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Abstract:

We show that Collins' classical quantifier elimination procedure contains most of the ingredients

for an efficient point location algorithm in higher-dimensiocal space This leads to a polynomial-size

data structure which allows us to locate a point among a collection of real algebraic varieties of

constant maximum degree in logarithmic time This result has theoretical bearings on a number of

optimization problems posed in the literature It also gives a method for solving multidimensional

searching problems in polynomial space and logarithmic query time.
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1. Introduction

The central theme of multidimensional searching is the organization of a database to which

queries of a chosen type can be made The term locus approach refers to the particular strategy

which regards a query as a point in higher-dimensional space: the idea is to subdivide the query

space into equivalence classes and thus reduce query-answering to point location This approach was

followed by Dobkin and Lipton [DL], who devised an efficient searching algorithm for linear varieties

in E'', for any fixed d Yao and Yao [YY] have observed that the constraint manifold can usually

be made hnear by throwing in additional variables, if needed Considering (as will be shown below)

that the preprocessing is doubly exponential in the number of variables, however, the hnearization

method may not always be so desirable. We will show here that Dobkin and Lipton 's method

can be generalized directly to handle arbitrary algebraic varieties The generalization is squarely

based on Collins' cylindrical algebraic decomposition (Collins [C], Arnon. Collins, and McCallum

[ACM1,ACM2]) The main idea is to transform Collins' algorithm into a data structure and add

various bells and whistles to support fast searching

For a precise statement of our results we need to introduce a few notions Let ^ = {P], , Pn)

be a set of n d-variate polynomials with rational coefficients and norm-length at most ( (The norfn-

Unglh of a polynomial is the number of bits needed to represent the sum of the absolute values of

its coefficients ) We also assume that the maximum degree of these polynomials is bounded above

by a constant Note that to allow all polynomials to be distinct, it is necessary to let ( be at least

on the order of log n In practice one should expect i to be at mcKt polylogarithmic in n.

The gtntraUztd point location problem concerns the fast evaluation of the predicate

[3i(l<:<f>)|/',(r) = 0],

for any query point r € £''' with rational coefficients A simple true/false answer being a little too

terse, we require supplementary information If the predicate is true then some witness t such that

P,(r) = should be provided (note that requiring the reporting of all such indices might by itself

preclude a fast response). If, on the other hand, the predicate is false, then z lies in a connected

region of the open set C = { r € £'"'
| FlKKr. fti') # } 1° ^^^^ case, the desired output is

usually the value f(z) of some function / which is invariant over each connected region of C. The

preprocessing will compute a distinct algebraic point, a sample, in each region of C and evaluate

/ at the sample points As it turns out, storing these algebraic points may be quite costly, so the



data structure will only store the values of the function at the sample points and not the points

themselves Our assumption that z should be rational is made to simplify the complexity analysis

The point location algorithm can in fact be easily extended to handle arbitrary real algebraic points

The problem is a direct generalization of the well-known planar point location problem Previous

work on point location with nonlinear boundaries has been limited to the case rf = 2, culminating

in the optimal algorithms of Cole [Co] and Edelsbrunner, Guibas and Stolfi [EGS] for subdivisions

with "monotone" curves, and that of Sarnak and Tarjan [ST] for more general subdivisions As will

be shown below, a Collins decomposition provides a simple framework for solving the point location

problem in full generality We will describe a data structure of size 0(n^ "') which allows us to

answer any query in 0(log n) time; the time needed to build the data structure is O (n^
*'

]

These bounds hold in the traditional unit-cost RA\f model (Aho et al [AHU]). One will

notice, for example, that the norm-length ( does not even appear in the bounds. The reason is

that in the unit-cost model any integer operation takes constant time, regardless of the length of

the integers involved Of course, this ma\ sometimes hide the true cost of a computation if the

integers become very large Traditionally, algorithms in computational geometry have tended to

ignore the true cost of precise rational arithmetic, although this issue has recently started to gain

importance (see [DS, HHK]) In the case of our data structure, however, this cost must be taken into

account The algorithm involves iterated computations of polynomial greatest common divisors,

subresultants. Sturm sequences, etc , al! of which tend to inflate the size of the coefficients of the

polynomials. Indeed, storing the scimple points in the data structure is to be avoided To represent

their (algebraic) coordinates by means of defining polynomials and isolating intervals requires too

many bits to be of much use during query operations

With this proviso, the complexity analysis of our data structure follows (Collins [C]) without

the added burden of storing cylindrical algebraic samples (though such samples might be computed,

used in preprocessing, and thrown away) If we start out with rf-variate polynomials of constant

degree and norm-length t. the preprocessing will only generate i-variate polynomials (k < d) of

constant maximum degree and norm-length 0(t) Moreover, all operations on the coefficients of the

polynomials can be carried out in a number of bit operations at most cubic in their norm-length.

This means that in order to obtain upper bounds on the bit complexity of the algorithm it suffices to

multiply the unit-coet bounds given above by fi. This would give us a query time of 0(fi log n) and

a preprocessing time of O f^n' j. As long as a computer word can store up to t bits the storage

requirement is (asymptotically) the same in both models of computation. Although our underlying



assumption wiD be the unit-coet model, we wUl &l»o mention the bit complexity of an algorithm

whenever there is a discrepancy between the two models A final word concerning the dependency

of the aJgorithm on the degree of the polynomiak We caution that our algorihtm, like Collins',

produces auxiliary polynomials whose mewimum degrees can be truly enormous This can add a

large multiplicative factor, say around b* , albeit constant, to the complexity of the algorithms We

will ignore this dependency in the subsequent analysis.

Interestingly, our data structure matches Dobkin and Lipton's [DL] m terms of storage re-

quirements, both being 0(n' "'). Although the size of our data structure is polynomial in n, the

magnitude of the exponent puts a severe limitation on its practicality. From a theoretical stand-

point, however, this result has direct application to multidimensional searching we will discuss this

relationship in some detail later. The algorithm also has somewhat unexpected ramifications We

will use it as a tool in the solution of severaJ problems Two of them, posed by McKenna [Mc], seek

(i) the longest line segment fully contained within a given n-gon and (ii) the minimum "vertical"

distance between two collections of red and blue segments in 3-space (see section 5 for details)

Another one, due to Atallah [A], asks at which time the convex hull of n points moving in the plane

will first enter its final, steady configuration Using our point location algorithm, combined with a

batching technique originally proposed by Yao [Y], we are able to solve these problems, as well as

other related ones, in subquadratic (albeit ever so close to quadratic) time

These are a few concrete exemplifications of a more general principle, which is one of the main

consequences of this paper Many optimization problems in computational geometry have trivial

quadratic solutions Typically these problems involve two sets A,B of n objects each, and ask for

the pair (a.b) £ A x B which minimizes some cost function, or satisfies some predicate; think,

for example, of the diameter or closest-pair problem (Preparata and Shamos [PS]). A considerable

amount of recent work in computational geometry can be regarded as attempts to beat this trivial

quadratic bound by building clever data structures which reduce the number of pairs a € -4,6 G S

that need testing (e.g., the Voronoi diagram for the closest-pair problem) Our results imply that

if the interaction of a single pair a ^ A,b E B can be staled ae an algebraic expression (possibly

involving Boolean algebraic predicates) in the real parameters specifying a, b, then the data structure

that we develop can be used to reduce the problem complexity to subquadratic.

In section 2 we review the algebraic backdrop behind the algorithms, and in section 3 we describe

the point location data structure in detail, section 4 discusses the relevance of the algorithm to

multidimensional searching in general In section 5 we tackle McKenna's problems by reducing



them to a more general optinuzalion question of the sort just mentioned We attack Atallah's

problem in section 6, and give a rr»ore general discussion of the underlying technique in section 7

FinaJiy, we conclude this paper in section 8 with directions for future research.

2. The Algebraic Machinery

Most of the aJgebraic notions involved in this work can be found exposed in great detail in

(CoUms [C]) and (Schwartz and Sh&rir [SS]) V\'e have tried to adhere to the terminology used in

these pap>ers a£ much as possible. The fundamental algebraic concepts can be found in van der

Waerden'e classic text [W], while for the speciaJized treatment of resultants and subresultants used

in the paper the reader should turn to Brown and Traub [BT].

I) ColliDs' Decidability Theorem In 1948 Tarski [T] proved that every statement in elementary

algebra (which is. the elementary theory of real-closed fields) is decidable The non-elementary

procedure given by Tarski was subsequently improved (computationally) in a number of different

ways by several researchers (eg . Seidenberg [S], Cohen [Coh], Collins [C], Monk and Solovay [M].

Ben-Or, Kozen and Reif [BKR]) For the purpose of the present work, we shall use Collins' decision

procedure as a guiding framework Let a standard prrnei formula be any logical sentence of the

form

where each Q, is & universal or existential quantifier and <f>(xi x^) is a quantifier-free formula

made of Boolean connectives standard comparators, and polynomials with rational coefficients in

the real variables Xi x^ A logical sentence is called an atomic formula if it is free of quantifiers

and logical connectives

Theorem 1. (ColUns [C]) - Lei <t> 6e an arbitrary standard prenez formula wtth d vanables. c atomic

formulas, to polynomials of degree at most b in any single variable, with all integral coefficients

of length less than i. Whether ^ is true or false can be decided in at most c/^(26)' m' bit

operations.

H) The CyLndricA] AJgebrajc DecompoeitioD This section reviews the essential components of

Collins' decomposition needed for the point location algorithm. We include this discussion to make

our exposition self-contained The reader fully farruhar with Collins' work may skip the next para-

graphs.



A Collins decomposition of the <f-dimcnsional Euclidean space E** is a refinement of the decom-

poeition of f* induced by a finite collection of real algebraic varieties (Each polynomial defining

a variety is sign-invariant over each region of the decomposition ) The key concept is that of a

cylindrical algebraic decomposition (or cad, for short) A d-dimensionai cad is a partitioning of E''

defined inductively as follows

(i) For d = 1, a cad is a finite set of disjoint open intervals and singletons whose union forms f
Each singleton contains an algebraic number: see a discussion later in this section on how to

store algebraic numbers.

(ii) For d > 1, » cad K is defined in terms of a cad A" of f**"' and a d-variate polynomial

P(xi,. . . ,*d-i ,y) with rational coefficients Let A'' = {ci , . . . ,Cp}; for each c, € A'' there exists

an integer i/*, such that for each x = (zj,. .,id_i) € c, , P{x,y). regarded as a polynomial in

y, has 1/, real roots f,\(z) < < f,„,{i). each of which is a continuous function in i over

c, If i/, = 0, set c, 1 = c, X EK U u, > 0, set c, 2, =
{ (j, /,,;(*))

I

i" € c, ) for 1 < ; < i/,,

and Bet c, 2j + i
= {{x~y)

I

«• € c, and /,,;(r) < y < /,,j + i(x) } for 1 <;<«/, . Also, put

Ci.i =
{
{z,y)

I

1- € c. and y < J,\(i] ] and c,,2v.+ i
=

{
(x,y)

|
r € c, and /, i,,(x) < y ]

Finally A' is defined as the set of cells {cj
i . , Ci 2i,, + i , .

. , c^ i
, . .. , c^ 2i-, + i

}

Following (Schwartz and Sharir [SS]) we call P the base polynomial o{ \.\\e cad Informally, the cells of

A' can be formed by considering the c\linders based at each c € A' and chopping them off with the

real hypersurface P(xi . . . , x^) = Since A is defined in terms of a unique cad of lesser dimension,

by induction, it defines an induced cad for each E* (1 < /t < d) Incidentally, one should note that

each cell of A' is "well-behaved," in the sense that it is topologically equivalent to a relatively open

ball of dimension at most d.

For our purposes the base polynomial P will always be of the form ni<i<n ^" ^^ce ^ =

{Pi, .. . ,Pn) is a collection of rf-variate polynomials with rational coefficients The key feature of a

cad is that for each c € A' and each P, £ T , the value of /',(x) is either zero over the entire cell c,

or it keeps the s&me sign over the cell: a cad which satisfies this property is said to be ^-invariant.

Besides introducing the concept itself the main contribution of (Collins [C]) was to prove that any

collection T admits of an .^-invariant cad and that it can be constructed fairly efficiently (all things

considered)

To simplify the computations (as well as carry the analysis further to determine the adjacencies

between the cells of a cad) Schwartz and Sharir [SS] introduce the useful concept of a well-based
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decompoeition A' ifi said to be well-based if, when regarded as a univariate polynomial in y, the

base polynomial P(t,y) is not identically lero for any given value of i in E'^'K They show that

in that case each root function /,j (defined over c, € A'') can be extended continuously over the

closure of c, . Informally, this means that every hne (j-i, .r^-i) x £' intersects the algebraic

variety P(x,y) = only a finite number of times These intersections will form the basis of the

binary search underlying the point location algorithm to be presented in the next section. How

can we ensure that a decomposition is well-based'' Since point location is defined independently

of a coordinate system, we can always modify the frame of reference to ensure this condition. As

a matter of fact, Schwartz and Sharir [SS] have suggested that a few random perturbations of the

original coordinate system might be the best strategy in practice. (They also give a method for

checking if a cad is well-based ) For our purposes, a well-based decomposition is convenient but not

necessary. Therefore another solution is. of course, not to worry about it and simply ensure that

the search procedure is robust enough to handle this type of degeneracy.

Following Collins" terminology, we define an algebraic sample of A' as a set of points with

algebraic coordinates, one in each cell of A' (recall that a real number is algebraic if it is a root of a

polynomial with integer coefficients! An algebraic sample is cy/inifnca/ (abbreviated cas) if either

d = 1 or the set of <i — 1 first coordinates of each point forms a cas of A'' If {c,
i , , c, j^. + i } is the

set of cells of A' associated with the cell c, of A'', the sample points in each c, j ( 1 < j < 2^, + 1 ) all

share the same d — 1 first coordinates

III) The Collins Construction We begin with a short review of Collins" algorithm Let Q be a

<f-variate polynomial of degree p with real rational coefficients We can write Q(ii. . . . ,Xi) as a

polyTiomial J2o<i<pQ>^'^- ''<i-^)^d °^ ^ single variable xj. with coefficients in the ring of real

rational (d - l)-variate polynomials Let deg(Q) = p be the degree of Q in xj and let ldcf((J) =

Qpixi Xd-i) denote the leading nonzero coefficient of Q We define the rtducium of Q, denoted

red(Q), as the polynomial Yio<x<p-i Q'i'i-- '^i-'i)'i ^* also introduce red°((5) = Q, and for

each k >0, red*"^'((5) = red(red*((?)). Finally we let der((?) denote the r^-derivative of Q

Let A(i) = ^o<i<a **''' *^*^ ^{') — IIo<i<» ^''' '*' ^^° polynomials in the real variable x with

deg{A) = a and deg(B) = b The Sylveiier mainxof A and B is the (a+fc)x(a+6) matrix M obtained

by placing the coefficients of the polynomials r*-M(r), .

.

. ,zA(x),A(x),x'-'^ B{x), . .
.

, xB(x), B(x)

in consecutive rows of M , with the coefficients of x' appearing in column a -i- b — i:
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This provides a recursive scheme for computing an ^-invariant cad K of E'' The algorithm

takes J" and d as input and recurses by caJhng itself with S, the projection of T . and d - ] as

arguments The output of ColJins' construction includes (i) quantifier-free formulas defining each

cell of A' and (ii) & cas of A' of the form {0\, ,0^,}, where for each : = 1, ,
f, each coordinate of

0, € E'' is represented by a quantifier-free formula For our application the definitions of the cells are

DOt really needed: instead, we need a correspondence between sample points and their associated

polynomials in ^. U d > I then A has a base cad A'' = {ci,. .,c^} which is ^-invariant Let

{0'i,- ,01) be the cas of A", computed recursively For each i = 1, .
. . ,/;, let {/?, i ,.,/?,, 21-,+ 1

}

be the points of the cas of A', ordered in aecending x^-order, whose first d — I coordinates form the

point 0',. Each point /?,,2; (1 < J £ ^i) '•«« on at least one algebraic variety of the form Pi{z) = 0.

Let I, J be any such value of/ and let 0,2} = (ai. ,ad)\ ^e define m, j as the number of distinct

real roots of Q{y) that are strictly smaller than a^ . where Q(y) —Pi, (ai , a^- 1 y) 's regarded as

a polynomial in
J/

As part of the output, we require the sequence {(/,i , m,i ). , ('. >, . »ti,>, )) for

each J = 1. . . ,/j This sequence will be necessary late: on in order to carry out the binary searches

underlying the point location algorithm

The next step is to show how to derive these sequences from {3, 1 .
, /?i 2^, + i ) (1 £ ' £ /j)

Recall that the latter sequences are provided directly by the Collins construction Let o{i) be the

quantifier-free defining formula for 3, 2, (1 < } < 1^,) Trivially, we can test the predicate

{3i 6 E"
I

0(r) and P,(i) = O]

for each / = 1 n, and pick as /, ^ , say. the first value of/ found to satisfy the predicate To obtain

m,j it suffices to express with a prenex formula the proposition, denoted Et that ; is a root of Q

*Dd Q(y) = Pi,
J
(oi , . . . aj-

1 , y) has exactly k distinct roots strictly smaller than r In the spirit of

(Arnon [Ar]) we express /* with the formula

<:..,-...,»(') =(3 yi v*)(Vx)|

[((?'(r) + g^(y,)+ • +(?'(yt) = 0) and (yi < • • • < y* < z) and

(Q(r)^0or2<ror J] (y. - r) = O) ' .

The value of m,j a then given by the unique index k for which R^^' a^_, 4(2) is true, with /?,,2j =



rV) Complexity AnaJysts We assume that only rational symbolic calculations are used during the

course of the computation The following complexity results are derived from (Collins [C]) Let b

be the maximum degree of any polynomial in ^ m any variable Recall all the polynomials in T

have norm-length at meet t. We assume that d and 6 (but not necessarily () are constants The

^-invariant cad produced by the Colhns construction consists of 0((2fc)' n' "'j = 0(n^ "M

cells (GDllins' paper [C] actually states a slightly larger bound, but the one above easily follows

from his derivations.) The total number of polynomials defined in the various projections introduced

in the decomposition is bounded above by Oi(2b)^ n' j = Of n'
J
and the maximum degree of

each polynomial in any variable is at most ^(26)' = 0(1). The norn>length of each polynomial

Uat most (2fc)''f = 0(0

Consider now the cas of the decomposition Each algebraic point is represented by its coordi-

nates. Collins uses two different representations of real algebraic numbers One is the traditional

root isolation method the number q is the unique real root of an integral polynomial falling in

some interval 7, whose endpoinis are rationals of the form a/2*. In the other representation, a real

algebraic number 3 will appear as an element of the algebraic number field Q{q) (i e., the smallest

subfield of S that contains both Q and o) In this case, we represent 3 by a rational polynomial

B{z) with 3 = B(q) The degree of each polynomial used in the definition of the cos's is dominated

by (2fc)'""' = 0(1) and their norm-length is at most ^(26)^"*'n''*' = o(in^'*j Implementing

the Collins construction proper requires Of ^^(26)- n'
j
= Oif^n^ j

bit operations Using

Theorem 1 and the previous upper bounds, it is easy to see that this running time asymptotically

dominates the overhead of computing the sequences of the form {(/, i
.m, i ),..,(/, ^,, m.i,,)}. In

the unit-cost model, this gives us a total running time of Ofn' *
]

.

3. The Generalized Point Location Algorithm

Most of the ingredients entering the composition of the algorithm have already been introduced

The data structure 'D{J') is defined recursively as follows it includes

(i) ViQ), where G is the projection of jT;

(ii) a cai of A';

(iii) a set of »/ one-word memory cells Ci, . . . ,C^ (which we conveniently associate with the cells of

J<).

10



Let Cf CI be the memor> c«l]s associated with V(Q) (in one-to-one correspondence wuh the

cells of A" = {ci, . . . ,Cy}) Each cell C' (1 < i < p) stores a pointer to the sequence {/, j , .l,„,]

previously defined Recall that the cell C* is associated with 2i/, -t- 1 cells of A' (each projecting

exactly onto c, ). Let W, = (C, i, . . . ,C,.2i/,+ i } be the corresponding memory cells in ascending re-

order. Consider the sequence 5, = {/ i. .'•>,) a* an ordered set of keys The possible outcomes

of a binary search in this set form a sequence of 2i/, -(- 1 keys and open intervals, which we put in

one-to-one correspondence with W, The data structure is now complete, so we can describe the

algorithm

The input is a family of polynomials ^, assumed to be preprocessed as previously described.

The generalized point location problem defined earlier can be reduced to the following given a query

point r = (ji, . . . ,xj) € f* with rational coordinates, compute the index i such that C, corresponds

to the unique cell of A that contains z If j- is a zero of one of several polynomials of T , the index of

one of them will be directly available from C, If. on the other hand , C, lies in one of the connected

regions of C = { x £ E''
| ni<i<n ^•(') ^ ^i- »<:cess to the sample points provided by the cas of

A' would provide the desired answer But as we swd eaiher, the data structure does not store the

sample points. Recall that we are interested m evaluating a particular function / which is invariant

over the regions of C Before throwing the sample points, we will precompute and store the values

of / at these points Note that from a theorem of Milnor [Mi] the number of connected regions in C

is singly exponential in d Therefore the evaluation of / over the sample points is bound to produce

the same values repeated!)

If <f = 1 the algorithm is a trivial baajy search, so let us assume that d > \ Recursively.

we assume that ?€ have available the index dl the cell C* that contains (x^, . . . ,Xa_i) Perform a

binary search in S, with respect to i^. and report the element of \\\ corresponding to the result of

the search We can implement the generic compaiisan against /,j as the two-fold question

1. Does Pi,^(r) = and is i the {m,j + l)st real root of Pi,,?

2. Is zj strictly larger or smaller than the (m,j + l)8t real root of P;, ,(xi, . . . ,Zi_i,y), regarded

here as a polynomial in y''

Question (1) is easy to answer since it involves a simple polynomial evaluation The second question

can be answered by computing the predicate

[(Vv)|(V>z,)or^(J?*;.V,..^..,„.^^i(v))].

11
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Of course, since the polynomial A(y) = Pi,^ (xi , . .. , xj. i , y) has constant degree and rational coeffi-

cients it might be just as simple to enumerate all its real roots (as algebraic numbers) and compare

xj against them. Following (Schwartz and Sharir [SS]) we begin by writing A{y) as B(y)/c, where

B IS a polynomial with integral coefficients Next we find an interval I that contains all the real

roots, eg, [— 1 — m, 1 + m], where m is the largest ratio between any coefficient of B and its leading

coefficient Then we proceed by binary search over I , using Sturm sequences to find out how many

real roots lie in a given interval. When the process terminates, each root will be enclosed by a sep-

arating interval with rational endpoints Answering question 2 will then be trivial. A lower bound

by Mahler [Ma] on the minimum separation between two distinct roots of a polynonual guarantees

that the process will stop after 0(6^1ogfc) = 0(1) iterations (in the unit-cost model). Collins and

Loos [CL] describe another technique for root isolation of bit complexity 0(6'° + 6^^^).

As mentioned earlier, each polynonuaj occurring in any projection has degree 0(1) and norm-

length 0{(). so the analysis above applies to all the binary searches performed in the location of

X. Since the total number of these polynomials is in 0(n' ), the overall query lime amounts

to 0(^"'logn) in the bit model and O(logn) in the unit-cost model (Incidentally, note that these

bounds involve constant factors doubly exponential in d) The preprocessing time is Ofn' j in

the unit-cost model and Olt^n'^ ) in the bit model

Theorem 2. Let T — {Pi , . , Pn) if o family of n d-vanaie polynomials with rational coefficients

and constant manmum degree The generalized point location problem on T can be solved in

O(logn) query time, using a data structure of size Oyri^ "/ '^^ P'^P'^ocesjinj time is 1 n'^ j.

This assumes thai operations on any integers of length proportional to the norm-lengih of the

polynomials ofT can be done in cons/an/ time.

4. Point Location and Multidimensiontd Searching

Multidimensional searching refers to the general task of querying a database to retrieve infor-

mation of a particular nature This can be defined formally by introducing a finite set V, a query

space Q, and a response domain R We also need a predicate function p:QxV—>{0, 1} and an

tvaluation function c :
2^— R. A query is an arbitrary element q E Q and its output is the value

of e{{x e V \p(q,z) }). A classical example is orihogonal range searching V is a set of points in

E^, Q is the set of all d-dimensional isotbetic hypcrrectangles, p{q,z) is true if and only if the point

z bes in the byperrectangle q, and c returns the cardinality of the input set in the counting version

of the problem; in the reporting version, c is the identity function.
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ElemenU of both \' and Q are expressed a£ rationaJ points in Euclidean space, and the value

of the predicate p{q,z) is determined by the signs of certain polynomials Pz-Qi. evaluated at q

The family J" = { Pz ,Qi \x € V ) is assumed to consist of rf-variate polynomials of constant

maximum degree with rational coefficients The reduction of multidimensional searching to point

location is now obvious This is called the locvs approach subdivide £"'' via the varieties defined by

/" and assign to each resulting cell the corresponding (constant) value of the function c.

Two implementations of the locus approach suggest themselves One is to apply the point

location algorithm of the previous section The other approach, suggested by Yao and ^'ao fV'^']. is

to linearize the polynomials by throwing in additional variables For example, the variety in E^,

'y2-3:^ + 2rV - 3.-" + r^y + z =

can be replaced by the hyperplane in E^

ii + 2.-2 - 323 + r^ + 2j =

Searching for the location of the point (x.y.z) among a real algebraic manifold is thus reduced to

the point location of (ry'r^, 2z^y'.3;^. r^y, ;) 6 £"' among a union of linear varieties, which can

be solved using Etobkin and Lipton's method [DL] The obvious disadvantage of the latter method

is that the number of variables may jump from, say, d. to (b + l)"*, where b is the maximum degree

in a single variable of any polynomial of T This can have dire consequences, as the preprocessing

cost will be doubly exponential in d in one case and doubly exponential in (6+ l)"* in the other

Let us illustrate our point location approach on a specific example. Let V be a set of n points

in E and Q be the set of (i-variate polynomials of degree at meet 6 with rational coefficients Given

a query polynomial q € Q. count the number of points z E V such that q(x) > 0. In our framework

the query q can be regarded as a rational point in E' , where c is the dimension of the vector space

Q. It is well-known that c = (''j '). (The dimension c is equal to the number of ways one can assign

exponents to Zi,Z2,- ,xj adding up to at mcKt b. Think of a sequence of d bars and b crosses

intermixed. Such a sequence provides a unique assignment of exponents A bar corresponds to some

*, and the number of consecutive crosses to its left indicates its power Furthermore, the bars can

be placed anywhere in the sequence ) The family ^ consists of n linear forms of c variables A query

is answered in time O(bgn) at the cost of 0(n''"') space

13



Consider now the case where V is a set of n points in E'^ and a query is a pair (q. r) consisting

of a point q £ E'' and a positive rational number r The response to the query is the number of

points in V' lying within a distance r of q The family T consists of n (<f 4- l)-variate polynomials

p(xi, . . . .rj+i) of the form (zj -ai)^+ • + ('<i-<J<<)^-'2+r •^ query is answered in time O(iogn)

at the co6t of 0{n ) space.

5. Biggest Stick, Line Shifting, and Other Related Problems

In this section we concern ourselves with the following class of problems: given two collections

A, B of n objects each and a real-valued function F defined on .4 x B, compute the minimum of F

over A X B. If the function F can be evaluated anywhere in constant time, problems of this type

always have trivial 0{n'^) solutions Note that many common problems fall in this category, eg,

Eopcrofi's problem (given a collection of Lnes and points in the plane, determine whether any line

pass through any point), diameter problem in E^ (given a three-dimensional polytope, what is the

largest interdistance between any two vertices), etc.

We will give a method for solving these problems in subquadratic time The technique is

very general, and will always work as long as a fixed number of rational parameters are needed to

represent objects in A or B. and the expression F{a,b) can be specified by a straight-Iine program

of constant length involving algebraic functions (in the parameters specifying a and 6) of bounded

degree. Rather than describing the method in full generality we will illustrate it by looking at two

problems posed in the literature. In a different context the next section will also provide an example

of the same basic technique.

Here is a problem posed by McKenna [Mc] given two collections F and G of nonvertical

segments in E^, such that each segment in F (resp. G) is parallel to the xj-plane (resp the y:-

plane) and each segment in F lies above every segment in G, find the largest distance d by which

F can be ahifted downwards until it hits G. It is easy to rephrase this problem in the framework

outlined above. As it turns out, it is not much more difficult to solve the more general line shifting

problem obtained by removing any restriction on the orientation of the segments.

As a starter, we consider the restricted line shifting problem, where both F and G are collections

of infinite lines. Each line of /" is of the form (y = y, , z = a,z + b,), for i = 1, . . . ,m, and each
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line of G IS of the form (z = x, , z = Cjy + dj). (ot j = 1, .
.

.
,n In this particular case we want to

compute

nun(a,i-; + 6, - Cjj/, - dj

)

Put u, = (a,,6, , y, , 1), for « = 1,. . . ,m and v, = [Zj A.-Cj ,-dj). for j = 1, ,n We must now

compute min.j ti, Vj , which gives us a new problem

Given two sets of vectors U = {uj. . . , u„) and V = {ij
,

. .iv,} in f **, find

min ( ti, t;
1
1 < « < m, 1 < j < n )

.

Clearly the minimum must be attained at pouts u, and i; lying on the convex hulls of U and \\

respectively So, without loss of generality, suppose that all points u,,Vj lie on the corresponding

hulls (Note that for the set of vectors arising in the line shifting problem, compulation of the convex

hulls can be done in time O(mlogm) and O(nlogn), respectively because each of these sets lies

in a 3-dimensional cross-section of EV) Next, without loss of generality, assume that m < n For

each vector v, the minimum of u, t is attained at that point (or points) u, € I' at which I' is

supported by a hyperplane whose inward drawn normal is v. Therefore, we need to preprocess ('

into a data structure that supports queries of the above form This is rezisonably easy to do in £"

and E^. In E^. for example, we use the standard Gaussian sphere representation, also known as

the normal diagram off That is we define a map on the sphere 5" with 0{n) regions, so that for

each region R, there corresponds a vector u, € I' such that all planes with inward drawn normals

in /J, support U at u, Next, we construct a data structure which supports O(logm) point location

queries in this spherical map Such a data structure can be obtained in 0(m log m) preprocessing

We can now determine min,(u, i ) in logarithmic time by simpl> locating v in the map In a total

time of 0({m + n) logmin(m, n)) we can thus find the required minimum

Note that this approach is also applicable to the restricted line shifting problem, because the

underlying set is essentially 3-dimensional We can thus preprocess U as above, given any vector

t; we simply remove its fourth coordinate and find the plane supporting U whose inward normal is

precisely the truncated t;. This gives us an 0{{m + n)logmin(m,Tj)) time solution to McKenna's

restricted line shifting problem

Next, we turn to the general line shifting problem Let A and B be two collections, each

consisting of n nonvertical segments in £"^. The problem is to find the smallest positive vertical

distance F(a,b) between any pair of segmenU a £ A and 6 € B The function F{a,b) is defined as
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follows if the projections of a and b onto the ry-plane intersect at some point r, then F(a.b) is

equal to Za - th^ where z^ (resp r») is the 2-coordinate of the point of a (resp 6) projecting into x.

otherwise F{a,b) = +oc

Fix two segments a £ A, z ^ B Each of them can be specified by six parameters, eg , the

coordinates of its two endpoints Let 01,02 be the endpoints of a and xi.rj be the endpoints of

X. Let a],al,x],il be the projections of these four points onto the zy-plane We first find the two

rational parameters o,0, satisfying

For the projections of o and x to intersect, it is necessary and sufficient that < o < 1 and < /? < 1.

Clearly both a and are rational functions of a*, oj, i*, and Xj Once q and have been found

(and be between and 1) the desired F{a.i) is equal to

Z(a.x) = a; + a{af, - q\) - x\ - 0{x\ - x\).

where oj, Oj. xj, and Xj are the z-coordinates of the four corresponding points.

In other words, regarding each segment x £ B as a point in E^, for each o 6 y4, we can express

F{a,x) as follows:

_ ^, l'Z(a,x), if < Q(a,x) < 1 and < /?(a.x) < 1;

\ +cx:

,

otherwise,

where a{a. x), 0(a. x). and Z[a, z) are all rational functions of o and x Now consider the collection T

of 0(n'') rational functions consisting of 0(0, x). 1— q(q,x), /?(a,x), 1
— /?{a,x), and Z(o,x)-Z(6.x).

for 0,6 € -4 If we now apply the point location algorithm to the collection ^ we will be able to

compute xr\\v\a(,A F{a,z) by simply locating x in its proper Collins cell.

What does that presuppose'' First of a!!. Theorem 2 tells us that the collection T should consist

of polynomials and not rational functions This is clearly not a problem any rational P/Q can be

replaced in J" by the two polynomals P and Q, thus at most doubling the size of the collection.

Secondly, we need to have an explicit correspondence between each cell of the Collins decomposition

and its aaaociated "winning" aegment of A (if any) To do »o, the naive solution will do simply

interpret each point of the cat as a segment in E^ and test it against every segment of A Break ties

arbitrarily What is the complexity of this solution? The cas consists of O (("')' "') = 0(n' ~^)

algebraic points, so labeling the Colbns cells with the proper segments of A will require 0(n' "')

tinr>e. This is largely doniinated by the estimate of the preprocessing time given by Theorem 2, that

is,0((r,')^")=0(n^").
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We can now use these observations to obtain a subquadratic solution to the line shifting prob-

lem We use a batchmg strateg>' inspired by Yao's work on higher-dimensionaJ minimum sp^anning

trees [\'] The technique is somewhat reminiscent of the Four-Russian algorithm for Boolean matrix

mulliphcation (Aho et al [AHV]) — see also (Chazelle [Ch2]) for a generalized version of ii The idea

is to partition the collection >1 into [n'"''^ ] subsets of roughly equal size. Instead of preprocessing

the entire set A for point location, a£ decribed above, we work on each subset A, separately for every

segment x € B we will determine in logarithmic time the minimum distance to A, Repeating this

operation for each subset A, gives an overall running time of 0(n'"''' n logn) = 0(n^"''' log n)

Theorem 3. The lirx ahxfitng problem on n Itnt segments can be lotted in 0(1' "^''''j Ume.

We shall follow a similar approach to solve another problem posed by McKenna [Mc]: given

a simple n-gon P what is the longest line segment that can be drawn in the closure of P'' In

McKenna's terminolog% the segment is called the biggest stick of P Obviously, the biggest stick

is not necessarily unique (think of a regular n-gon), so the term actually refers to any segment

with the characteristics described above A simple yet crucial observation of McKenna is that any

biggest stick must pass through two distinct vertices of P Going through n iterations of a linear

vertex-visibility algorithm (ElGindy and Avis [EA]), an O(n^) solution to the biggest stick problem

follows readiK Can one do better''

To begin with we set the stage for divide- and-conquer by applying the polygon-cutting theorem

(Chazelle [Chi]) In O(nlogn) time we find a diagonal c which partitions P into two subpolygons.

P\ and Pj. each of size at least n/3 The diagonal c is a line segment inside P joining two of its

vertices (Its computation can be made more efficient using the triangulalion algorithm of (Tarjan

and Van Wyk [TV]), but it does not have to ) Next, we call the algorithm recursively to determine

a biggest stick in each of Pi and P2 What remains to be done is to find a biggest stick crossing the

diagonal c aod keep the biggest of all three &s the output. To look at the problem in dual space will

clarify some of the issues

Consider the dual mapping which puts in one-to-one correspondence the point (a, 6) and the

line az + 6y -f 1 = 0. If <f is the distance from the origin O to the point p, the dual of p is the

line perpendicular to Op at distance 1/d from O and placed on the other side of O Any line I

croesing c is thus mapped to a point /* in the dual plane This point lies in the double wedge W
(not containing the origin) formed by the dual lines of the endpoints of c. For each such line and
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i = 1,2, let F,{r) be the length of the connected portion of f n P, , one of whose endpoints lie on c

Clearly the length of a biggest slick «* through c is given by

max{ Fi{r) + F:i(r)\{ crossing c
]

As shown in (Chazelle and Guibas [CG]) each of the functions Fi and fj can be represented as

a piecewise smooth function such that the projection of its smcx)th portions form a straight-edge

convex subdivision of W. The domain of the functions can be clearly extended to the whole plane

(setting F, to outside of W), which gives us two convex subdivisions M and A' of the plane These

subdivisions encode the set of boundary points of P which are visible from the diagonal c More

precisely, an edge of M (resp. A) encodes the visibility of a vertex of Pj (resp. Pj) from c, a vertex

of M (resp. A') is dual to a Lne passing through c and two vertices of Pi (resp Pj) with no other

contact with P between these three intersections It is shown in [CG] that both A/ and A' have 0(n)

vertices and can be computed in C>{nlogn) time McKenna has observed that F){t') + F-iiC) is

maximized either at a vertex of M or A' or at an intersection between an edge of M and an edge of

A'. Finding the biggest stick «* can now be regarded as a special case of the following more general

problem

Given two bivariate functions F{x.y) and G{x, y] and two associated convex planar subdivisions

M and A', such that F (resp G) is smooth (or continuous, or convex) over each region of A/ (resp

A'), and such that f + G attains its maximum either at vertices of A/ or A' or at intersections of

edges of A/ with edges of A', is it possible to determine the maximum of F-(- C in o(mn) time, where

m (resp n) denotes the number of vertices of A/ (resp A')'' By preprocessing each subdivision for

point location we can evaluate F and G at any point in 0(log n + logm) time This allows us to

evaluate f + G at all the vertices of A/ and A' in 0(t) log n -I- m log m) time There now remains the

more difficult task of testing edges against each other

It should be clear that our previous batching technique can be applied in much the same

way. A few differences are worth noticing, however. Let us discuss the problem of computing

max(,„)j, P(i,y) + G(r,v) in logarithmic time, given some edge e of, say, A'^. First, we must recall

the geometric meaning of the subdivision A'. With each edge e of A^ is associated a vertex v of Pj

as well as a line segment / on the boundary of Pj (Figure 1). For this reason, e can be represented

as a point z £ E^ (two coordinates for v and four for the segment /). Note that each point of

e = c(7) is mapped dually to a line passing through both the diagonal c and the segment t The

edge e(z) is "obtained" by pivoting the line in question around v and scanning all of i Given two
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edges a ^ M hi\d e{z) € A', we define H(a.z) as being if a and e{:) do not intersect and the

value of F(i,y) + G(z, y). where (x, y) = a Pi e(c), otherwise Given an edge e(:) of A' we compute

m^Xai M N {a , :) by performing a point location in the appropriate cad in f* Which functions

should be mcluded in the underlying collection ^"^ Let {p(a, z),q{a.z)) be the intersection of a and

e(r). Since the endpoints of the edge e(z) can be expressed as rational functions of : (i e., of its

coordinates), so can p{a,z) and q(a.z). Note that the intersection of a and e{z) can be enforced by

the sign of four two-by-two determinants, each also a rational function of 2. These constraints ensure

that the endpoints of a and e(z) be on opposite sides of the intersection of the lines containing the

segments

Let L be line dual to the point {p{a,z),q{a, z)) and let A (resp. B) be the intersections of L

with the portion of the boundary of P^ (resp P^) associated with the edge a (resp f) If H{a. z)

is not zero then it is equal to the length of the segment \AB\. The idea is to include all functions

H(a.z) — H(b.z) in ^, for aJl edges a.b £ A/ To keep all functions in ^ rational we can include

{H(a.z)) — {H{b,z)) , instead We also add to ^ the determinants that test for intersections

between e{z) and edges of A/

Let us mention in passing a general method for dealing with sets T that include arbitrar\

algebraic functions (and not just pol\ nomials) Suppose that we have a function /(xj . . , xj ) which

is expressed as a root of a univariate polynomial P( ; ) whose coefficients are polynomials in Xj , . . . , xt

.

Any zero (xj, . . . ,xt ) of / is also a zero of the polynomial P(0), so we can replace / by P(0) in JT.

As long as the queries are not zeros of P(0) themselves the Collins decomposition obtained after the

replacement will be refined enough for our purposes For example, let f{x.y.z) — -^ — 2y^ -f- 3v^

Using repeated squaring, we derive the identity

{(/^ H- z - 4y - 9-')^ - Axp - \AAyz)' - 2Z04xyzf-.

Therefore we can use the substitute function

x^ + I6y^ + 81z^ - 8xy - 72yz - 18x2,

Returning now to the biggest stick problem, we are about ready to conclude. Once again the

coet of precomputing the function on the algebraic points of the cas is dominated by the construction

of the data structure. As in the line shifting problem, ^ contains O(n') functions, therefore the

preprocessing requires 0(n^ ) time The batching trick leads to the following result
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Theorem 4. Computing iht biggest stick of a simple n-gon can be done in 0(n' ^^^^'"j Ume.

6. A Problem on Points in Motion

Atallah [A] has pceed the following problem. Suppose that n points are moving in the plane, with

the trajectory of each point described by a polynomial function of the time. What is the first instant

at which their convex hull will enter a steady-state, i.e., a combinatorially stable configuration'' We

shall assume that each polynomial has degree bounded above by a constemi Since the output

can be a feurly arbitrary algebraic number, we will have to content ourselves with a description of

that number involving a defining polynomial along with an isolating interval The naive algorithm

consists of computing the steady convex hull in 0(Ti]ogn) time [A], and then determining the first

time each point will achieve its steady positioning with respect to each edge on the hull Let e be

an edge of the hull for each moving point p it suffices to compute the last instant (if any) at which

p lies on the Lne supporting the edge e Let t{e) be the maximum value obtained by this process.

The desired answer is the maximum value of <(f) over all edges e of the convex hull Can this

quadratic algorithm be improved'' We will show that it cam indeed—well, at least theoretically We

will use our generahzed point location algorithm to produce an 0{ti^~') time algorithm, for some

small positive constant i.

Let V = {pi,...,p„) be a set of n > 2 moving points in the EucLdean plane We assume

the existence of 2n univariate polynomials Zi , j/i , . . . ,z„,yn of degree rf with rational coefficients,

such that for each i (1 < t < n), r,(0 and y,(t) are respectively the x and y coorduiates of p, at

time < > 0. Let p,, , . . ,p,, be the points on the boundary of the convex hull of \' at time (, given

in clockwise order, with t] < min(i2 t*) (If somehow p,^,...,p, ,
coincide for some j,j' then

their indices should appear in the order »;<...< iy.) Let H{i) be the uniquely defined sequence

(I'l,. . . ,ii). Obviously, H{t) converges as t grows to infinity [A]. We define the threshold of //(+ oc)

as the smallest value of < > such that [(W > t)
\
H{t) = //(<')].

Let *,(<) = 'Z,o<,<d<^*j^' ^^ V'O = Zo<;<rf*'j'^ for « = 1 " Without loss of

generality, assume that H{+oc) is the sequence (l,...,m), for m < n, and that all n points

(oi 0,- - ,o.,d,ti,o,- • ,i>,d) of (J^''"'"' are pairwise distinct. In O(nlogn) time compute H(+<x) [A]

and check all pairs {p,,p,+i) (1 < « < "i) in order to determine the largest to > such that, for

ome »', we have i,(<o) = «i+i(<o) and ia(<o) = Vi+iCo); note that we may have (o = — oc. Here
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(as in the following), index withmelic is taken mod m Similaiiy, we ensure the convexity of the

polygon {pi pm ) by considering the function

/.(?) = (y.(0 - y.+i(<))9x + (i-,+i(0 - i.(0)9v + '.(Oy,+i(0 - y.('k, + i(0

The point q = (9r.9») € £'' lies to the right (resp on or to the left) of the oriented line (p, ,p,p, + i')

iff f,(<l) < (resp f,(q) = or f,{q) > 0). For each p, (1 < i < m) compute the largest real root

of /,+ i(pi) as a polynomial in t, discard every case where the polynorrual is identically zero Let

<i be the largest value thus obtained (or -oo if there is none), and let tj = max(0,to.<i) Once

H(+oc) is available, t^ can be easily computed in 0{n) time. All that remains to be done is to

compute the first instants at which each Pj {m < j < n) bes inside //(+oo) for good To do so,

we aJlow ourselves some preprocessing Let q{t) = (9r(0'9»(0) be a time-varying point in E' . with

9r(n = Eo<j<i ?/''•' a"«^ 9y(') = IIo<j<i9;'-' The point x = (Qo qI-Qo iD belongs to

E*^'^'*'- and is independent of n Let sign .4 = -1 (resp = 0, 1) if ^ < (resp ^ = 0, > 0) We

define

<(X) = min|< e^\t>l2 and (V.; 1 < t < m )(V(' > <) sign /, (?(/)) = sign /,((?(<')) |

Clearly. f(x) can be computed in 0{rn) lime Next, we describe a fast algorithm for computing t{\)

based on point location

Let ^= {oi(x.') *m(xO). where o, (xO denotes the (2<f-l-3)-variate polynomial of degree

2d+\.

0<;<ii 0<;<<'

with i being the (2d + 3)rd coordinate Let A' be the ,?"-invariant cad of E^'*'*"^ provided by the

procedure described in section 2, and let K' — {ci , . .
.

, c^} be its base cad (i e., the induced cad of

E'^''*'^). Recall that for each c, £ A'' the procedure provides us with a sequence of indices (possibly

empty) S, = {/..i , • , /i .,, } with the following meaning for any given x € c, the line xx E^ contains

an increasing sequence of real roots for the univariate polynomials ^;, ,(x.O' • • • >^', „ (X-O The

interpretation of this sequence is trivial it gives the indices of the lines passing through PiP,4.i that

are intersected by the trajectorj' of x in chronological order (from < = -oo to < = +oo) If the

sequence is empty then x never intersects such a Lne. Once K' has been preprocessed for point

location, computing <(x) is straightforward. Locate the cell Ci that contains x and check whether

the sequence S, is empty. If yes, set <(x) = <2 If t.he sequence is not empty, the trajectory of x
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intersects the bne passing through P;. ,^P/, . +i at some time / and does not intersect any other such

line subsequently. We obtain t by computing the largest real root of i^;,
__ i\,1) as a polynomial in

t (which must exist) Finally we set t(\) = max(/2,0 From Theorem 2 we immediately conclude

that in 0{m'^ ) lime it is possible to construct a data structure so that the function t(\) can be

evaluated at any point x € E^''*^ in O(Iogm) time

We are now ready to attack AtaUah's problem, using the same batching trick used in the previous

section This leads to an algorithm with a running time of 0(n^"'/^ * iogn). We omit the details.

Theorem 5. Jn 0{n?~^^* ) time ti is posatble to compvie the threshold time of the steady-state

convex hull of n points movtng in the plane according to polynomial functions of time of maximum

degree d

We close this section with a few remarks about Atallah's problem Our technique clearly is

general enough to be applied toother problems (eg, closest /farthest pairs) An interesting question

is to determine whether a more ad hoc treatment of these problems might lead to a more efficient

solution For example, a continuity argument easily shows that ensuring the local coherence of the

steady-state Voronoi diagram is sufficient to compute its threshold (e.g., checking the nonzero length

of its edges) It is then fairly simple to devise an 0{n\ogn) algorithm for computing the steady-state

Voronoi diagram of n moving points as well as its threshold Note that the same argument can be

made for convex hulls if all the points are guaranteed to lie on it One essential feature of these easy

cases is that the output contams all the input Is this in general a necessary condition of efficiency''

7. A Discussion of the Batching Technique

In the preceding sections we have given a few examples of techniques for obtaining (slightly) sub-

quadratic solutions to a large variety of geometric problems which admit trivial exhaustive quadratic

•olutions. Many other problems yield to our technique For example,

(i) Given a set of m red objects (algebraic curves, surface patches, etc ) and n blue objects,

doe* any red object intersect any blue object? Hopcroft's problem, mentioned above, is such

a problem; detecting intersection beween a collection of red segments and a collection of blue

segments is another example.

(ii) Given m rays and n triangles in S-space, find the first triangle hit by each of the rays, or

alternatively, find the number of triangles stabbed by each ray.
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(iii) Given a coUeclion of n (disjoint) triangles id three dimensions, find all pairs of mutuallv visible

vertices. Here, we regard each pair of vertices as a query point ; in E^ and each triangle A

corresponds to a Boolean predicate that expresses the fact that r is not blocked by A Batching

the triangles and using our technique we can obtain a subcubic solution (a cubic solution being

trivial).

Reflecting over our results, we can see a whole spectrum of problems amenable to our techniques.

(A) The simplest of them admit linear or near-linear data structures and can be solved in 0(n log n)

time, e.g., the cloeest-pair problem in the plane

(B) Next in line, we have problems for which we have efficient, polynomial-size data structures and

for which the batching technique is very effective, e.g., computing the diameter of n points in

E^ , Hopcroft's problem

(C) Then we have the problems of the type discussed in this paper; sufficiently complicated to offer

no alternatives but computing Collins decompositions (in theory, that is)

(D) Finally, we have problems for which it is not clear even how to obtain a Collins decomposition

of the form used in this paper For example, consider a variant of problem (iii) above in which

we want all pairs of mutually visible triangles (i e , each triangle containing at least one point

which is visible from the other one) Can this problem be solved in subcubic time using our

technique'' As it turns out, the best solution currently known runs in time 0(T\*a{n)) (McKenna

and O'Rourke [MO])

As another example, consider the hne shifting problem discussed in section 5 We have presented

two versions of the problem, an easy one (of type (A)) involving shifting infinite hnes parallel to

the X2- or yi-plane and a difficult version (of type (C)) involving two arbitrary collections of line

segments. What can be said about the intermediate type (B) version, in which one set E consists of

m segments parallel to the yr-plane and the other set G consists of n segments parallel to the xz-

plane? Let o be »ome positive integer Batch the segments of E into q subsets of size roughly m/a

By using a standard slab decomposition of the zy-projections, we obtain roughly 2m/a horizontal

slabs in the xy-plane (for each subset), each consisting ofOim/o) subsegments which can be treated

as infinite lines for any query segment of G whose projection falls in that slab By maintaining the

subsegments in each slab as a balanced binary tree, and by storing the four-dimensional convex hull

associated with the lines containing the subsegments in each subtree (as in section 5), it is easy
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to answer each query from G in time 0(Qlog m) The preprocessing lime is 0((m*/Q) log^ m).

Choosing o = ['Tj/v'nJ gives a total running time of 0{rn^ log^ m)

A final comment concerns the use of probabilistic algorithms for the problems studied in this pa-

per Such a method has been developed recently in (Haussler and Welzl [HW], Clarkson [C11,C12],

Edelsbrunner, Guibas, and Sharir [EGSh]). It can be roughly described as a divide-and-conquer

paradigm which uses random sampling of a small subset of the input objects to obtain a cell decom-

position such that, with high probability, each cell contains (or intersects) only a small number of

the given objects. If the queries are known in advance (which is the case in the problems studied in

aeclion 5) then we can partition them among the cells of the decomposition, bo that each point can

interact only with a small number of objects We believe that one can develop a general framework

for blending this randomized method with our Collins decomposition technique, and obtaun (slightly)

improved probabilistic algorithms for such problems We leave this as an open problem

8. CoDclusioDs

The contribution of this work has been two-fold generalize Dobkin and Lipton's point loca-

tion algorithm, and demonstrate some theoretical applications of the new algorithm Further work

includes the (difficult) problem of drastically reducing the high space-complexity of the generalized

point location algorithm Even the case of hyperplanes is still open For an O(logn) query time, the

0(ti* "') space requirement of the Dobkin-Lipton data structure was lowered to 0{n'''^'). for any

£• > 0, by Clarkson [Cll], and recently to 0{n^) by Chazelle and Friedman [CF] Unless nontrivial

lower bounds can be established, however, these bounds still leave much to be desired The idea of a

cylindrical decomposition arises naturally in the elimination of quantifiers in Tarski sentences It is

less than obvious, however, that it is the right approach for point location Mibior's bounds suggest

that a single exponential might be achievable: this would be a considerable improvement over our

method.
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