and W. The
correspondences are the same for literals of F' and W. Thus F is more general than W.
Also, F => W, therefore F < W. O

THEOREM 3.2. {F | F < W} s finite up to variants, assuming that if F' is written in
conjunctive normal form, then no two disjunctions of F are identical, and no disjunction
of F contains more than one occurrence of the same literal.

PRroOF. We show that the set {F | F is more general than W} is finite up to variants
subject to the above condition. Suppose a formula W is given, and suppose F is a
formula that is more general than W. By definition, for every literal L = SIGN(L)
P(ay,az,...,a,) of F, there exists a literal M = SIGN(M) P(b1,bs, ..., b;) of W such that
SIGN(L) = SIGN(M) and such that conditions (i), (ii)(a) and (ii)(b) in the definition of
“more general than” hold. From these conditions, the following statements are true for
every k, 1 <k <s:
(i) If b is an existentially quantified variable, then ay is either an existentially quan-
tified variable, a universally quantified variable, or a function symbol that occurs in W.
(it) If by is a universally quantified variable, then so is ag.
(iii) If by is a function symbol with u arguments e), e, ..., ey, then a; is either:
(a) the same function symbol with the same number of arguments, say
f1, f2, ..., fu, and conditions (i), (ii) and (iii) hold for every pair of argu-
ments ¢; and f;,1 <i< u,or
(b) a: is a universally quantified variable.
From the above analysis, it can be seen that only a finite number of distinct literals L (up
to variants) can be constructed that satisfy these conditions. But then there exist only

Derivation of Loop Invariants 719

a finite number of formulas F made up of conjunctions of disjunctions of such literals,
provided no two such disjunctions are identical, and no disjunction of F' contains more
than one occurrence of the same literal.

Hence, the number of formulas that are more general than W is finite up to variants,
subject to the conditions in the statement of the theorem; this means that {F | F<WwW}
is also finite up to variants subject to the same conditions. [

THEOREM 3.3. For every F €L, H = F, where L is the set of formulas oblained by
unskolemizing a formula H according to algorithm U. O

THEOREM 3.4. Given formulas H, W such that H = W, there exists F € L such that
F = W, where H and £ are the input and oulput of algorithm U respectively. 1J

COROLLARY TO THEOREM 3.4 There exists F € £ such that F < W.
PRrROOF. From the Corollary to Theorem 3.1, Theorem 3.4, and the definition of <. O

THEOREM 3.5. If Fy, Fy and W are three formulas such that
Fi W F, X W,
then
(FLAFp) < W, (F1VF2)'jW O

4. Overview of the method

In this section we give an overview of an iteration method to derive loop invariants.
Perform the following steps for a given program:

1. Draw a flowchart for the program, cut the loops, and attach loop invariants (these
are unknown) and input and output assertions where appropriate. We are assuming that
loop invariants exist for all loops; if they do not, this method is not applicable. A symbol
representing an unknown loop invariant is attached at every loop cutpoint.

2. Generate verification conditions for the program as explained in (Manna, 1974).

3. Apply the iteration method to the verification conditions to obtain the loop invari-
ants.

Step 3 needs to be described in detail. We give below a brief overview of our method.
The detailed algorithm is given in Section 8.

A “known” formula is one that does not contain any loop invariant. In the following,
W, Wi and W, denote loop invariants and H, Hy and Hs denote known formulas. Any
verification condition involving a loop invariant is of one of the following three forms:

GO)H=>W

(i) HAW = W,

(lll) Hi AW = H,.

To see that this is true, recall that there is one cutpoint for every loop in the program,
one cutpoint at the entry of the program, and one cutpoint at every exit of the program.
Therefore, a path in the program could be of one of the following four types:

(1) A path from the entry cutpoint to a loop cutpoint

(2) A path from a loop cutpoint to a loop cutpoint

(3) A path from a loop cutpoint to an exit cutpoint

(4) A path from the entry cutpoint to an exit cutpoint

720 R. Chadha and D. A. Plaisted

Of these four types, a verification condition for a path of type (4) does not involve any
loop invariants and will therefore not be considered here. A verification condition for a
path of type (1) will be of the form H => W (where H is a known formula representing
the conditions that hold at the beginning of the path and during the path traversal,
and W is the loop invariant at the cutpoint at the end of the path); a verification
condition for a path of type (2) will be of the form H A Wy = W, (where H is a known
formula representing the conditions that hold during the path traversal and Wy, W, are
the loop invariants of the cutpoints at the beginning and end of the path respectively);
and a verification condition for a path of type (3) will be of the form Hy AW = H,
(where Hy, Hy are known formulas representing the conditions that hold during the path
traversal and the output condition that holds at the end of the path respectively, and W
is the loop invariant of the cutpoint at the beginning of the path).

We will obtain successively more accurate approximations to the loop invariants. For
this purpose, we will define function GET-APPROX in Section 9 to be a binary function
that takes as arguments a formula H and a symbol W and returns a formula F that is
an approximation for W, where H = F and F = W. Note that H must be a known
formula; W is the name of an unknown loop invariant.

Initially, only the input and output assertions are given. We initially approximate all
the unknown loop invariants by setting them to false. We will represent approximation 1
to W by W;; the initial approximation to W is Wp. Informally, the method we will use is
the following : suppose W is some (unknown) loop invariant in the program. Consider all
the verification conditions in which W appears on the right-hand side of the implication
sign. We replace all occurrences of loop invariants in these verification conditions with
their current approximations. Suppose that the last approximation calculated for W was
W;. Suppose the resulting verification conditions are H; = W;, Ho = W;, Hs = W;, ...,
H, = W; (where i gives the number of the current iteration). Note that loop invariants
may occur in the formulas Hy, Hs, ..., H, above; all such occurrences are replaced by
the current approximations for these loop invariants. For all the H;’s, 1 < j < n, check
whether H; => W; is true or not. Let T'conditions be the set of all H;’s such that H; = W;
is not true. If T'conditions is empty, then set Wiy1 = W;; if Teonditions is not empty,
then set Wiy, = GET-APPROX(W; V R, W), where R = \/{H;|H; € Tconditions}.
Note that for all j such that 1 < j < n, H; = W;;, and W; = Wiy,. This is because
the new formula Wj; generated by the function GET-APPROX is a logical consequence
of the disjunction of W; and all the formulas in the set T'conditions; thus it is a logical
consequence of each of these formulas.

We then look for another loop invariant and find the next approximation to it exactly
as described for W; (this time using Wiy, as an approximation for W), and so on. Recall
that all the verification conditions in which W appears on the right-hand side of the
implication sign are Hy = W, Hy = W, Hs = W, ..., H, = W. If we have Wiy, = W;
(this happens when the set T'conditions is empty), then since H; = W;4 for all j such
that 1 < j < n, and since W4, = W;, we have H; = W; for all j such that 1 < j < n.
When this happens for all the loop invariants, the procedure terminates.

5. Some observations about the programming language model

A program is partially correct if all the verification conditions derived from the program
after assigning appropriate loop invariants are valid in a model M of the data structures
and primitive operations of the language. For instance, most programming languages

Derivation of Loop Invariants 721

contain the arithmetic operators + and —, and a model M of such a programming
language would reflect the semantics of these operations. In other words, we would like
to prove M|= wc for all the verification conditions ve of the program being verified.

Now the question arises whether there exists an axiomatization of model M. (A theory
T is said to be aziomatizable if there exists a decidable set W C T such that T is exactly
the set of all formulas derivable from W in the predicate calculus.) Peano arithmetic
(addition and multiplication along with the predicate “<” over the natural numbers) is
not axiomatizable; however, the well-known Peano axioms along with the principle of
induction over the natural numbers characterize all properties of the natural numbers,
including those of the Peano arithmetic, i.e. those that may be expressed as formulas
of first-order logic. This is not in contradiction to the fact that Peano arithmetic is not
axiomatizable, because the principle of induction cannot be expressed in first-order logic,
since it involves quantification over predicates.

Assuming that there exists an axiomatization A of a model M (A is a set of axioms
such that A is decidable and such that the set of all formulas true under M is exactly the
set of all formulas that are derivable from A in the predicate calculus), the verification
problem reduces to a proof of the form A + we for all verification conditions vc of the
program being verified. Now, any verification condition is of the form L => M (see Section
4), for first-order formulas L and M. Therefore the above can be written as A + (L =
M), which is equivalent to - ((A A L) = M).

Henceforth, we assume that the models of the programming languages under consider-
ation are axiomatizable and that an axiomatization A of the language is provided when
the verification conditions are being proved; in other words, the formulas in A are taken
to be axioms and can be used for any proof. This may seem like a restrictive assumption,
since we know that even Peano arithmetic is not axiomatizable; however, in many cases,
we circumvent this problem by providing suitable instances of the principle of induction
as required, or by providing the system with enough facts to be able to derive the desired
formulas from these facts. For example, it is necessary to use induction to deduce from
the Peano axioms that addition is commutative; we circumvent this problem by adding
commutativity of addition as an axiom to the system. The reader should nevertheless be
aware of this restriction on the power of our system.

6. A clarification

Subsequently, we sometimes need to know whether a formula of the form A = B is
valid. However, since first-order logic is semi-decidable, we are only guaranteed to get
an answer to this question if A = B is valid. If A = B is not valid, the procedure for
determining the validity of A = B may or may not halt. Some theorem provers can show,
for some sets of clauses, that a given set of clauses is not unsatisfiable by providing a
model for the set of clauses, that is, a truth assignment that makes all the clauses in the
set true (see for example (Lee, 1990)).

However, the above facts do not invalidate the completeness of our iteration algorithm.
In any place in the algorithm where the validity of A = B has to be proved or disproved,
we can try to prove that A = B is valid; if this attempt fails after some finite amount
of time ¢, the attempt can be abandoned and A = B can be assumed to be invalid. We
can do this because even if A = B is assumed to be invalid when it is actually valid, our
algorithm still remains sound; it will just run longer than necessary. If no loop invariant
is derived using the current value of ¢, ¢ can be incremented. At some point, t will become

722 R. Chadha and D. A. Plaisted

large enough for all valid formulas A = B to be proved within time ¢, since there are only
a finite number of such formulas that need to be proved. Another strategy for dealing
with the above problem could be to run the procedure for finding loop invariants in
parallel for different values of . Henceforth, we will assume that such a strategy is used
to deal with the above situation.

7. Description of algorithm for generating loop invariants

The notation described in Section 4 is used throughout this algorithm. We first briefly
describe the algorithm. Assume that W, W2, ..., W" are the loop invariants of the
program. As mentioned previously, let the initial approximations of all verification con-
ditions be false and denote the initial approximation of each W* by W§. Approximation
j for W* is denoted by VVJ' If the last approximation that has been calculated for a
loop invariant W* is approximation k, then index(W?) is set to k, i.e. index(W}) = k.
Initially, indez(W*) = 0 for every i, 1 < i < n. These initializations are performed in
step 1.

Step 2 constructs a list list_of_loop_invariants which contains the names of all the loop
invariants (i.e. W2, W2, .., W") in a particular order (this order is immaterial). The list
built in step 2 is used in step 3 to provide the order in which the iteration will proceed.
Starting with the first loop invariant in this list, and repeating the same process for
each element of the list in order, the following is done. Initialize set Tconditions to the
empty set. Suppose that the first element in list_of loop_invariants is loop invariant W.
For every verification condition J = W (say) that has W on the right-hand side of its
implication sign, the following is done. J could either be of the form J = H, for some
known formula H, or of the form J = H AW, for some loop inva.ria,nt'Wj . Note that W+
could equal W. If J is of the latter form, then W7 is replaced by ‘:’ndw(wj) in J. Call
the transformed formula J'. If J' => Wi,4.-(w) is false, J' is added to set Tconditions.
This process is repeated for all verification conditions. The next approximation for W is
obtained as follows. First, indez(W) is incremented by 1. If T'conditions is empty, then
the current approximation for W is retained and flag(W) is set to {rue to mark this fact.
If Tconditions is not empty, then the next approximation Wingeo(w) for W is obtained
by calling function GET-APPROX to return a formula Wipaez(w) such that

Windez(W)—l VRE= Windea:(W):
where R is the disjunction of all the elements of Tconditions. The fact that Tconditions
was non-empty is marked by setting flag(W) to false.

This whole process is repeated until all the flags for all the loop invariants are true
at the same time. This indicates that the current approximations for the loop invariants
satisfy all the verification conditions and can therefore be used as loop invariants. Step
4 sets W;ppmx to be the last approximation obtained for W*, which is a loop invariant
for every 7 such that 1 < i< n.

The algorithm is given below in Pascal-like pseudo-code.

8. The iteration algorithm

{COMMENT : Let V be the set of verification conditions for the program; suppose V =
{veq, veg, ..., vep }. Let all the (unknown) loop invariants be W1, W2, ..., W™. We denote
the formula on the left-hand side of the implication sign in a verification condition ve by

Derivation of Loop Invariants 723

lhs(vc), and similarly we denote the formula on the right-hand side of the implication
sign in a verification condition vc by rhs(vc). Also, to make the algorithm easier to read,
the number n of verification conditions is written as number_of_loop_invarianis and the
number m of verification conditions is written as number_of_verification_conditions.}

1. For ¢ := 1 to number_of_loop_invariants do
{ir}dez(W") = 0;
W3 = false

2. list_of loop_invarianis := empty;
which_loop_invariant .= 1;
for i := 1 to number_of_verification_conditions do
if (ve; is of the form H = W) and
(W ¢ list_of_loop_invariants) then
append(list_of_loop_invariants, W);
while length(list_of_loop_invariants) < number_of_loop_invariants do
{current_loop_invariant := which_loop_invariant'® element in
list_of loop_invariants;
for every vc in V such that
(Ihs(vc) contains current_loop_invariant) and
(rhs(ve) = W' for some i) and
(W; & list_of-loop_invariants) do
append(list_of_loop_invariants, W*);
which_loop_invariant := which_loop_invariant + 1
}
3. repeat
for ¢ := 1 to number_of_loop_tnvariants do
{W := i*® element in list_of_loop_invariants;
Teconditions := empty;
for j := 1 to number_of_verification_conditions do
{if rhs(vcj)= W then
if = (Ihs(vcj)=> Windez(W)) then
Tconditions := Tconditions U {lhs(vc;j)}

};
index(W) := index(W) + 1;
if T'conditions # empty then
{flag(W) = false;
VVindez(W) = GET'APPROX(Winde:c(W)—IV
(V,;{H|H € Tconditions}), W) (see Note after algorithm)

else
{flag(W) := true;
I/Vinde:z:(W) = VVindea;(W)—l

}
wntil A7, flag(W*);
4. for 7 := 1 to number_of_loop_invariants do

724 R. Chadha and D. A. Plaisted

1 —)
Wapproa: = VVindez(W) :

NoTE. Each time GET-APPROX is called, any occurrence of an unknown loop invariant
W7 in the first argument of GET-APPROX is replaced by its current approximation,

which is VV,?ndw(Wj).

9. Function GET-APPROX

Function GET-APPROX takes two arguments H and W, where H is a known formula
and W is the name of an unknown loop invariant for which GET-APPROX will return
an approximation S (say). W is a logical consequence of H, and an approximation S for
W can be derived from H by resolution and unskolemization. We show that this process
can be guided by the verification conditions of the program and is therefore much more
efficient than a pure generate-and-test approach. The approach is explained below and
illustrated in Example 4.

The derivation of S can be made more efficient by noting that the problem at hand
is simpler than just deriving logical consequences of one formula. H is the following
disjunction

H=W;vVH,VHyV ..V Hy, (1)

where W; is the previous approximation obtained for W and each H; (1 < j < k) is
the left-hand side of a verification condition for which the right-hand side is W, and
which is not valid with the current approximations for loop invariants (see the iteration
algorithm). Note that k could be zero here. Our goal is to generate a formula S that is
a logical consequence of H, i.e. such that

W;vVHVHyV ..VH, = S.

First approach

The above implication is equivalent to the k + 1 implications W; = S, H; = S, ..., Hy
= S. We therefore need to generate a formula S which is a logical consequence of each
of W;, Hy, ..., Hy. We can generate a logical consequence for each of W;, Hy, ..., Hy by
the resolution and unskolemization method described in Section 3. Suppose a logical
consequence F' of one of these formulas has been thus generated. We then check if F is
implied by all of the formulas W;, Hy, ..., Hy (it is obviously implied by at least one of
them, since F is a logical consequence of one of these formulas). Such a formula F is
obtained for each of the formulas W;, Hy, ..., H. We then collect together the F’s that are
implied by all of the formulas W;, Hy, ..., Hy (i.e. W; = F,H, = F,Hy = F,..,Hy, = F)
and let S be their conjunction. S is then returned by GET-APPROX as approximation
i+ 1 for W. Clearly, H = S, since each F in the conjunction S was implied by all of the
formulas W;, Hy, ..., H;.

If after a number “b” of trials, we are not able to obtain any F that is derived from
one of W;, Hy, ..., Hy and is implied by all of them, we take S to be the disjunction of all
the k4 1 formulas each of which was a logical consequence of one of W;, Hy, ..., Hy. Here
too, H = S. In the algorithm, “b” is a bound input by the user.

Derivation of Loop Invariants 725

Second approach

The approach is slightly different when an approximation is being generated for a
loop invariant W for which there exists at least one verification condition of the form
H' AW = H"”, where H' and H" are known formulas (i.e. W appears on the left-hand
side of a verification condition whose right-hand side is a known formula). In this case,
we adopt an approach that guides the search for a loop invariant more effectively than
that described above.

We first check whether H' A H = H” is valid for all verification conditions of the form
H' AW = H" (if this is not the case, we backtrack). If so, then

H' AWV HLV ..V H) = H"

is valid for all such verification conditions (since H = W; V H,V Hy V ...V Hy, from (1)).
Therefore the formulas

HAW;=H' HANHy= H",.., H ANH, => H" (2)

are all valid. In the first approach, we generated logical consequences of each of W;, Hy,
H,, ..., Hy in our search for an approximation for W. In this case, however, we have one
more piece of information about W, namely:

H' AW = H".

Therefore, an approximation S for W must satisfy the above formula when substituted
for W, i.e. we must have
H' AS=H".
Let B; be any one of W, Hy, ..., Hi. Since
H' A B; = H "
is valid (from (2)), H' A B; A —~H" is unsatisfiable in the model of the programming
language being used. Therefore there exists a resolution proof of the unsatisfiability of
H' A Bj A—=H" in this model (by the completeness of resolution).

Recall that from the discussion in Section 5, a set AXIOMS of axioms that characterizes
the programming language model is to be used in this resolution proof. Consider some
derivation of the empty clause from Sk(AXIOMS AH' A Bj A ~H'"). We can perform
as many of the resolutions in this derivation as possible in Sk(B; AAXIOMS) first, and
then perform resolutions with the resulting clauses and Sk(H’ A =H"'). Consider the set
of clauses (called PROOFS, say) thus derived from Sk(B; AAXIOMS). From the above,
PROOFS A Sk(H' A ~H") is unsatisfiable. We therefore unskolemize some subset of
PROOFS to obtain a formula F. After such an F' is obtained for each of W;, Hy, ..., Hg,
we proceed as explained in the first approach and obtain a formula S as before. Note that
S is a logical consequence of each of W;, Hy, Ho, ..., H, and hence of H. We then check
whether H' A S = H' is valid for all verification conditions of the form H' AW = H"
(if this is not the case, we backtrack). As noted earlier, this is a necessary condition for
S to be a valid approximation for W.

The method described above restricts the search for an approximation S for W to all
possible sets “PROOFS” generated as explained above, rather than the set of all possible
logical consequences of H. This method of generating S helps to restrict the search for
a loop invariant, since the known formulas H” on the right-hand sides of verification
conditions of the form H' AW = H" help to direct the search for S, and thus reduce
the search space considerably.

726 R. Chadha and D. A. Plaisted

NoTE. W; may itself be a disjunction of formulas, i.e. we may have
W;=A1 VA V..V A,.
In this case, H = A1 V...V A, V H; V...V Hy; thus we will have k + m formulas for
which logical consequences have to be generated (unlike the above-described situation
where we had k + 1 such formulas).

The algorithm for function GET-APPROX and two procedures that it calls are given
below. We denote the set of all clauses that can be derived by resolution from a formula

F by Res(F).

function GET-APPROX(H, W);
begin
input(b);
if there is one or more verification condition of the form H; A W = H, then
S := DIRECTED SEARCH(H, W)
else S := CONSEQUENCE(H, W);
return(S)
end.

function CONSEQUENCE(H, W);
begin
S :=true;
num_iterations := 0;
Suppose H = By VBy V...V By;
while (S = true) and (num_iterations < b) do
{num_iterations := num_iterations + 1;
fori:=1tordo
generate a formula S; by unskolemizing Res(B; A AXIOMS) using algo-
rithm U;
fori:=1tordo
if By = S; for all k such that 1 < k < r then

S:=8AS; }
if (S = true) thenlet S=S5;, VS, V..VS,;
return(S)
end.

function DIRECTED_SEARCH(H, W),
begin
check if H1 A H = H, for all verification conditions of the form H; A W => Hs; if not,
BACKTRACK;
num_iterations := 0;
S = true;
Suppose H = B, VB3 V ...V B,;
while (S = true) and (num_iterations < b) do
{num_iterations := num_iterations + 1;
for i := 1 to r do
{ PROOFS := set of all clauses generated from B;A AXIOMS by reso-
lution during some proof of H; A B; = Hj; (see Note below)

Derivation of Loop Invariants 727

generate a formula S; by unskolemizing SUB using algorithm U, for some
subset SUB of PROOFS}
fori:=1tordo
if By = S; for all k such that 1 < k <r then
S:=SAS}
if (S=true) then let S =S, VS V..V S,;
check if Hy A S = H, for all verification conditions of the form Hy A W => Ha; if not,
BACKTRACK;
return(S)
end.

NoOTE. Since H; A H = H, is valid for all verification conditions of the form H, AW =
H,, and since H = B, V ...V By, clearly for every ¢ such that 1 <i<r, Hi A B; = H,.
Consider a proof of unsatisfiability of Sk(AXIOMS AH; A B;)A Sk(—H3) by resolution,
for one such verification condition H; AW = H,. These resolutions can be rearranged so
that any resolutions among clauses of B; and clauses of AXIOMS are performed first. Let
the set of clauses from B; and AXIOMS and the clauses generated by these resolutions
be the set PROOFS.

Proofs of the completeness and soundness of the iteration algorithm for deriving loop
invariants are given in the appendix and Section 11 respectively. A refinement to the
algorithm appears in (Chadha, 1991); briefly, this refinement arises from the fact that
assertions that do not mention the program variables need not be included in loop in-
variants, since they can be generated from the axioms of the programming language
operations. This knowledge makes the task of generating loop invariants more efficient,
since any formula that is generated by the function GET-APPROX and that does not
contain program variables can be immediately discarded. This greatly reduces the search
space for a loop invariant.

10. Completeness of the iteration algorithm

The proof of completeness is based on the following five facts, which are proved in the
appendix:

(1) The first time that GET-APPROX(H, W) is called, H = W is valid.

(i) If H = W, then GET-APPROX(H, W) can return S such that S < W.

(iit) If GET-APPROX(H, W) has returned S such that S < W all the n times it has
been called, then when it is called for the n + 1** time, H will imply W.

(iv) GET-APPROX(H, W) can always return S such that S < W.

(v) If GET-APPROX always returns a formula such that S < W, where W is its
second argument, then the algorithm terminates and returns a loop invariant.

This claim of completeness does not say that no matter which formulas GET-APPROX
generates, the algorithm will terminate with the correct answer. Since the loop invariants
W are unknown, there is no way of verifying that an approximation S generated by
GET-APPROX indeed satisfies S < W; and a potentially infinite number of formulas
can be generated by GET-APPROX, only a finite number of which satisfy this condition.
However, it does say that if a loop invariant exists, there is a way of deriving it using this
algorithm. In the same way, the completeness of resolution does not guarantee that no

728 R. Chadha and D. A. Plaisted

matter which clauses are chosen to be used in resolution steps, the proof will terminate;
rather, it says that there is a way of obtaining a proof, if one exists, if the proper clauses
are chosen for resolution.

It may seem that the completeness result is obvious, due to the assumption of the
existence of an axiomatization and the way in which GET-APPROX has been imple-
mented. However, the results in Section 3 are crucial here, because not all methods of
deriving logical consequences would yield the same completeness result. In particular, we
mentioned in Section 3.2.1 that certain logical consequences cannot be derived without
using unskolemization. Thus the completeness of the iteration algorithm is dependent on
the properties of the unskolemization algorithm of Section 3.

11. Soundness of the iteration algorithm

To show that this algorithm is sound, all we need to do is to show that the final
approximations for the loop invariants that are generated are loop invariants that make
the verification conditions valid. This can be done by showing that all the verification
conditions still hold when the generated loop invariants are substituted for the actual
loop invariants. When the algorithm terminates, all the flags (for every loop invariant)
are set to true. This means that every verification condition with a loop invariant on
the right-hand side of the implication sign is true if Wtfpp,.‘,z is substituted for the loop
invariant. Therefore the only verification conditions that need to be checked are those
that do not have a loop invariant on the right-hand side of the implication sign, i.e. those
of type (iii):

H, A Wi=H 2.

However, for any loop invariant W* for which a verification condition of the above
form exists, the function DIRECTED_SEARCH returns an approximation S for the loop
invariant W* such that Hy A S = Hj, since this condition is specifically checked for at
the end of the function. Thus function GET-APPROX also returns an approximation S
for the loop invariant W* such that H; A S = H,. This means that every approximation
W'} for W* satisfies the formula

Hi A VV; = Hs.
Therefore in particular,
HiA Wépprox = H,
and the soundness of the algorithm is proved. O

EXAMPLE 4. The program shown in Figure 2 computes z = ged(z;, z2) for a pair of
positive integers £; and zj; that is, z is the greatest common divisor of £; and z,. The
computation method is based on the fact that

If y1 > ya, then ged(y1,y2) = ged(y1 — y2,92)

If y1 < y2, then ged(y1,y2) = ged(y1, y2 — v1)

If y1 = y», then ged(y1,12) = 31 = y5.

The program is to be proved partially correct with respect to the input predicate ¢(%):
z1 > 0Azy > 0 and the output predicate ¥(%, z) : 2 = ged(z;, z2). The two loops of the
program have been cut at point B and an unknown loop invariant W! attached to this
point. We will use the iteration algorithm to derive this invariant.

Since the domain of the given program is the set of integers, and the operations of the

Derivation of Loop Invariants

729

Y

z = yl

Y2

<—y2_y1

C

¢(;):x1>0 A x>0

Smt Y 2)z=ged(xp %)

Figure 2. Calculating the g.c.d. of two numbers

language include arithmetic operations, comparison and equality, we must include the
necessary axioms for arithmetic operations, comparison and equality when performing
resolutions. Also, we must provide the definition of the ged function, since the function
is mentioned in the output assertion 3. The axioms listed above are used to define the
ged function. Let the set of all these axioms be AXIOMS.

We perform the iteration algorithm step by step. There is only one loop invariant
here, so number_of_loop_invariants=1. There are four paths leading from one cutpoint to
another, since two different paths exist in the loop, depending on which branch is taken
after the test y; > y2. We denote old values for the variables y; and y; by ¥} and g

respectively.

There are four verification conditions for the program, which are
vey = (171 > 0) A (1:2 > 0) A (1?1 = y1) /\(:62 = yz) = Wl(f, yl,yz)
ve = ayJI(Wl(EryLy?) An=n—-)ANNFR)ANH >y)=> W1(§1 v1,92))
ves = H(WHE, y1, 1) A2 = v — y1) A (1 # 95) A (1 < 93) = WH(T, 41, 92))

730 R. Chadha and D. A. Plaisted

vea = WH(Z, 41, 92) A (11 = 32) = (1 = ged(z1, 22)).
Step 1. indez(W?') = 0, W} = false
Step 2. list_of loop_invariants = [W1].
Step 3. First iteration:
w=wl
Tconditions = {lhs(ve1)}
indez(W!) = 1
flag(W') = false
Wil = GET-APPROX(W_V lhs(vey), W?)
= GET-APPROX(falseV lhs(vey), W)
= GET-APPROX(lhs(vey), W1)
= GET—APPROX(CI& >S0Azs>0AZy =y1 A2y =2, Wl)
Call GET-APPROX(H, W), where
H=z>0Az23>0Az1 =y1 Azo =1y
input b to be some large number
S := DIRECTED.SEARCH(H, W)
Call DIRECTED SEARCH(H, W)
check if AXIOMS AH A(y1 = y2) = (51 = ged(zy, z2)) is valid; since it is, continue;
S := true;
H = By;
WHILE LOOP :
(r=1)
num_tlerations := 1
First FOR, loop :
PROOFS := set of all clauses generated from ByA AXIOMS by resolution
during some proof of AXIOMS AH A (y1 = y2) = (y1 = ged(z1, z2)).
A proof of AXIOMS AH A (31 = y2) = (y1 = ged(z1,2)) is given in the
appendix; thus we have
PROOFS := {{z1 >0}, {z2> 0} , {zi =} , {z2 =}, {n £ vo. 1 =
ng(ylyy2)}) {yl 56 Y2, = QCd(ml)yE)}) {Y # ZaY = ng(Y) Z)}) {yl #
Y2, = ng(-’Cl,wz)}} ;
From this set, choose S; = all clauses in PROOFS, leaving out axioms
=z1>0Az2 > 0Az1 = Az = A(y1 # ¥V = ged(y1, ¥2)) A (1 #
Y2V y = ged(z1,¥2)) A (31 # 32 V 31 = ged(z1, 22));
Second FOR loop :
Since B; => Si, therefore S := (true AS)) =
(21 >0Az2 > 0Nz =y Az =9 Ay # ¥2 V iy = ged(y1,12)) A (1 #
Y2V = ged(zy,y2)) A (v # y2 V1 = ged(z1, T2)).
Clearly AXIOMS AS A (11 = y2) = (1 = ged(z1,22)) is valid, therefore DI-
RECTED_SEARCH and GET-APPROX return (z1 > 0Az2 > 0Az; =y Azy =
AWM FRVy =gdyLyp) A 2RV =gedE@Lp) A £V =
ged(zy1,z2)).
Hence we obtained, after calling function GET-APPROX,
Wll =(z1>0Az2>0Az1 =y Ay = AN V= gcd(yl,yg))/\(yl #
v2Vyr = ged(z1,92)) A (v # 2 Vi = ged(zy, 22)).

Second iteration of Step 3:
wW=w!

Derivation of Loop Invariants 731

Tconditions = {lhs(vez), lhs(ves)}
indez(W?!) = 2
flag(W?) = false
Wi = GET-APPROX(W1V lhs(vep) V lhs(ves), W1)
Call GET-APPROX(H, W?!), where
H=(2:>0Az:2>0Azy = Aza=9 A #v2Vyn =ged(y, v2)) A(n #
ya V1 = ged(z1,y2)) A (y1 # y2 Vi = ged(zy, 22))V
(1‘1 >0Azs>0AD =y’1 /\22:3;2/\(3/1 =y{ —yz)/\(y{ ;éyg)/\y’l > yz)V
(231 >S0Az2s>0A21 =y /\172::1/2/\(3/2 :y’z—yl)/\(g/z:,éyl)/\yl Sy’z)
= BV By V Bj.
input b to be some large number
S := DIRECTED SEARCH(H, W1)
Call DIRECTED_SEARCH(H, W)
check if AXIOMS AH A(y1 = y2) = (y1 = ged(z1, 22)) is valid; since it is, continue;
S := true;
H=B;VByV Bs
First iteration of WHILE loop :
(r=3)
num_iterations := 1
First iteration of first FOR loop: i =1:
PROOFS := set of all clauses generated from ByA AXIOMS by resolution
during some proof of AXIOMS AB; A (y1 = ¥2) = (y1 = ged(z1, z2)).
A proof of AXIOMS AB; A (y1 = y2) = (11 = ged(z1,£2)) is given in the
appendix; thus we have
PROOFS := {{2,‘1 > 0}) {32 > 0}) {131 = yl}) {1:2 = yZ} ’ {Y # 21Y =
9cd(Y, 2)} , {y1 # y2,41 = ged(y1,92)} , {n # o, = ged(z1,¥2)}
{11 # y2, 91 = ged(21,22)}} ;
From this set, choose S; = all clauses in PROOFS, leaving out axioms
=z1 >0Az:>0Azy =y1 Az = yzl\(yl #ZyVyr = gcd(yl,yz))/\(yl #
Y2V y1 = ged(21,92)) A (n # y2 V 41 = ged(z1, 22));
Second iteration of first FOR loop : 1= 2:
PROOFS := set of all clauses generated from BzA AXIOMS by resolution
during some proof of AXIOMS ABy A (y1 = y2) = (y1 = ged(z1, z2)).
A proof of AXIOMS ABs A {1 = y2) = (1 = ged(z1,22)) is given in the
appendix; thus we have
PROOFS := {{(Y > Z),9cd(Y,2) = ged(Y — Z,2)} , {Y # 2,Y =
ged(Y, 2)} , {21 > O}, {z2 > O} , {4 > w} , {21 = ¥} , {w2 = 1} ,
{v: =11 — w2}, {z1 > 12}, {21 > 22}, {gcd(21, 72) = ged(z1 — 22, 22)}
{vi = z1—w2} , {1r = 21— 22}, {ged(z1, 22) = ged(y1, 22)}, {ged(z1,22) =
ged(y1,v2)}} 5
From this set, choose S3 = all clauses generated from By;A AXIOMS in
PROOFS, leaving out axioms
= (:1:1 >0Az2>0AY > AT :y’ll\:z:2=y2/\y1 =y’1—y2/\:c1 >
Y2 Azy > 22 A(ged(z1,22) = ged(zy — 22,22)) Ath = T1 — Y2 Ayr =
z1 — z2 A (ged(z1, z2) = ged(y1, ©2)) A ged(z1, z2) = ged(yr, y2))-
Third iteration of first FOR loop : 1= 3 :
PROOFS := set of all clauses generated from B3A AXIOMS by resolution
during some proof of AXIOMS AB3 A (y1 = y2) = (y1 = ged(zy, x2)).

732

R. Chadha and D. A. Plaisted

A proof of AXIOMS AB3 A (y1 = y2) = (y1 = ged(z1, z2)) is given in the
appendix; thus we have

PROOFS = {{(Y < 2),9cd(Y,Z) = ged(Y,Z - Y)}, {Y # 2,Y =
ged(Y, Z)}’ {21 > 0}, {z2 > 0}, {yl <Yy = !/2}) {.‘Bz = y{z} ’ {231 = yl}
Ay = v —w}, {92 # n}, {n < v} {n < 22}, {z1 < 22},
{gcd(z1,x2) = ged(zy,z2 —z1)} , {y2 = 22— w1}, {y2 = 22 — 21},
{ged(z1, z2) = ged(21,92)} , {gcd(z1,22) = ged(y1, ¥2)}} ;

From this set, choose S3 = all clauses generated from BzA AXIOMS in
PROOFS, leaving out axioms

= (.'L‘l >0Az0 > 0/\(3/1 < yQVyl = 1/2)/\1?2 =y’2/\:c1 =y Ay =
V=N AL FAn <Ay < z2Az1 < 2aA(ged(xy, 22) = ged(zy, 29—
z1))AY2 = Ta—y1AY2 = 22— 21A(ged(z1, 22) = ged(z1, y2))Aged(21, 22) =
ged(y1, y2))-

Second FOR. loop :
1=1:

We find that

By = 5; is valid;
By = 5 is not valid;
B3 = 51 is not valid.

1i=2:
We find that

By = S5 is not valid;
B; = 55 1s valid;
B3 = S5 is not valid.

1=3:
We find that

B; = 53 is not valid;
By = S3 is not valid;
B3 = 53 is valid.

Since S=true, another iteration of the WHILE loop must be performed. We use
the following heuristic to guide the choice of an appropriate “S”. We first look for
clauses that appear in all of S, S3,S3. There are only two such clauses, namely
{z1 > 0} and {z; > 0}. We then look for clauses that appear in any two of the
formulas S, S, and S3, and check if these clauses are implied by the third. We find
that the only such clause is {gcd(z1,z2) = ged(y1,y2)}. This clause appears in S,
and S3 and is implied by S; (since £ = y; and z2 = ¥, in S1). Thus we choose

Sz =21 > 0Az3 > 0Aged(zy, z2) = ged(y1, ¥2),

which satisfies

B; = S,
By = 5,
Bz =2 5.

Thus S is set to be

S=z1>0Az2>0Aged(zy1,z2) = ged(y, y2)-

Clearly AXIOMS AS A (11 = y2) = (y1 = ged(z1, z2)) valid, therefore DI-
RECTED_SEARCH and GET-APPROX return (21 > 0 A z2 > 0 A ged(zy,22) =

ged(y1,y2))
Hence we obtained, after calling function GET-APPROX,

Derivation of Loop Invariants 733

W3 = (z1 > 0Az2 > 0Aged(z, z2) = ged(y1,y2))

Third iteration of Step 3:
w=w!
Tconditions = 0 (it can be verified that all the verification conditions are valid
with W} substituted for W' everywhere)
indez(W!) = 3
flag(W') = true
Wi = Wi
Since flag(W?!) is true, Step 3 terminates.
Step 4. W3, ,r00 = (21 > 0 A 22 > 0 A ged(z1, 22) = ged(y1,42)).
The loop invariant derived is
W = (z1 > 0Azy > 0A ged(z1,z2) = ged(y1,32)). O

NoTE. It may appear that the “closeness” of the axioms to the derived invariant facili-
tates the search for the invariant. However, if the axioms for this example had been given
in a different form, the derived invariant may have been different too.

12. Conclusions

We have developed a method for automatically deriving loop invariants for loops. The
methods described in this paper have not been implemented, but have been manually
applied to many examples, including all nine examples from King’s thesis (King, 1969).
Loop invariants were successfully derived for all of these programs. In all these programs,
the guidance provided in the search for loop invariants by function GET-APPROX (as
explained in Section 9) greatly reduced the search space. The heuristics mentioned in
Example 4 for choosing the clauses for forming a candidate loop invariant proved ef-
fective for these examples. The method seems to perform better on programs without
nested loops. More examples can be found in (Chadha, 1991). This method might help to
automate the verification of very large programs, where current techniques are imprac-
tical. Many people have voiced the opinion that the goal of automating the derivation
of loop invariants is unattainable (see for example (Dijkstra, 1985)). Of course, they can
be proved wrong only if the method we have developed can be made “acceptably” ef-
ficient by the use of suitable strategies. Basically, function GET-APPROX needs to be
implemented with the use of strategies that will include rewriting terms to some normal
form to improve the efficiency of the resolution procedure, detecting structural similari-
ties among terms, and so on. The function, as it stands now, provides some guidance to
the process of deriving the invariants, as was demonstrated in Example 4. It is a great
deal more efficient than a pure generate-and-test approach, as explained in Section 9.
Guidance is provided in the search for loop invariant by making use of the verification
conditions of a program. The efficiency can probably be further improved with the use
of some good heuristics. Owing to the existence of a large number of such heuristics in
the literature, this aspect has not been explored in much detail here, other than the
heuristics mentioned in Example 4. However, even though heuristics will be able to im-
prove the performance of our algorithm, the algorithm still stands out from the previous
purely heuristic methods in the literature. This is because in our method, heuristics can
be embedded within the framework of a complete and sound algorithm. Thus, even if all
heuristics fail, our algorithm can still derive a loop invariant. This is in direct contrast
to previously developed methods, which have not been complete in any sense.

734 R. Chadha and D. A. Plaisted

13. Appendix

ProoF. (Theorem 3.1, Section 3.3)

We prove this theorem by showing that by making some of the nondeterministic choices
in algorithm U judiciously, a set of formulas £ can be produced by algorithm U such that
for every F' € L, the statement of the theorem is true.

Since H = W, H A =W is unsatisfiable, so Sk(H)A Sk(-W) is unsatisfiable. In a
derivation of the empty clause from Sk(H)A Sk(—=W), the order of resolutions performed
can be arranged so that resolutions performed among clauses of Sk(H) are performed
first, yielding a set of clauses D, and resolutions between clauses of Sk(H) and Sk(-~-W)
or among clauses of Sk(~W) are performed later. This means that there exists a set D
of clauses of resolvents of Sk(H) such that D A Sk(-~W) is unsatisfiable and such that
every clause of D is used at least once in the derivation of the empty clause by resolution
from D A Sk(—=W); also, since no more resolutions are performed among clauses of D
after D has been derived, each literal L of D must be resolved against some literal M of
Sk(—~W). This means that L and ~M are unifiable, i.e. there exists a substitution § such
that L0 = ~M6. Let o be a substitution such that

-Wa = Sk(-W),
i.e. o is a substitution that replaces existentially quantified variables of =W by Skolem
functions. Then there exists some literal M’ of =W such that
Mo=M.
Therefore L = -M8 = -M'c8.

Also, since M’ is a literal of ~W, =M’ is a literal of W. Hence, writing =M’ as N, we
see that

Ll = No#

i.e. for every literal L of D there exists a literal N of W such that L8 = Na§.

We now show that there is a way to make the nondeterministic choices in Steps 2, 3,
and 4 of algorithm U such that the properties described in the theorem will hold. For any
clause C in D, multiple instances of C could be used during the derivation of the empty
clause from D A Sk(=W). If k instances of C are used, we make k copies of the clause
C in Step 2. It is clear that if the number of resolutions performed to derive the empty
clause from Sk(H A —W) is r, then no more than r copies of each clause is required.

Now suppose L = SIGN(L) P(d; ,d2 , ...,d,), N = SIGN(N) P(b; , b3, ..., bs), where
SIGN(L) = SIGN(N). For every i such that 1 < i < s, consider d; and b;. If either d; is
a Skolem symbol, or if d; is a non-Skolem function symbol not occurring in W and b; is
a variable, then in Step 3 of the algorithm, we replace the argument d; by the argument
b; «— d; and we say that this argument of L has been marked. If d; is a variable, then
we replace the argument d; by the argument “b; < d¥’ and call this argument marked
too. (Note that this symbol “—~” has nothing to do with the implication sign “=>”.) The
marking symbol “—” has been introduced here to guide Step 4 of the algorithm.

We now describe how Step 4 is performed. Consider all marked arguments of the form
“@; < z” in groups, each group containing all such marked arguments with the same
variable z on the right-hand side of the “~” sign. Suppose a; « z, 09 < z, ..., 0, — X
are all the marked arguments with = on the right-hand side of the “~” sign. Consider
the set B ={a;, a3, ...,an}. This set contains terms that, during the resolution process,
unify with z or with whatever z has been instantiated to so far, and any two terms in this
set can be unified with each other. B can contain variables and function/Skolem symbols.

Derivation of Loop Invariants 735

Let B = VAR U FUNCT, where VAR is the set of variables in B, and FUNCT is B —
VAR. First we choose one element of VAR, say y; (if VAR is non-empty), and replace
all the other variables of VAR by y; everywhere in the formula MARK. Now consider
FUNCT. From our remarks above, since any two elements of FUNCT are unifiable, every
element of FUNCT must be the same function or Skolem symbol with the same number,
say k, of arguments, for some k > 0. Let

ARG; = {i** argument of z | z € FUNCT },for 1 < i < k.

Repeat the above process (which was performed for the set B) for each of the k sets
ARG, ARG,, ..., ARG}. Note that this is not really unification, since variables are not
being replaced by the terms with which they unify. We are just unifying all the variables
by replacing them by the same variable name. After this has been done for all the marked
arguments of this form, drop the “~—” signs from the modified set of clauses MARK as
well as the elements on the left-hand side of the “—” signs. If any two clauses of MARK
are now identical, one of them can be dropped. This shows how we can choose which
variables to unify in marked arguments in Step 4 of the algorithm.

Now perform Steps 5 and 6 of the algorithm, and let the set of formulas obtained be L.
For every F belonging to the set of formulas £, consider the set of clauses Sk(F). Sk(F')
is a set of clauses that is the same as D, except that:

(1) Some arguments of literals of clauses of D have been replaced by Skolem functions
(this is true if and only if the corresponding argument in D was a “marked” function
symbol during step 3), and

(2) There may be more than one copy of certain clauses of D (since multiple copies
of some clauses of D were made during Step 2), each of which is possibly altered as
mentioned in (1) above.

Recall that for literals L, N of D and W respectively, L8 = No8, where o is a substitu-
tion that replaces existentially quantified variables of =W by Skolem functions; in other
words, o replaces universally quantified variables of W by Skolem functions. This means
that all the variables of No are existentially quantified in W. Using the same notation as
before, suppose L = SIGN(L) P(dy,d3, ...,ds), N = SIGN(N) P(by,b2,...,b;), and No
= SIGN(N) P(ey, ¢2, ..., ¢5), where SIGN(L) = SIGN(N). For any i such that 1 <7 <s,
if d; is a variable, then b; could be anything. If d; is not a variable, then either of the
following could hold:

Case (i) : If d; is a Skolem function symbol, then (since b; cannot contain the same
Skolem symbol) b; must be a variable. If this variable were universally quantified in W,
then ¢; would be a new Skolem symbol and therefore could not unify with d;; hence b;
must be an existentially quantified variable in W.

Case (ii) : If d; is a non-Skolem function symbol, then one of the following are possible:
(a) b; is the same function symbol (with the same arity as d;)
(b) b; is a variable and the function symbol of d; (with the same arity
as d;) appears in W. By the same argument as in (1) above, b; must be
existentially quantified in W.
(c) b; is a variable and the function symbol of d; (with the same arity as
d;) does not appear anywhere in W. By the same argument as in (i) above,
b; must be existentially quantified in W.

For Case (ii) (a), if the function symbol that is common to d; and ¥; has more than zero

arguments, repeat the above analysis recursively for all these arguments (this analysis

736 R. Chadha and D. A. Plaisted

must eventually terminate since L and N are of finite length). But note that during the
marking process described for step 3, we marked for unskolemization all arguments that
fall under category (ii)(c) above. Therefore in F, all such arguments became existentially
quantified variables; and therefore in Sk(F'), these variables became new Skolem func-
tions, which fall under category (i) above. Hence in Sk(F), no argument d; can belong
to category (ii)(c), since all arguments of D falling in category (ii)(c) were unskolemized.
Hence all arguments of Sk(F') belong to categories (i), (ii)(a) or (ii)(b), and our theorem
is proved. O

ProOF. (Theorem 3.3, Section 3.3)

Let H be a given formula and let D be the set of clauses derived by resolution from
Sk(H) in Step 1 of algorithm U. Let M be a model for D with domain DOM (regarding
free variables as universally quantified in D), and let F € £. We show that M is also a
model for F'.

D and F differ in that all Skolem functions that are arguments of predicates in D are
replaced by existentially quantified variables in F', and in that some functions that are
arguments of predicates in D and that are marked during the marking process of Step
3 are replaced by existentially quantified variables in F'. Also, F may contain several
copies of some clauses of D. Suppose f(v1,vs, ..., Vm) is a function in D that is marked
as “z «— f(v1,v2,...,Vm)” in Step 3 of the algorithm and is replaced by the existentially
quantified variable z in F, and suppose z, 21, ..., 2, are all the (distinct) variables that
occur in vy, v, ..., ¥m. Then, by the unskolemization process we used, “Jz” comes after
“Yz,”, ‘Vza”, ..., “Vz,” in the quantifier string of F'.

The model M assigns an element d of the domain DOM of M to the function f(v;, v,
y - Ym). This element d depends on the mapping assigned to f in M, and on the values
of the arguments v1, v, ..., v, which in turn depend on the variables z;, 2, ..., z,, and
on the constant and function symbols occurring in vy, vy, ..., Up,. Thus, given the values
for variables z,, x3, ..., z,, there exists an element d of the domain DOM such that when
d is used in place of f(vy,vs, ..., vm) in the formula D, the formula D is true. If we do the
above for all such functions in D that are replaced by existentially quantified variables in
F', these elements “d” can be used in place of the corresponding existentially quantified
variables “2” in F' and will result in the formula F being true under interpretation M
(since each such existentially quantified variable z depends on the universally quantified
variables z;, %3, ..., 2, in F, and possibly some others). Hence M is also a model for F,
and therefore D = F. But since D is a set of clauses derived by resolution from Sk(H),
therefore

Sk(H) => D (where free variables are regarded as universally quantified), hence

Sk(H) = F (since D = F from the above), hence

H = F (since Skolem functions in Sk(H) do not appear in F).

This is true for any F €L, and therefore the theorem is proved. O

PROOF. (Theorem 3.4, Section 3.3)

Let D be the set of clauses derived from Sk(H) in step 1 of algorithm U. We know that
D A Sk(—W) is unsatisfiable, and in the proof of Theorem 3.1 we looked at every literal
L in D and found the corresponding literal N in Sk(~W) against which L was resolved
during the derivation of the empty clause from D A Sk(=W). Then for every argument
that was a function symbol in the literal L and did not occur in W, and that was unified
with a variable in the literal N, we “marked” this function argument, and unskolemized

Derivation of Loop Invariants 737

it so that every formula F'in £ (the set of unskolemized formulas resulting from D) had
an existentially quantified variable in that position (see proof of Theorem 3.1).

For any F € £, D and F are formulas that are identical in structure; the only differ-
ence is that some functions and all Skolem functions of D are replaced by existentially
quantified variables in F, and that F' may contain several copies of some clauses of D.
Two functions were replaced by the same existentially quantified variable if and only
if the two functions unified with the same variable during the derivation of the empty
clause from D A Sk(—W), or if the functions unified with two variables that unified with
each other during the course of the derivation of the empty clause from D A Sk(—~W).

Therefore the only difference between D and Sk(F') is that all Skolem functions of D
are replaced by Skolem functions in Sk(F) with possibly different arguments; and those
functions of D that are resolved against variables in literals of Sk(—=W) and that do not
occur in W are replaced by Skolem functions in Sk(F). Since any n functions in D that
resolved against the same variable in Sk(—W), or that resolved against some variables in
Sk(—-W) that unified with each other during the course of the resolution, were replaced
by the same existentially quantified variable in F', the Skolem function replacing that
variable in Sk(F') will be the same for all n of these argument positions, and therefore
they can all still be resolved against the same variables in Sk(—W) against which they
were resolved during the course of the derivation of the empty clause from D A Sk(-W).

So all we need to do here is to show that there exists some F € L such that the
empty clause can be derived from Sk(F) A Sk(—W) by using exactly the same sequence
of resolutions that was used to derive the empty clause from D A Sk(-=W). We do this
by showing that there is a certain linear order in the set LIN derived in step 6 (ii) of
algorithm U such that Sk(F') A Sk(=W) is unsatisfiable for the formula F' produced using
the quantifier string derived using this linear order.

In the proof of Theorem 3.1, for every literal L of D we found a literal N of W such
that L = Nod. Let the corresponding literal in Sk(F') be A. Let L = P(dy,ds,...,d,), N
= P(b1,bs,...,b,), A = P(ay,ay,...,a,) (without loss of generality we have assumed that
all three literals here are not negated; the same result can easily be seen to hold if all
three literals are negated).

Consider any constraint (y, z) in C, where z is a variable in F' that was replaced by a
Skolem function, say a;, in A. We will show that this constraint must also hold in W for
the arguments with which y and 2z unify in Sk(—=W), if these arguments are universally
and existentially quantified respectively in W; in other words, the existential quantifier
for the variable in W unifying with z must come after the universal quantifier for the
variable in W unifying with y. a; is a function containing y as an argument, say a;
= g(y, other arguments). Either y appears elsewhere in A, or it doesn’t. If it doesn’t,
then we don’t need to worry about the constraint (y, z) since it is not relevant for this
particular literal. If it does, then suppose a; contains y. Now consider b; and b;. Since q;
is a Skolem function, & must be an existentially quantified variable, say b; = v, in W.
Since a; contains y, b; contains a term, say u, which unifies with y; u could either be a
universally quantified variable, an existentially quantified variable, or a function symbol.
If one of the latter two is true, we need not worry about it; if the first of these is true,
i.e. if u is a universally quantified variable, then we must show that the constraint that
Vu must precede Jv in the quantifier string of W holds for W.

Suppose it doesn’t. Then in =W, “Ju” comes after “Vv” in the quantifier string for
—W. Therefore o assigns a Skolem function, say £, to u which contains v as an argument

738 R. Chadha and D. A. Plaisted

(recall that “-We = Sk(=W)); say the assignment is : u — f(v, other arguments). The
substitution o leaves v unchanged, since v is universally quantified in =W.

We have, L = No#.

Therefore y6 = f(v, other arguments) 6

and g(y, other arguments) 8 = v#.

But this means that y unifies with B(v, other arguments) and v unifies with g(y, other
arguments). From this we see that y gets unified with a term containing y, which 1s
a contradiction since such a unification cannot succeed due to occur check. Hence our
assumption must be wrong, i.e. the quantifier “Vu” must precede “Jv” in the quantifier
string for W.

We have shown that any constraint (y, z) in C must hold for the corresponding argu-
ments in W, if the arguments u and v (say) corresponding to y and z are universally and
existentially quantified respectively. Thus the relation DEP and the partial order PO,
whose definitions are based on the contents of C, will be the same for these arguments
in Sk(F) and W. Thus there exists a linear order in LIN that will order the universal
quantifiers in the same order as in W, and existential quantifiers can be inserted into
this string in the same order as in W. Name the formula constructed in this way “F”;
then F= W. O

PRroOF. (Theorem 3.5, Section 3.3)
Since F} < W, F; < W, therefore we know that

=W FR=>W
and therefore
(Fl/\Fz) =W, (FlVF2) =>W

Also, since each of F; and F are more general than W, from the definition of “more
general than” it can be seen that both Fy A F» and F; V F» are more general than W.
Hence

(Fl/\Fg) 'j W, (F1VF2) j W’
by definition. O

ProoF. (Completeness of the iteration algorithm, Section 10)

PROOF OF (i). Suppose GET-APPROX has not yet been called. Then the approximations
for all loop invariants are currently set to false. Consider the first argument H of GET-
APPROX. If the second argument of GET-APPROX is W, then H is a disjunction of W
and the left-hand sides of verification conditions that have W on their right-hand sides
and that are not valid with W set to false. However, it can be seen that none of these
left-hand sides can contain an occurrence of any loop invariant; the reason for this is
that since all the current approximations for all loop invariants are false, any left-hand
side containing an occurrence of a loop invariant would have the value false (since false
AH' = false for all H'). And since false = X is valid no matter what X is, a verification
condition containing a loop invariant in its left-hand side would be valid. Thus all the
left-hand sides of verification conditions that are included as disjunctions in H must be
known formulas without any occurrences of loop invariants, and the right-hand sides of
these verification conditions are all W. Hence each of these left-hand sides must imply
W. Since Wy = W (because Wy = false), clearly here H = W. O

Derivation of Loop Invariants 739

ProOF OF (ii). Suppose GET-APPROX(H, W) is called, and suppose H = W. GET-
APPROX in turn calls either CONSEQUENCE or DIRECTED_SEARCH.

Case 1. Suppose GET-APPROX calls CONSEQUENCE(H,W). We have H = By V
B, V ...V B,, where some of the B;’s constitute the previous approximation for W, and
the remaining B;’s are left-hand sides of verification conditions whose right-hand sides
are W. Since H = W, we have

ByvByV..VB, =W
Therefore for any 1,

B; = (Bl V Bs V...VB,-) =W
i.e. (B; = W) is valid for all such that 1 <i<r.

Since for each 7, an S; can be found by unskolemizing Res(B;A AXIOMS) with the
property that S; < W (because B; = W; thus we can use the results from Section 3), it
is possible to obtain the S;’s above so that S; < W for all ¢ such that 1 < < r. It may
happen that S; is implied by some of the other By’s; if it is implied by all the By’s, then
S; is added as a conjunct in formula S. After this is done for each # such that 1 << r,
S will be a conjunction of S;’s such that S; < W for all 7. But then by Theorem 3.5,
S<W.

If not even one formula S; can be derived from B; such that S; is implied by all the
other B;’s (for any ¢ such that 1 <7 < r) in a number b of trials, then S is taken to be
the disjunction of the last set of S;’s that were obtained in the WHILE loop; since each
of these S;’s had the property that S; < W, by Theorem 3.5 we have S < W.

Hence we see that it is possible for the function CONSEQUENCE to return a formula

S which has the property that S < W. Since GET-APPROX also returns S, this case is
proved.
Case 2 : Suppose DIRECTED_SEARCH(H, W) gets called by GET-APPROX. We have
H = B; VB, V...V B,, where some of the B;’s constitute the previous approximation for
W, and the remaining B;’s are left-hand sides of verification conditions whose right-hand
sides are W. As in Case 1, since H = W, we get

B; = W for all i such that 1 <i <.

Now, since DIRECTED_SEARCH has been called, there exist verification conditions
of the form Hy A W = H,, where W is the second argument of DIRECTED_SEARCH
and where H{, Hs are known formulas. Note that since # = W, we have H; A H =
Hi AW = H,, 1.e. Hi A H = H, is valid and therefore the condition to be checked at
the entry to the function holds. Let H; A W = Hs be one such verification condition.

Since B; = W for all 7 such that 1 < 7 < r, we have Hy A B; = Hi AW = H,, ie.
Hi A B; = H,. For any 1, consider the set of clauses Sk(B; A AXIOMS AH;)A Sk(—H?)
(where 1 < 7 < r). This set of clauses is unsatisfiable and therefore there exist derivations
of the empty clause from these clauses. It is possible to derive a set of clauses D; from
Sk(B;A AXIOMS) and to unskolemize D; to give a formula S; such that

B; = S; = W and S; < W (from the theorems in Section 3).

Then, since S; = W, therefore Hy A S; = H is valid; hence since by Theorem 3.3,
(B;AAXIOMS) = S; is valid, therefore Hi A (B;AAXIOMS) = H; A S; = Ho, ie.
Hi A BiAAXIOMS = H, is valid; therefore there exists a derivation of the empty clause
from Sk(H; A B;{AAXIOMS)A Sk(—H>).

Thus there exists a derivation of the empty clause from Sk(B;A AXIOMS) A Sk(H1)A
Sk(—H3) such that a set D; of clauses is produced by resolution from Sk(B;A AXIOMS)

740 R. Chadha and D. A. Plaisted

during this derivation of the empty clause such that D; has the above-mentioned prop-
erties (namely that D; can be unskolemized to give S; such that S; < W).

Therefore if we let PROOFS be defined as in the note at the end of the function
DIRECTED_SEARCH, for such a derivation of the empty clause, it is possible to pick
a set of clauses D; from PROOFS such that for some S; obtained by unskolemizing
D;, S; < W. As noted in Section 9, this method directs the search for W. This was
demonstrated in Example 4. Thus for each ¢, it is possible to choose the S;’s above so
that S; < W for all 7 such that 1 < ¢ < k. It may happen that S; is implied by some of
the other By’s; if it is implied by all the By’s, then S; is added as a conjunct in formula
S. After this is done for all 7 such that 1 < ¢ < r, S will be a conjunction of S;’s such
that S; < W for all i. But then by Theorem 3.5, S <W.

If no such formulas S; such that S; is implied by all the Bi’s can be derived from the
B;’s in a number b of trials, then S is taken to be the disjunction of the last set of S;’s
that were obtained in the WHILE loop; since each of these S;’s had the property that
S; < W, by Theorem 3.5, S < W.

Hence we see that it is possible for the function DIRECTED SEARCH to return a
formula S that has the property that S < W.

Finally, since S < W, therefore by definition S = W, and hence

(HiAS) = (HiAW) = H,,
ile. H{AS = H,
and thus the last condition for exit from the function is satisfied; therefore GET-APPROX
can return S such that S < W, and the proof is complete.O

PRrooOF OF (iii). Suppose GET-APPROX(H, W) has returned S such that S < W all the
n times it has been called, and suppose that it is called for the n + 1** time, with first
and second arguments H and W respectively. We know that
H=B,VByV..VB,,

where some of the B;’s constitute the previous approximation for W, and the remaining
Bj’s are left-hand sides of verification conditions whose right-hand sides are W. For the
B;’s that constitute the previous approximation for W, we know that each of these B;’s
imply W (since GET-APPROX returned S such that S < W all the n times it has been
called so far, therefore any approximation S for W returned by GET-APPROX had the
property that S => W). For the B;’s which are left-hand sides of verification conditions
with W on their right-hand sides, B; can either be written as Hy or as Hy AWY{, for some
known formula H; and some approximation W} to a loop invariant W’ (W’ could be
equal to W). If B; can be written as Hy, then H; = W is valid (since it is a verification
condition); if B; = Hy A Wy, then since H; AW’ = W is a verification condition, and
since GET-APPROX returned S such that S < W all the n times it has been called so
far, therefore the approximation W for W’ implies W', therefore we know that

H1/\W£=>H1/\WI=>W
ie. HH AW, = W is also valid. Hence each B; implies W. Therefore H = W (since
H =B, V..V B, and since By = W for all k such that 1 <k <r). O

ProoF oF (iv). We prove that GET-APPROX can always return a formula S such that
S < W by induction on the number of times GET-APPROX has been called.

Base case : If GET-APPROX is being called for the first time with first and second
arguments H and W respectively, then by (i), H = W. Therefore by (ii), GET-APPROX
can return S such that S < W.

Derivation of Loop Invariants 741

Inductive hypothesis : Suppose that for all the n times that GET-APPROX has been
called, it has returned formulas S such that S < W, where W was the second argument
of GET-APPROX in that call.

Inductive step : Suppose GET-APPROX(H, W) is called, this being the n + 1*» call
of GET-APPROX. By the inductive hypothesis, GET-APPROX returned formulas S
such that S < W all the n times that GET-APPROX was called (W being the second
argument of GET-APPROX in each case). Therefore by (iii), H = W; and therefore by
(i), GET-APPROX can return S such that S < W in this n+1** call of GET-APPROX
too, and the proof is complete by induction. O

PROOF OF (v). We saw from (iv) that for each loop invariant W?, it is possible to
derive approximations W} (by calling GET-APPROX) such that each W} derived has
the property that

Wi <X W' for all k.

And since {F I F < W'} is finite up to variants for any W* (provided that in the
conjunctive normal form of F, no two disjunctions of F are identical, and no disjunction
contains more than one occurrence of any literal) from Theorem 3.2, only a finite number
of distinct W;?"s exist. But then this means that at some point during the execution of
the algorithm, the WJ? ’s derived will start repeating themselves.

Thus there exists some integer A such that

j2/\=>(3k(k<)\/\Wj‘ = W})) for every i, 1 <i < n.

Recall that VV; = W’; +1 for every j > 0. We have to show that there will be a time
when Al_; flag(W?*) will be true. We first show that W} = Wi_; foralli, 1 <i < n.

We know from the above that there exists & < A such that

Wy = W;.

Therefore W5 = Wi=> Wi, = Wi = .2 Wi_,=>W;

Le. Wy = Wi |, Wi_, = W;.

Therefore W3 _, = Wj.)

This is true for every ¢, 1 < i < n. Therefore flag(W*) will be set to true after wi
has been calculated. Since this is true for every i, 1 < i <n, A_; flag(W*) will be true
after W3 has been calculated for every 7, 1 < i < n, and then the algorithm halts. O

PRrRoOOFs USED IN EXAMPLE 4, SECTION 11.

e Proof of AXIOMS Az; > 0Az2 > 0Az: = y1Az2 = Y2 A (Y1 = ¥2) = (y1 = ged(z, 22)).
(The same proof can be used to show that AXIOMS Az; >0A 22> 0Az; =y Az =
AWM #FrVy =gdlyLy) At # 12V = ged(z, L)AL # 2Vn =
ged(z1,22)) A (11 = y2) = (11 = ged(z1, 232)))

l.z; >0 Given
2.22>0 Given
3.zy=uy Given
4. 29 =y Given
5.Y#2ZVY =ged(Y, 2) Axiom
6. (1 = v2) Given
7. (y1 # ged(z1, z2)) Given

742 R. Chadha and D. A. Plaisted

8. y1 #y2Vyr = ged(y1,y2) Instance of 5
9. y1 # y2 Vy1 = ged(z1,y2) Paramodulate 3,8
10. y1 # y2 Vy1 = ged(z1, 22) Paramodulate 4,9
11. y1 = ged(z1, z2) Resolve 6,10
12. empty clause Resolve 7,11.

o Proof of AXIOMS A(z1 > 0Az2 > 0Az1 = YiAza=p Al =¥ —) A (W) #
Y2) Ay > ¥2 A (31 = y2) = (31 = ged(z1, z2)).

1.(Y>2Z)Vged(Y,Z)=ged(Y — Z,2) Axiom
2Y#ZVY =gcd(Y, Z) Axiom

3y >y Given

4.z, =y Given

5. 2o = yo Given

6. y1=v1— Given

T. M =19 Given

8. y1 # ged(zy, z2) Given

9.z21 >y Paramodulate 3,4
10. z; > z» Paramodulate 5,9
11. ged(z1, z2) = ged(z1 — 2, 22) Resolve 1,10

12.y1 =21 — o Paramodulate 6,4
13y =27 — 24 Paramodulate 5,12
14. ged(z1, 22) = ged(y1, z2) Paramodulate 11,13
15. ged(z1, z2) = ged(yy, y2) Paramodulate 5,14
16. y1 = ged(y1,y2) Resolve 2,7

17. ged(z1,22) = n1 Paramodulate 15,16
18. empty clause Resolve 8,17

e Proof of AXIOMS A(z1 > 0Az2 >0Az =y Aza = A(y2 = vh — v1) A (v #
VAN S A (W = y2) = (11 = ged(zy, 22)).

1. (Y <Z)Vged(Y,Z) =ged(Y,Z-Y) Axiom
2Y#2ZVY =ged(Y, 2) Axiom
Su<pVyi=19v Given

4. 29 =) Given

5.z21=m Given

6. y2=v,— 1 Given

T v%#wn Given

8. 11 =1 Given

9. y1 # ged(zy,2) Given

10. y1 < ¥ Resolve 3,7

11. 9 < 25 Paramodulate 4,10
12. 2; < 24 Paramodulate 5,11

13. ged(zy, x2) = ged(z1, 22 — 21) Resolve 1,12

Derivation of Loop Invariants 743

4. yo=220—y1 Paramodulate 6,4
15. ys =22 — 23 Paramodulate 5,14
16. ged(z1, x2) = ged(z1, y2) Paramodulate 13,15
17. ged(z1, 22) = ged(y1, y2) Paramodulate 5,16
18. y1 = ged(1h, ¥2) Resolve 2,8

19. ged(z1,22) = 1 Paramodulate 17,18
20. empty clause Resolve 9,19 O

14. Acknowledgments

We would like to thank Professor Alan W. Biermann and Professor David Gries for
their suggestions on improving the presentation of this material. We also thank the
anonymous referees for their helpful comments and suggestions.

References

Caplain, M. (1975). Finding invariant assertions for proving programs. Proc. Intl. Conf. on Reliable
Software, 165-171.

Chadha, R. (1991). Applications of Unskolemization. TR91-027, Ph.D. dissertation, Dept. of Computer
Science, Univ. of North Carolina, Chapel Hill NC 27599-3175.

Chang, C.-L., Lee, R. (1973). Symbolic Logic and Mechanical Theorem Proving. New York: Academic
Press.

Cook, S. A. (1978). Soundness and completeness of an axiom system for program verification. STAM J.
on Computing 7(1), 70-90.

Cooper, D. C. (1971). Programs for Mechanical Program Verification. Machine Intelligence 6, 43-59.

Cousot, P., Cousot, R. (1977). Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. Fourth ACM Symposium on Principles of
Programming, 238-252.

Cox, P. T., Pietrzykowski, T. (1984). A complete, nonredundant algorithm for reversed skolemization.
Theoretical Computer Science 28, 239-261.

Deutsch, L. P. (1973). An Interactive Program Verifier. Ph.D. dissertation, Univ. of California at Berke-
ley.

Dijkstra, E. W. (1985). Invariance and non-determinacy. Mathematical Logic and Programming Lan-
guages, C.A.R. Hoare and J.C. Shepherdson eds., Prentice-Hall, 157-165.

Floyd, R. W. (1967). Assigning meanings to programs. Proceedings of the Symposium on Applied Math-
ematics, American Mathematical Society 19, 19-32.

German, S. M., Wegbreit, B. (1975). A Synthesizer of Inductive Assertions. IEEE Transactions on
Software Engg., Vol. SE-1 (1), 68-75.

Good, D. 1., London, R. L., Bledsoe, W. W. {1975). An Interactive Program Verification System. IEEE
Transactions on Software Engg., Vol. SE-1 (1}).

Good, D. L. (1985)., Mechanical proofs about computer programs. Mathematical Logic and Programming
Langueges, C.A.R. Hoare and J.C. Shepherdson eds., Prentice-Hall, 55-75.

Gries, D. (1981). The Science of Programming. Springer-Verlag.

Katz, S. M., Manna, Z. (1973). A heuristic approach to program verification. Third Intl. Joint Conf. on
Artificial Intelligence, 500-512.

Manna, Z. (1974). Mathematical Theory of Computation, New York: McGraw-Hill.

King, J. C. (1969). A Progrem Verifier. Ph.D. dissertation, Carnegie-Mellon University.

Lee, S.-J. (1990). CLIN : An Automated Reasoning System Using Clause Linking, Ph.D. dissertation,
Dept. of Computer Science, Univ. of North Carolina, Chapel Hill.

Loeckx, J., Sieber, K. (1987). The Foundations of Program Verification, John Wiley and Sons, Ltd..

Loveland, D. (1978). Automated Theorem Proving, A Logical Basts. North-Holland Publishing Co..

McCune, W. W. (1988). Un-Skolemizing clause sets. Information Processing Letters, 257-263.

Robinson, J. A. (1965). Machine-oriented Logic based on the Resolution Principle. Journal of the ACM
12 (1), 23-41.

Seiichiro, D., Yamaguchi, T. (1989). Program Verification System with Synthesizer of Invariant Asser-
tions. Systems and Computers in Japen 20 (1), 1-13.

Wand, M. (1978). A new incompleteness result for Hoare’s system. Journal of the ACM 25, 168-175.

744 R. Chadha and D. A. Plaisted

Wegbreit, B. (1973). Heuristic Methods for Mechanically Deriving Inductive Assertions. Third Intl. Joint
Conf. on Artificial Intelligence.

Wegbreit, B. (1975). Property Extraction in Well-Founded Property Sets. IEEE Transactions on Soft-
ware Engineering, Vol. SE-1 (3), 270-285.

