CERN-Data Handling Division
DD/ 84/ 20
6 December 1984

EXPLICIT EVALUATION OF CERTAILN DEFINITE TINTEGRALS

INVOLVING POWERS OF LOGARITHMS

K.5. Kolbaig



1. INTRODUCTION

In recent years, considerable progress has been made in evaluating algorith-
mically, by symbolic computation om a computer, several classes of indefinite
integrals. On the other hand, many fewer procedures seem to be available for the
algorithmic computation of definite integrals. This is hardly surprising in view
of the many different methods which are required to evaluate such integrals, some
of them needing special tricks and a certain experience. There are, however,
some classes of definite integrals which are well-suited to formal evaluation, if
not by hand —- because of the complexity of the resulting (elementary) expres-
sions -- at least by symbolic computation. In particular, certain integrals which
can be represented as repeated derivatives of products or quotients of gamma
functions are of this kind. We shall present a few of these here. Their deriva-

tion can be found in the corresponding references,

2. AN AUXILIARY PROCEDURE

For the evaluation of some of the integrals we shall need the coefficients
of the power series of a certain product of gamma functions multiplied by the
exponential function. These coefficients can be computed by symbolic algebra.

We start from the power series expansion [ Gradshteyn, Ryzhik (1980), No. 8.342]
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where Y = 0.57721... is Euler's constant, and (k) is the Riemann zeta function.
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we apply a recurrence procedure given by Knuth (1969), p. 561 and elsewhere, and
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THE INTEGRALS

In what follows, Ck(a;al,az,as) is defined by (2.3}; Bj and Ej are the
Bernoulli and Euler numbers, respectively, as defined in Abramowitz, Stegun (1966),
No. 23.1.1-3. Séj) are the Stirling numbers of the first kind, defined by recur-
rence, or directly by Schldémilch's representation (Abramowitz, Stegun (1966),

No. 24.1.3, Comtet (1974), p. 216).

We also introduce the abbreviation
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We now list mine integrals which have recently been treated in detail in
Kolbig (1982) [formula (3.1)7, (1983a) (3.2), (1983b) (3.3) and (3.4), (1985) (3.5)

to (3.9):
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In formulae (3.5) to (3.9), n, m, and £ are integers. The integrals in

(3.6) and (3.8} are to be understood as Cauchy principal value integrals if
m=41-1.

Note that
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Hence this integral can be obtained from (3.9}, For each of the integrals (3.5)
to (3.8), there exist relations connecting integrals with different parameter
values. These relations and a short explicit table of these integrals for small
values of n, m, and £, obtained by REDUCE [Hearn (1984)] on an IBM 3081 and a
Siemens 7880 at CERN, are given in Kolbig (1985).
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