
Higher Order Unification Revisited:
Compete Sets Of Transformations

MS-CIS-89-11
LOGIC & COMPUTATION 2

Wayne Snyder
Jean Gallier

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Revised February 1989

Accepted for publication to appear in special issue
of Journal of Symbolic Computation, 1989

HIGHER ORDER UNIFICATION REVISITED:
COMPLETE SETS OF TRANSFORMATIONS

Wayne Snyder1 and Jean H. Gallier2

'Computer Science Department, Room 280
Boston University

111 Cummington Street
Boston, MA 02215

2Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

January 13, 1989

I This research was partially supported by the National Science Foundation under Grant
I No. DCR-86-07156 and by ONR under Grant No. N00014-88-K-0593.

HIGHER ORDER UNIFICATION REVISITED:
COMPLETE SETS OF TRANSFORMATIONS

Wayne Snyder1 and Jean H. Gallier2

Abstract: In this paper, we reexamine the problem of general higher-order uni-
fication and develop an approach based on the method of transformations on
systems of terms which has its roots in Herbrand's thesis, and which was devel-
oped by Martelli and Montanari in the context of first-order unification. This
method provides an abstract and mathematically elegant means of analyzing
the invariant properties of unification in various settings by providing a clean
separation of the logical issues from the specification of procedural information.
Our major contribution is three-fold. First, we have extended the Herbrand-
Martelli-Mont anari method of transformations on systems to higher-order uni-
fication and pre-unification; second, we have used this formalism to provide a
more direct proof of the completeness of a method for higher-order unification
than has previously been available; and, finally, we have shown the completeness
of the strategy of eager variable elimination. In addition, this analysis provides
another justification of the design of Huet's procedure, and shows how its basic
principles work in a more general setting. Finally, it is hoped that this presenta-
tion might form a good introduction to higher-order unification for those readers
unfamiliar with the field.

I Introduction

1 Introduction

Higher-order unification is a method for unifying terms in the Simple Theory of Types
[6], that is, given two typed lambda-terms el and e2, finding a substitution a for the free
variables of the two terms such that a(el) and a(e2) are equivalent under the conversion
rules of the calculus. This problem is fundamental to automating higher-order reasoning, as
convincingly shown for example in the automated proof of Cantor's Theorem (that there is

no surjection from a set to its powerset) found by the TPS system [3], where the higher-order
unification procedure finds a term which corresponds to the diagonal set {a E A (a 4 f (a))
used in the standard proof (for details, see [3]). Higher-order unification has formed the
basis for generalizations of the resolution principle to second-order logic [7, 401 and general
w-order logic [24, 36, 411 (but see also [I]), the generalization of the method of matings
[2] to higher-order [4, 3, 31, 371, higher-order logic programming in the language XProlog
[32, 351, a means for providing flexible implementations of logical inference rules in theorem
provers [12,36], program synthesis, transformation, and development [27, 20, 21, 33, 391,

and also has applications to type inferencing in polymorphic languages [38], computational
linguistics [34], and certain problems in proof theory concerning the lengths of proofs [lo].

Higher-order unification was studied by a number of researchers [7, 17, 18, 19,40,41] before
Huet [25, 261 made a major contribution in showing that a restricted form of unification,
called preunification, is sufficient for most refutation methods and in defining a method for
solving this restricted problem which is used by most current higher-order systems.

In this paper, we reexamine the problem of general higher-order unification and de-
velop an approach based on the method of transformations on systems of terms which has
its roots in Herbrand's thesis, and which was developed by Martelli and h4ontanari [30] in
the context of first-order unification. This method provides an abstract and mathemati-
cally elegant means of analyzing the invariant properties of unification in various settings
by providing a clean separation of the logical issues from the specification of procedural
information. The set of transformations for higher-order unification is developed from an
analysis of the manner in which substitution and ,f?-reduction make two terms identica.1,
and shows clearly the relationship between first-order unification, higher-order preunifica-
tion, and general higher-order unification. Our major contribution is three-fold. First, we
have extended the Herbrand-Martelli-Montanari method of transformations on systems to
higher-order unification and pre-unification; second, we have used this formalism to provide
a more direct proof of the completeness of a method for higher-order unification tha,n has
previously been available; and, finally, we have shown the completeness of the strategy of
eager variable elimination, which eliminates redundant comljutations while maintaining the
ability to find complete sets of unifiers. In addition, this analysis provides another justifi-
cation of the design of Huet's procedure, and shows how its basic principles work in a more

2 Higher-Order Unification Revisited

general setting. Finally, it is hoped that this presentation might form a good introduction
to higher-order unification for those readers unfamiliar with the field. To this end, and in
order to motivate the use of transformations for higher-order unification, in the remainder
of this introduction we provide an overview of our approach.

The method of transformations for solving unification problems is much like the well-
known method used for solving systems of linear equations known as Gaussian elimination.
In Gaussian elimination, the original system of equations is transformed step by step (by
variable elimination) into a solved system, that is, a system whose solution is obvious.

Similarly, a unification problem is a set { (ul , vl) , . . . , (u,, v,)) of pairs of terms (sometimes
called a disagreement set) to be (jointly) unified. (We consider these pairs to be unoriented.)
The method of transformations consists of applying simple transformations, some akin to
variable elimination, until a "solved" system S' is obtained whose solution is obvious (in a

sense to be made precise below).

Gaussian elimination and first-order unification are somewhat similar. For exa,mple,
the transformations for first-order unification given in Section 53, like Gaussian elimination,
must terminate and hence the existence of solutions is decidable. Also, these transformations
preserve the set of solutions as an invariant, just as in Gaussian elimination the variable
elimination step preserves solutions; and in both the set of solutions is either empty, a

singleton, or infinite. But in the higher-order case the analogy breaks down. For example,
unlike Gaussian elimination, it is undecidable whether a higher-order system has unifiers,
and the transformations do not terminate in general. Also, the transformations used for
higher-order unification do not necessarily preserve the set of solutions. In general, if a
system S' is derived from a system S, it can only be claimed that the set of unifiers of S'
is a subset of the set of unifiers of S. Thus, we face a completeness problem: we have to
show that every unifier of S will be produced as the obvious solution of some system S'
derivable from S. In fact, it is practically impossible to require that every unifier of S be
produced, and normally we are only interested in whether a complete set of unifiers can be
enumerated using the transformations. Roughly speaking, a complete set of unifiers for S
is a set of unifiers for S from which every unifier for S can be generated.

Thus the interesting issue is in finding natural sets of transformations which present in
an abstract form the fundamental operations of unification, but which are complete in this
sense. In order to introduce the notion of higher-order unification, we shall first demonstrate
the full method in the first-order case, and then sketch what changes need to be made to
deal with higher-order terms. This will hopefully provide the necessary intuition for the
more detailed treatment in the remainder of the paper.

Suppose we wish to find a unifier (if possible) for the two terms f (x, f(h(x, gx), x'))

1 Introduction 3

and f (x, f (h(f y, z), y')). Now any substitution which unifies these terms can not affect the
topmost function symbol f , and so it is easy to see that a substitution 8 unifies the terms
if and only if it pairwise unifies each of the immediate subterms. For example, 8 unifies

the system

{(f (x, f (h(x, s.1, XI)), f (x, f (h(f Y, 21, Y1>))1
iff it unifies

{(xt 4, (f (h(x, gx), X I) , f (h(fY, 21, yl))}.

In general, we may define a transformation on systems which we call term decomposition:

where S is any system (possibly empty). After two more iterations of this transformation,

we have

{(x,x), (2, fv), (gx, 4, (X',Y'))-

Now in this system, it is clear that the pair (x, x) is in fact already unified, and contributes
no information about possible solutions, since any substitution unifies a pair (u, u) for some
term u. Thus we may define a transformation which simply removes such trivial pairs:

In our example, we may derive the new system

These two transformations simplify a system (by reducing the total number of symbols in the
whole system) but do not in any way change the set of solutions; hence the set of solutions

is invariant under the transformations. But it is not yet obvious what the set of solutions

is. The reader may check for example that [f ylx, g f y/z, xl/yl], [f y/x, g f y/z, yl/x'], and

[fha/x,gfha/z,ha/y,a/x',a/yl] are all unifiers of the system. In each of these however,
the binding made for x has the form f t for some term t, since if a substitution unifies the

pair (x, f y) then the binding for x must have f as a top symbol. In this case, we may
provide a partial binding for x (since we do not yet know the entire binding, but only the

top symbol) by transforming the previous system into a new one which contains this partial
binding:

{(x? fx1L (x,fy), (9x7 4, (xl,Y1)}.

Now we may eliminate the variable x from the rest of the system by replacing it by f xl ,
i.e., by applying the substitution [fxl/x]. After applying decomposition once more, we get
the system

{(x,fx1), (xI ,Y), (gfx17 4, (x1,Y1))*

4 Higher- Order Unification Revisited

In general, we may define an amitation rule for partially solving variables in systems: If x
does not occur in the term f (tl , . . . , t,) then we have:

where yl, . . . , yn are n e w variables occurring nowhere else, and St is the result of replacing
every occurrence of x in S by the partial binding f (yl, . . . , y,). Note that if x were to
occur in the term f (tl , . . . , tn) then the system would not be unifiable.

The point of the imitation rule is that we find a partial solution for a variable x, and

then solve x partially by substituting the partial solution for the remaining occurrences of

x, thus reduced the problem of finding a binding to solving for the new variables in the
partial binding for x. In general, if we transform a system using the rule

where x is a variable occurring in S but not occurring in t and S[t/x] represents the result of

replacing every occurrence of x in S by t, then, as in Gaussian Elimination, we have solved

the system for the variable x; hence this transformation is called variable e l iminat ion. As
in the case of our first two transformations, the set of solutions is invariant under variable

elimination. (Imitation does not preserve solutions, since it potentially introduces new
variables.) In our example, we can eliminate the variable xl to obtain the system

If we say that a pair (x, t) is in solved f o r m in a system if x does not occur in the rest of

the system and does not occur in t , then clearly the last system is solved in the sense that
all its pairs are in solved form.

The basic idea of the transformation method as represented by these four transforma-
tions is to successively build up bindings for variables and simplify the systems produced

by decomposing and eliminating trivial pairs. The intent is to transform a unification
problem into a solved system, since a solved system {(xl , t l) , . . . , (x,, t,)} gives explic-
itly the bindings of a unifying substitution [tl 1x1 , . . . , t, /x ,I. In our example, we have
the unifying substitution [f y/x, y/xl, g f y/z, xt /yl], which, since we are only interested
in bindings made for the variables in the original system, may be restricted to the form

[f y/x, g f y / ~ , xl/y']. (It is interesting to note that we could also have extracted the sub-
stitution [f y/x, g f y/z, y'/xl].) This set of four transformations can be easily shown to be
sound in the sense that if S + St and 6' unifies S', then 6' unifies S; thus the method is
correct since any solution found will unify the original system. Showing that the method is
complete is harder, since we must show that for a n y unifier 9 of the original system S, we

1 Introduction 5

can find a sequence of transformations S S' resulting in a solved form St such that

the substitution as, extracted from St is more general than 8 (over the set of variables in
S). The intuitive reason that we can find mgu's (and, more generally, we can find complete
sets in the higher-order case) using this method is that imitation and variable elimination
are capable of incrementally building up the bindings in the unifying substitution just as
much as is necessary to unify the original system. The reader may check for example that
each of the substitutions found above for S is more general than a n y unifier of the original
system, i.e., they are m o s t general unifiers or mgu's.

There are several important things to note about this method. The first is that it is
a non-determinis t ic set of abstract operations for unification; we can think of it as a set
of inference rules for unification. This removal of control and data structure specification
allows us to examine the fundamental properties of the problem more clearly. The notion
of completeness is also non-deterministic, since we show only that for a n arbitrary unifier
8 there is s o m e sequence of transformations which produces a unifier more general than
8. In order to design a practical procedure, we would have to specify da.ta structures and
a search strategy to explore the search tree of possible transformation paths. The second
point is that if we need to find all unifiers, then in the case of a pair of two variables we
would need to apply imitation by 'guessing' a partial binding for one of the variables or by
guessing an arbitrary variable as a binding. For example, to find the unifier [f zlx, f zly]
of the system {(x, y)) we would have to guess the function symbol f in the imitation pair
(x, f yl) , then imitate for y, and finally guess that yl is bound to z . This is clearly a problem
for implementation, but it turns out that for unification in theorem proving we need only
find most general solutions, and so in the first-order case we can avoid this guessing by
using variable elimination on such pairs. In fact, if we are interested in stopping as soon as
the possibility of unification is detected, without necessarily transforming the system into a

fully solved form, we may define the notion of a presolved system as one consisting of either
solved pairs, as above, or pairs consisting of two variables, and stop the transformation
process as soon as a presolved form is reached. For example, the system

is presolved. It turns out that it is always possible to unify such systems, by applying

variable elimination to the variable-variable pairs which are not yet solved. This shows
that we need never apply the imitation rule to a variable-variable pair, since such pairs
can always be eliminated using variable elimination; in the higher-order generalization of
this case, this is not true, as we shall see, and the notion of presolved forms is crucial. It
is interesting that in first-order, the presence of variable-variable pairs is the reason that
mgu's are, strictly speaking, not unique; recall that in our example above, we had two

6 Higher- Order Unification Revisited

choices about the extraction of a binding from the pair (x', y') , resulting in the two mgu's

[f ~ 1 . 7 sf ylz, x'ly'l and [f ylx, sf ylz, Y'Ix'I.
The other interesting point is that in the first-order case we have presented, we can in

fact have a complete set of transformation rules if we exclude the imitation rule, i.e., if we
find bindings by simply eliminating a variable all at once if we find a pa.ir (x, t) where x
does not occur in t. In our previous example, we could have 'short-circuited' the sequence
of transformations by immediately eliminating the variable x to produce a solved form:

In Section $3 we shall develop this improved method in detail; the completeness of these
transformations is particularly easy to prove. In the higher-order transformations, we can
not do away with the imitation rule completely, but we can use variable elimination to more
efficiently build up bindings whenever possible without sacrificing completeness.

The method we have just sketched can be generalized to higher-order unification with
relatively few changes. The most important differences have to do with the imitation rule
and the generalization of the notion of a partial binding to higher-order substitutions.
Consider the system S = {(F(f(a)), f(F(a)))}, where F is a variable of functional type
(say int -+ int). It is easily seen that 8 = [Ax. f(x)/F] is a unifier for S, since

where + p denotes P-reduction. (This is not the only solution, for example the reader
may check that any substitution in the form [Ax. f (x)/ F] for k > 0 is also a unifier.) This
time, it is a little more tricky to build up 8 using partial bindings. In the first-order case, we
generate bindings of the form [f (yl, .. . , y,)/x], where y l , . . . , y, are first-order variables.
The generalization (roughly) is to consider partial bindings of the form

where Yl, . . . , Yn are some higher-order variables of appropriate types and a is an atom (i.e.,
a constant, a free variable, or a bound variable xi for 1 5 i 5 k) . The idea is that we have
to generalize the partial binding f(yl, . . . , y,) to higher-order, and so the top function
symbol a may be a variable, and the variables y l , . . . , y, and the term itself may be of
functional type; furthermore, each yi must be generalized to a term x (x l , . . . , x,) since
the subterms of the binding may be some function of the bound variables X I , . . . , x,. A

1 Introduction 7

further level of complexity is introduced by the constraints imposed by the type structure.
The notion of higher-order partial bindings will be carefully defined in Section 34.

The imitation rule must accommodate this more complex form of partial binding. In
the first order case, we applied imitation to a pair (x, f (t l , . . . , tk)) using a partial binding

f(yl, . . . , yn) ; in the higher-order case we must be able to apply imitation to pairs such
as (F(f (a)), f (F(a))) to partially solve for F. A partial binding for F which imitates the
symbol f in this case would have the form Ax. f(Y(x)), so that we would transform the

system { (F(f (a)), f (F(a)))} into

using the imitation rule; note that we have performed P-reduction after applying the sub-
stitution [Ax. f (Y(x))/F]. After decomposition we have

Unfortunately, the imitation rule alone is not sufficient for building up bindings in higher-
order unification. This is easy to see in considering the subproblem of finding a partial
binding for Y, which is exactly the problem we faced with F ; simply continuing to imitate
will produce an infinite sequence of transformations. The problem arises because higher-
order terms may have variables as their top-most symbol and so we must allow bindings such
as Ax.x to be found by our transformations. If we abbreviate a lambda binder Ax1 . . . xk
into the form A=, the new rule for finding partial bindings has (roughly) the form:

where a is a function symbol, constant, or variable (either free or bound), and where t is
either an imitation binding, i.e., t = AK. a(Yl (z), . . . , Y,(Z)), or a projection binding,
i.e., t = A s . yi(Y1(K), . . . , Yq(Y,)) for some i, 1 5 i 5 n, and a = [t/F] (after applying a,
we also reduce the resulting terms to their normal form using P-conversion). For example,
we can transform the system { (F(f (a)), f (F(a))) } by adding a projection binding to get

and then applying the substitution [Xx.x/F] and P-reducing to get

8 Higher- Order Unification Revisited

After removing the trivial pair, gives us the solved system { (F , AX.^)). The reader may
check that a similar projection for the variable Y in our example above results in the solved
system {(F,Ax. f(x)), (Y,Ax.x)}.

Besides the more complicated form of the rule which finds partial bindings, there are
several other things which make the higher-order case more complex than the first-order

method outlined above. For example, unification is defined modulo the conversion rules of
the lambda calculus, so that we shall have to carefully justify our method from an analysis of
the means by which substitution and subsequent P-reduction makes terms equal. Another
complication is that higher-order unification is undecidable in general and most general
unifiers do not necessarily exist. The latter problem is solved by defining the notion of
a complete set of unifiers (which may be infinite!) and the former simply prevents our
transformation process from terminating in general. The notion of completeness therefore
must be defined in terms of complete sets of unifiers; in fact, the completeness proof is not
much harder than in first-order.

A final important difference from the first-order case has to do with the higher-order
equivalent of a variable-variable pair of terms, namely, a pair of terms with variables at
their heads, e.g. (Ax. F(a, x), Ax. G(x, a)) . (These are called flexible-flexible pairs.) Un-
fortunately, it is not possible to avoid the arbitrary 'guessing' of bindings discussed above
and preserve completeness, and so the search tree for unifiers may be infinitely branching.
This posed an insurmountable problem for implementation until Huet showed that in the
context of a refutation method, it is usually only necessary to determine the possibility
of unification, and since such flexible-flexible pairs are always unifiable, we can stop after
finding a presolved form. This restricted form of unification is termed preunification.

After reviewing a number of basic definitions and results in the next section, we then
present the transformation method in detail for the first-order case, showing how decompo-
sition, variable elimination, and the removal of trivial pairs gives us a method for finding
most general unifiers. In Section $4 we extend this to the higher-order case, first presenting
the fundamental concepts of higher-order unification, then giving the set of transformations
for higher-order unification, and next proving the soundness and completeness of the set.
Finally, we show how Huet's method for pre-unification from [26] can be described as a
special case of this set.

2 Preliminaries

In order that this paper be self-contained, we present here a number of basic definitions and
results related to the typed lambda calculus, including a detailed treatment of the notmion
of a substitution. Our notation and approach is basically consistent with [5], [13], [23], and

2 Preliminaries

Definition 2.1 Given a set To of base types (e.g., such as int, bool, etc.) we define the
set of types 7 inductively as the smallest set containing lo and such that if a, P E 7, then

(a --+ p) E 7.

The type (a + P) is that of a function from objects of type a! to objects of type P.
We assume that the type constructor + associates to the right, and we shall often write
type expressions such as (al + (a2 -+ . . . (a, + P) . . .)) in the form a1 , . . . , an + P, with
p an arbitrary type.

Definition 2.2 Let us assume given a set C of symbols, which we call function constants,
each symbol f having a unique type ~ (f) from 7. For each type a E 7 , we assume given
a countably infinite set of variables of that type, denoted V,, and let V = UrET Vr.
Furthermore, let the set of atoms A be defined as V U C. The set C of lambda-terms is

inductively defined as the smallest set containing A and closed under the rules of function
application and lambda-abst ract ion, namely,

(i) If el E l has type a! + P , and e2 E C has type a , then (ele2) is a member of C
of type @ .

(ii) If e E C has type ,d and x E V, then (Ax. e) is a member of C of type a + /3 .
We shall denote the type of a term e by ~ (e) .

By convention, application associates to the left, so that a term (. . . ((el e2)e3) . . . en)
may be represented as (el e2 . . . en) . In general we represent a sequence of lambda abstrac-
tions Axl. (Ax2. (. . . (Ax,. e) . . .)) in the form Axl . . . x,. e , where e is either an application
or an atom. We shall often drop superfluous parentheses when there is no loss of clarity,
and will use square brackets if necessary; also we follow the convention that the dot includes
as much right context as possible in the scope of its binder, so that, e.g., a term Ax. stu is
to be interpreted as (Ax. s st)^)).

Definition 2.3 In a term Axl . . . x,. e where e is either an application or an atom, we
call e the matrix of the term, the object Ax1.. .xn is the binder of the term, and the
occurrences of the variables are called binding occurrences of these variables. We define the
size of a term u, denoted lul, as the number of atomic subterms of u. A variable x occurs
bound in a term e if e contains some subterm of the form Ax. e' , in which case the term e'
is called the scope of this binding occurrence of x. A variable x occurs free in e if it is a

subterm of e but does not occur in the scope of a binding occurrence of x. The set of free
variables of a term e is denoted by FV(e).

10 Higher- Order Unification Revisited

Definition 2.4 The order of a term or a variable is just the order of its type, where the
order of a type p is defined as

A language of order n is one which allows contants of order at most n + 1 and free and
bound variables of order at most n.

This formalizes the usual convention that a first-order term denotes an individual, a
term of second order denotes a function on individuals, etc.

Convention: In what follows we denote types by a, P, y, and cp ; constants of primitive
type by b and c; constants of functional type by f , g, and h; variables of arbitrary type by
x, y, and z, and arbitrary atoms by a. We shall often represent free variables of functional
type by the letters F, G, H, and Y. Lambda terms will be denoted by e, r , s, t, 21, v , and
w. We shall, in the interest of clarity, omit type information whenever possible, since it is
inferrable from context in the cases we consider.

The 'computation rules' of the lambda calculus are as follows.

Definition 2.5 Let u[t/x] denote the result of replacing each free occurrence of x in u by
t, and BV(t) be the set of bound variables in t. We have three rules of lambda conversion.

(i) (a-conversion) If y 4 FV(t) U BV(t), then

(ii) ((I-conversion)

((Ax. s) t) + p s[t/x].

(iii) (v-conversion)' If x 4 FV(t), then

The term on the left side of each of these rules is called a redex. A term t which contains no
P-redices is called a p-normal form, and 7-normal forms and (Iv-normal forms are defined
similarly. If we denote by e[s] a lambda term with some distinguished occurrence of a
subterm s, then let e[t] denote the result of replacing this single subterm by the term t,
where T(S) = ~ (t) . We define the relation -, as

e[s] -, e[t] iff s >, t,

This rule is a special case of the the axiom of extensionalit,y, viz., Vf, y(Vx(f(x) = g(x)) f = y),
which asserts that two functions are equal if they behave the same on all arguments, regardless of
their syntactic representation.

2 Preliminaries 11

and similarly for --+p and --+q . We define +p, as t p U +, . We also define
+ the symmetric closure t--, , the transitive closure --+ , and the symmetric, reflexive, and

transitive closure A of each of these relations in the obvious fashion. The relations
;-'p , A,, , and A p , are called P-, 7-, and pq-equivalence respectively.

It is easy to show that the type of a lambda term is preserved under these rules of
lambda conversion.

Definition 2.6 We say that s is substitutible for x in t if, for every subformula Xy. t' of
t , if y E FV(s) then x 6 FV(tl).

The motivation for this notion is that no free variable capture will take place if s is
substituted for x in t'. (The problem with this free variable capture is that it violates the
fundamental meaning of scope and the binding of variables; in [5], for the untyped calculus
it is shown that if this is allowed, the calculus becomes inconsistent in the sense that any

two terms are equivalent.) In the p-conversion rule, in the pathological case that s is not
substitutible for x in t, i.e., x occurs in t in the scope of some binding occurrence of a variable + which is free in s , then there is always a sequence (Ax. t) s +, (Ax. t') s ---+p t1[s/x], where
s is substitutible for x in t'. Thus, for simplicity and without loss of generality we adopt
the following assumption.

Convention: We assume in the following that in the set of terms being discussed, the
set of all free variables is distinct from the set of all bound variables. (This a.llows us to
be 'naive7 in our use of p-conversion and substitution; for another approach, see [23].) In
fact, in the rest of this paper, all comparisons of lambda terms are modulo a-conversion,
which will allow us to represent lambda binders using 'generic7 variables xl, . . . , xk unless
confusion would result. By abuse of notation, using this naive approach and following our
representation of a sequence of lambda abstractions as a term Axl . . . xk. u , we shall consider
the conversion of redices involving such terms as a single reduction step instead of b steps,

e.g.7
(Ax1 . . . X k . U) . . . v k - 4 p u [v ~ / x ~ , . . . , vk/xk]

k instead of (Axl . . . xk. u) vl . . . v k +p u[vl/xl, . . . , vk/xk].

Definition 2.7 The calculus which admits only the /?-rule as a computat.ion rule we call
the typed p-calculus and the calculus which also admits the 7-rule is called the typed @TI -

calcubus .

In this paper, we wish to give an abstract method for higher-order unification which
presents the fundamental logical issues as clearly as possible, and for this purpose we feel it
is sufficient to develop the notion of unification of terms in the typed @7-calculus. This is

12 Higher-Order Unification Revisited

a natural assumption in practice, and all higher-order theorem proving systems known to
the authors use this weak form of extensionality. The reader interested in the details of the
non-extensional case may consult [26].

Two of the major results concerning this calculus are the following.

Theorem 2.8 (Strong Normalization) Every sequence of @q-reductions is finite.

Theorem 2.9 (Church-Rosser Theorem) If SAP, t for two lambda terms s and t, then
there must exist some term u such that s - % ~ , u A p , t .

(Proofs of these may be found in [23].) Each of these theorems remains true when
restricted to just q-conversion or just p-conversion. One of the important consequences of
these two results is that for each term t there exists a unique (up to a-conversion) term t'
such that tAp, t' with t' in pq-normal form, and similarly for the restriction to just @- or
just q-reduction. Another consequence is that the P-, 7-, or P7-equivalence of two arbitrary
terms may be decided by checking if the corresponding normal forms of the two terms are
equal. For example, if we denote the unique p-normal form of a term t by t i , then s A p t
iff sJ,= t i .

Convention: We shall in general assume that terms under discussion are in @-normal form
unless otherwise stated. In particular, each term in p-normal form may be represented in
the form Axl.. .x,(ael.. . em) , where the head a is an atom, i.e., a is either a function
constant, bound variable, or some variable free in this term, and the terms e l , . . . , em
are in the same form. By analogy with first-order notation, such a term will be denoted

Axl . . . x,. a(el, . . . , em). As an abbreviation, we represent lambda terms using something
like a 'vector' notation for lists, so that Axl . . . xn. e will be represented by X z . e . Fur-
thermore, this principle will be extended to lists of terms, so that A=. f (el, . . . , em) will
be represented as As , . f (G) , and we shall even sometimes represent a term such as

x G - a (~ l (z k) , . - , yn (z))

in the form A%. a(y,(z)).

Definition 2.10 A term whose head is a function constant or a bound variable is called
a rigid term; if the head is a free variable it will be called a flexible term. (For example,
the term Ax. F(Xy. y(x, a), c) is flexible, but both of its immediate subterms are rigid.)

As remarked above, we consider in this paper only the problem of unifying terms in the
p7-calculus, and since our analysis proceeds by examining the manner in which substitution
and subsequent ,El-reduction makes two terms identical, we need not explicitly consider the
role of 7-reduction. The formal justification for this is given by the following result.

2 Preliminaries 13

Lemma 2.11 For any two terms s and t, we have s L p , t iff there exists a term ZL such
that s s p u&, t.

(For a proof see [5].) As a consequence, we can decide @q-equivalence by reducing
terms to their @-normal forms, and then testing for 7-equivalence, that is, s & ~ , t iff
s l A, t l . This allows us to 'factor out' 7-conversion, by considering only 7-equivalence
classes of terms. We shall use the following means of representing such classes by canonical
representatives (due to [26]).

Definition 2.12 Let e = Axl . . . x,. a(el, . . . , em) be a term in @-normal form of type

(~ 1 , . . . ,an, an+l, . . . , a , + k + @, with @ E '&. The q-expanded form of e, denoted by q[e],
is produced by adding k new variables of the appropriate types to the binder and the matrix
of the term, and (recursively) applying the same expansion to the subterms, to obtain

where T(X,+~) = an+i for 1 5 i 5 k.

This is effectively the normal form of a term under the converse of the 7-reduction
rule (so that r,~[e]&, e) and is only defined on a term already in p-normal form. It is easy
to show that in an 7-expanded form, every atom appears applied to as many arguments
as allowed by its type, and that the matrices of all subterms are of base types. This form
is more useful than the 7-normal form because it makes the type of the term and all its
subterms more explicit, and is therefore a convenient syntactic convention for representing
the congruence class of all terms equal modulo the 7-rule. It is easy to show, by structural
induction on terms, that these expanded forms always exist and are unique (up to a-

conversion), so that for any two terms s and t in @-normal form, we have s&, t iff
q[s] = q[t] (see 1261, lemma 4.3). Thus, we have a Church-Rosser theorem in the following
form.

Theorem 2.13 For every two terms s and t, we have s A p , t iff 7[sl] = q[tl].

Definition 2.14 Let Lezp be defined as the set of all 7-expanded forms, i.e., L,,, =

 el] 1 e E L). Define the set L, as the smallest subset of L containing L,,, and closed
under application and lambda abstraction, i.e., (ele2) and Ax. el are in L, whenever
el E L, and e2 E L,.

The essential features of L,,, and L, which will allow us to restrict our attention to
7-expanded forms are proved in the next lemma, which is from [26].

14 Higher- Order Unification Revisited

Lemma 2.15 For every variable x and every pair of terms e and e' of the appropriate

types:

(1) e, e' E Lexp implies that (Ax. e) E Lexp and (ee')J€ LeZp;

(2) e E L,, implies that eJE Lexp;

(3) e, e' E C, implies that (Ax. e) E L, and (ee') E L, ;

(4) e E L, and e A p e ' implies that e' E L,;

(5) e, e' E L,, implies that el[e/x] E L,.

These closure conditions for L, (not all of which are satisfied by the set of 7-normal

forms) formally justify our leaving the 7-rule implicit in the following sections by developing
our method for higher-order unification in the language L,, and considering explicitly only

/?-conversion as a computation rule.2 The reader interested in a more detailed treatment of
these matters, including proofs of the previous results, is referred to [26] for details.

We now formalize the general notion of substitution of lambda terms for free variables
in the ,Bq-calculus, after which we show how this may be specialized to substitutions over

Lexp.

Definition 2.16 A substitution is any (total) function a : V --+ L such that a(x) # x
for only finitely many x E V and for every x E V we have r(a(x)) = ~ (x) . Given a
substitution a , the support (or domain) of a is the set of variables D(a) = {x I a(x) # x).
A substitution whose support is empty is termed the identity substitution, and is denoted
by I d . The set of variables introduced by a is I(o) = UrED(o) FV(a(x)).

A subtle point of this definition is that substitutions are total functions which are non-
trivial over only a finite number of variables; over the rest of V they simply map variables to

themselves. Given a substitution a, if its support is the set {xl , . . . , x,) , and if ti = cr(xi)
for 1 5 i 5 n , then a is also denoted by listing its bindings explicitly: [tl/xl, . . . , t,/x,].

Given a term u, we may also denote a(u) as u[tl/xl, . . . , t,/x,] .

Definition 2.17 A substitution p is a renaming substitution away from W if p(x) is a
variable (modulo 7-conversion) for every x E D(p) , I(p) n W = 0, and for every x and
y in D(p), p(x)e*--t, p(y) implies that x = y. If W is unimportant, then p is simply
called a renaming. The restriction of a substitution a to some W', denoted a Jw , , is the

substitution a' such that

al(x) = { x) , if x E W' ;
otherwise.

In fact, we shall depart from our convention in the interests of simplicity only when representing
terms which are (up to q-conversion) variables, e.g., Xxy. F(x, y). In some contexts, such as solved
form systems, we wish to emphasize their character as variables, and will represent them as such,
e.g., just F . In these cases, we shall be careful to say that 'F is (up to q-conversion) a variable,' etc.

2 Preliminaries 15

Since ,C is freely generated, every substitution a : V + L has a unique extension

ii : LC + LC defined recursively as follows.

Definition 2.18 Let a-, denote the substitution alD(,)-i,) . For any substitution a ,

h

a ($) = o (x) for x E V;

S(a) = a for a E C;

 AX. e) = Ax. a?,(e);

S((el ea)) = ($ (e l) Z(e2)).

Thus a substitution has an effect only on the free variables of a term. In the sequel,
we shall identify a and its extension S . Note that by our assumption that the sets of
bound variables and free variables in any context are disjoint, no variable capture will ever

take place by application of a substitution. It is easy to show that the type of a term is
unchanged by application of an arbitrary substitution.

Remark: It is important to note that by ~ (e) we denote the result of applying the substi-
tution a to e without @-reducing the result; we shall denote by a(e)L the result of applying
the substitution and then reducing the result to @-normal form. This rather non-standard
separation we impose between substitution and the subsequent @-reduction is useful because
we wish to examine closely the exact effect of substitution and P-reduction on lambda terms
in a later section.

Definition 2.19 The u n i o n of two substitutions a and 0, denoted by a LJ 0 , is defined

by
a (z) , if x E D (a) ;

if x E D(0) ;
otherwise,

and is only defined if D (a) n D(0) = 0. The composition of a and 0 is the substitution
h

denoted by a o 0 such that for every variable x we have a o O(x) = O(a(x)). Note ca.refully
that we denote composition from left t o right.

Definition 2.20 Given a set W of variables, we say that two substitutions a and 0 are
equal over W, denoted a = O[W], iff Vx E W , a (x) = O(x). Two substitutions a and
0 are @-equal over W, denoted a = p O[W] iff Vx E W, a(x)&p O(x), or, equivalently,
o (x) J = O(x)L. The relations =,, and =pv are defined in the same way but using A,
and Apq. We say that a is more general than 0 over W , denoted by a 5 B[TY], iff
there exists a substitution such that 0 = a o v [W] , and we have a O[TV] iff there

16 Higher-Order Unification Revisited

exists some 7' such that 8 =p a o q1[W], and I,, and Ip, are defined analogously. When
W is the set of all variables, we drop the notation [W]. If neither a Sp, 8 nor 8 Lp, a

then a and 8 are said to be i ndependen t .

The comparison of substitutions modulo P-, 7-, and Pq-conversion is formally justified

by the following lemma, which is easily proved by structural induction on terms:

Lemma 2.21 If a and 8 are arbitrary substitutions such that either a =p 8, a =,
8, or a =p, 8, then for any term u we have either o(u)cr-*pB(u), O (U) & ~ ~ (U) , or
u (u) ~ p , B(u), respectively.

We now show that we can develop the notion of substitution wholly within the context

of the language L, developed above without loss of generality.

Definition 2.22 A substitution 8 is said to be normal i zed if 8(x) E C,,, for every

variable x E D(8).

We can assume without loss of generality that no normalized substitution has a binding
of the form q[x]/x for some variable x. A normalized renaming substitution has the form

[q[yl]/xl, . . . , 7[yn]/xn]; the effect of applying such a substitution and then P-reducing is
to rename the variables $1, . . . , x, to yl, . . . , y,. The justification for using normalized
substitutions is given by the following corollary of Lemma 2.15.

Corollary 2.23 If 8 is a normalized substitution and e E CeZp, then 8(e) E L, and

O(e)J.€ JLzp .

It is easy to show that if a and 8 are normalized, then a =p, 8 iff a = 8 and if 8'
is the result of normalizing 8, then 8' =p, 8.

Convention: In general, substitutions are assumed to be normalized in the rest of this
paper, allowing us to factor out 7-equivalence in comparing substitutions, so tha.t we may,

e.g., use I p instead of Sp,. In fact, the composition of two normalized substitutions could
be considered to be a normalized substitution as well, so that a Ip 8 iff a 5 8, but this
need n o t be assumed in what follows. For example, the composition [Ax. G(a)/F] o [Xy. y/G]
is defined as [Ax. ((Xy. y)a)/F, Xy. y/G], n o t as [Ax. a/F, Xy. y/G]. We shall continue to use
=p and la to compare normalized substitutions, although strictly speaking the subscript
could be omitted if no composition is involved.

Definition 2.24 A substitution a is i dempo ten t if a o a =p , a.

A sufficient condition for idempotency is given by3

In the first-order case, this condition is necessary as well, but in our more general situation we have
counter-examples such as o = [Ax. F (a) / F] .

3 Unification by Transformations on Systems

Lemma 2.25 A substitution a is idempotent whenever I (a) n D(a) = 8.

That in most contexts we may restrict our at tention to idempotent substitutions wit h-
out loss of generality is demonstrated by our next result, which shows that any substitution
is equivalent (over an arbitrarily chosen set of variables) up to renaming to an idempotent
substitution. (For a proof see [43].)

Lemma 2.26 For any substitution a and set of variables W containing D(a), there exists
an idempotent substitution a' such that D(u) = D(at), a S p , u', and a' S p q a[W].

In general the assumption of idempotency simplifies matters. We shall provide specific
motivations for the use of idempotent unifiers in the appropriate sections.

The net effect of these definitions, conventions, and results is that we can develop our
method for unification of terms in the pq-calculus wholly within Cq, leaving q-equivalence
implicit in the form of the terms under consideration.

Before we proceed with the transformation method for the first-order case, we present

the notion of a multiset.

Definition 2.27 Given a set A, a multiset over A is an unordered collection of elements
of A which may have multiple occurrences of identical elements. More formally, a multiset
over A is a function M : A --+ N (where N is the set of natural numbers) such that an
element a in A has exactly n occurrences in M iff M(a) = n. In particular, a does not
belong to M when M(a) = 0, and we say that a E M iff M(a) > 0. The union of two
multisets MI and Mz, denoted by MI U M2, is defined as the multiset M such that for all
a E A, M(a) = MI (a) + M2 (a).

To avoid confusion between multisets and sets, we shall always state carefully when
an object is considered to be a multiset. Note that multiset union is a distinct notion from
the union of sets, since for example, if A is a non-empty multiset, then A U A # A.

3 Unification by Transformations on Systems

We now define unification of first-order terms and present an abstract view of the unification
process as a set of non-deterministic rules for transforming a unification problem into an
explicit representation of its solution, if such exists; in the next section this will be extended
to the higher-order case. This elegant approach is due to [30], but was implicit in Herbrand's
thesis [22].4 Note that all terms in this section are purely first-order, so that there are no

It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification

18 Righer-Order Unification Revisited

lambda-abstractions, no variables at the head of terms, and for any term t, FV(t) represents
the set of all variables in t. Every first-order term is trivially in L,,,.

Our representation for unification problems is the following.

Definition 3.1 A term pair or just a pair is a multiset of two terms, denoted, e.g., by

(s, t) , and a substitution 8 is called a standard unifier (or just a unifier) of a pair (s,t)
if 8(s) = 0(t). A term system (or system) is a multiset of such pairs, and a substitution 6'
is a unifier of a system if it unifies each pair. The set of unifiers of a system S is denoted
U(S) , and if S consists of only a single pair (s, t) , the set of unifiers is denoted by U (s , t) .

Definition 3.2 A substitution a is a most general unifier, or mgu, of a system S iff

(i) D(0) G FV(S) ;
(ii) a E U(S) ;

(iii) For every 8 E U(S), a 5 6 ' .

It is well known that mgu's always exist for unifiable systems, and it can be shown
that mgu's are unique up to composition with a renaming substitution, and so we shall
follow the common practice of glossing over this distinction by referring to the mgu of a
system, denoted by mgu(S).

Definition 3.3 A pair (x, t) is in solved form in a system S and x in this pair is called

a solved variable if x is a variable which does not occur anywhere else in S; in particular,
x FV(t). A system is in solved form if all its pairs are in solved form; a variable is
unsolved if it occurs in S but is not solved.

Note that a solved form system is always a set of solved pairs. The importance of
solved form systems is shown by

Lemma 3.4 Let S = {(xl , t l) , . . . , (xn, tn)} be a system in solved form. If a =
[tl/xl, . . . , t,/xn] , then a is an idempotent mgu of S. Furthermore, for any substitu-
tion 8~ U(S), we have 6 ' = a o 8 .

Proof. We simply observe that for any such 8, 6(xi) = 6'(ti) = 6'(a(xi)) for 1 5 i 5 n ,

and 8(x) = 8(a(x)) otherwise. Clearly a is an mgu, and since D(a) n I(a) = 0 by the

definition of solved forms, it is idempotent.

Strictly speaking the substitution a here is ambiguous in the case that there is at
least one pair in S consisting of two solved variables; but since mgu's are considered unique

algorithm based on transformations on systems of equations. These transformations are given at the
end of the section on property A, page 148 of Herbrand [22].

3 Unification by Transformations on Systems 19

up to renaming, and such pairs can be arbitrarily renamed, we denote this substitution by
a s . As a special case, note that 0 0 = I d .

We may analyse the process of finding mgu's as follows. If 6(u) = 8(v), then eibher
(i) u = v and no unification is necessary; or (ii) u = f (ul, . . . , un) and v = f (vl , . . . , v,)

for some f E C , and 6'(ui) = 8(v i) for 1 5 i < n ; or (iii) u is a variable not in FV(v)
or vice versa. If u is a variable not in FV(v), then [v/u] E U(u, v) and [v/u] < 0 . By
extending this analysis to account for systems of pairs, we have a set of transformations for
finding mgu's.

Definition 3.5 (The set of transformation rules ST) Let S denote any system (possibly

empty), f E C , and u and v be two terms. We have the following transformations.

{ (x l v)) u s * { (x 7 v)) U g (S) 1 (3)

where (x, v) is not a solved pair in S such that x $ FV(v), and a = [v/x] .
Recall that systems are multisets, so the unions here are multiset unions; the int,ent

of the left-hand side of each of these rules is to isolate a single pair to be transformed.
Transformation (2) is called t e r m decomposition and (3) is called variable el imination. We
shall say that 8 E U n i f y(S) iff there exists some sequence of transformations

where S' is in solved form and 6' = as1 . (If no transformation applies, but the system is
not in solved form, the procedure given here fails.)

Clearly, by choosing S = {(u, v)) , we can attempt to find a unifier for two terms 11,

and v, as the following example shows.5

Example 3.6

In examples, we shall often drop set brackets around systems, e .g . , S = (xi, t l) , . . . , (x,, t,) .

Higher- Order Unification Revisited

The sense in which these transformations preserve the logically invariant properties of
a unification problem is shown by

Lemma 3.7 If S St using any transformation from ST, then U(S) = U(St) .

Proof. The only difficulty is in transformation (3). Suppose { (x, v)) U S =$3 { (x, v)) U
a(S) with a = [vlx]. For any substitution 8, if 8(x) = O(v), then 8 = a o 8 , since a o 8
differs from 8 only at x, but 8(x) = 8(v) = a o 8(x). Thus,

8 E U({(x, 4) U S)

iff 8(x) = e(v) and 8 E U(S)

iff B(x) = 8(v) and a o 8 E U(S)

iff 8(x) = O(v) and 8 E U(a(S))

iff 8 E U({(x,v)) U a(S)).

The point here is that the most important feature of a unification problem-its set
of solutions-is preserved under these transformations, and hence we are justified in our
method of attempting to transform such problems into a trivial (solved) form in which the
existence of an mgu is evident.

We may now show the soundness and completeness of these transformations following

[301

Theorem 3.8 (Soundness) If S &- St with St in solved form, then as, E U(S).

Proof. Using the previous lemma and a trivial induction on the length of transformation

sequences, we see that U(S) = U(S1), and so clearly as, E U(S).

Theorem 3.9 (Completeness) Suppose that 8 E U(S). Then any sequence of transfor-
mat ions

S=So * S1 * s2 =+ ...
must eventually terminate in a solved form St such that as! 5 8 .

Proof. We first show that every transformation sequence terminates. For any system S,
let us define a complexity measure p(S) = < m, n > , where m is the number of unsolved
variables in the system, and n is the sum of the sizes of all the terms in the system. Then
the lexicographic ordering on < m, n > is well-founded, and each transformation produces
a new system with a measure strictly smaller under this ordering: (1) and (2) must decrease
n and can not increase m, and (3) must decrease m.

3 Unification by Transformations on Systems 21

Therefore the relation & is well-founded, and every transformation sequence must
end in some system to which no transformation applies. Suppose a given sequence ends in
a system St. Now 6' E U(S) implies by Lemma 3.7 that 8 E U(S1), and so St can contain
no pairs of the form (f(tl, . . . , t,), g(ti, . . . , t',)) or of the form (x, t) with x E FV(t) .
But since no transformation applies, all pairs in St must be in solved form. Finally, since
6' E U(St), by Lemma 3.4 we must have as1 5 6 ' .

Putting these two theorems together, we have that the set ST can always find an
mgu for a unifiable system of terms; as remarked in [30], this abstract formulation can be

used to model many different unification algorithms, by simply specifying data structures
and a control strategy.

In fact, we have proved something stronger than necessary in Theorem 3.9: it has
been shown that all transformation sequences terminate and that any sequence of trans-
formations issuing from a unifiable system must eventually result in a solved form. This is
possible because the problem is decidable. Strictly speaking, it would have been sufficient

for completeness to show that if S is unifiable then there exists some sequence of trans-
formations which results in a solved form, since then a complete search strategy, such as
breadth-first search, could find the solved form. This form of completeness, which might
be termed non-deterministic completeness, will be used in finding results on higher-order
unification, where the general problem is undecidable.

In some contexts it may be useful to deal with idempotent unifiers which are renamed
away from some set of 'protected' variables but which are most general over the set of
variables in the original system. The next definition makes this precise. (In the next
section we shall offer a variation of this notion for higher-order unification.)

Definition 3.10 Given a system S and a finite set W of 'protected' variables, a substitu-
tion a is a most general unifier of S away from W (abbreviated mgu(S)[W]) iff

(i) D(a) C FV(S) and I (a) n (W U D(a)) = 0 ;
(ii) a E U(S) ;

(iii) For every 6' E U(S), a 5 B[FV(S)] .

That such substitutions may always be found for unifiable systems is shown by the following
lemma, whose proof may be found in [43].

Lemma 3.11 If S is a unifiable system and W a protected set of variables, then there
exists a substitution a which is a mgu(S)[W].

22 Higher- Order Unification Revisited

4 Higher Order Unification via Transformations

In this section we extend the methods of the previous section to a more general context.
Higher-order unification is more complex than first-order unification due to the presence
of variables of functional type, the notion of scope and bound variables, and the fact that
unification is defined in terms of ,87-equivalence. This additional syntactic complexity has
several serious consequences. First of all, the unification of terms of second-order and
higher is undecidable in general [16]. Next, most general unifiers do not exist any more,
and a more complex notion, that of a complete set of unifiers, is necessary. Finally, due

to the complexity of the subproblem of unifying two flexible terms, the search space for a

complete unification procedure may be infinitely branching, which forbids any reasonable
implementation. Our analysis of the problem proceeds by examining the exact fashion
in which substitution and P-reduction makes two terms identical from the top-down (i.e.,
from the head to the innermost subterms). We develop from this a set of non-deterministic
transformations extending those of the previous section, and prove their non-deterministic
completeness in an analogous fashion. In the next section, this is restricted to the problem
of preunification.

Definition 4.1 The notion of pairs and systems of terms carries over from the first-order
case. A substitution 8 is a unifier of two lambda terms el and e2 iff 8 (e l) A p , 8(e2).6 A
substitution is a unifier of a system S if it unifies each pair in S. The set of all unifiers of
S is denoted U(S) and if S consists of a single pair (s, t) then it is denoted U(s, t).

This definition is more general than we shall need, in fact, since we shall develop our
approach in Lq in order to factor out 7-conversion, as was formally justified in Section $2.

Thus for two terms s , t E L,, we say that a normalized substitution 8 is in U(s,t) iff
8 (s) A P 8(t), or, alternately, if O(s)J..= 8(t) l .

A pair of terms is solved in a system S if it is in the form (~ [x] , t), for some variable

x which occurs only once in S; a system is solved if each of its pairs is solved. Our
only departure from the use of 7-expanded form is that we shall represent pairs of the
form (7 [XI, t) as (x, t) in order to emphasize their correspondence to bindings t /x in
substitutions, as in the first-order case of the previous section.

Example 4.2 If u = f (a,g(Xx. G(Xy. x(b)))) and v = F(Xx. x(z)), then
0 = [Xxz. f (a, g(x2))/F, Xx3. x3(z2)/G, biz] is in U(u, v) , since 8(u)J= 0(v)J :

This is in the context of the pr)-calculus; in the P-calculus the condition would be 8 (e l) c r - t p O(e2) .

4 Higher Order Unification via Transformations

-p f (a , g(Ax- [(AY. x(b))z21))

-,3 f (a, g(Ax. x (b)))

+-a (A52. f (a, g(x2)))(Ax. ~ (b)) = O(V).

The basic decidability results concerning higher-order unification are as follows.

Definition 4.3 For a given set of function constants C, the unif ication problem for the
language L generated by C is to decide, for any arbitrary terms e, e' E L, whether the
set U (e , e') is non-empty. The nth-order unif ication problem is to decide the unification
problem for an arbitrary language of order n.

For example, in Section $3 we showed that the first-order unification problem is de-
cidable. Unfortunately, this does not hold for higher-orders.

Theorem 4.4 The second-order unification problem is undecidable.

This result was shown by Goldfarb [16] using a reduction from Hilbert's Tenth Prob-
lem; previously, Huet [28] showed the undecidability of the t hird-order unification problem,
using a reduction from the Post Correspondence Problem. These results show that there
are second-order (and therefore arbitrarily higher-order) languages where unification is un-
decidable; but in fact there exist particular languages of arbitrarily high-order which have
a decidable unification problem. Interestingly, Goldfarb's proof requires that the language
to which the reduction is made contain at least one 2-place function constant. It has been
shown in [ll] that the unification problem for second-order monadic languages (i.e., no
function constant has more than one argument place) is decidable, which has applications
in certain decision problems concerning the lengths of proofs. A different approach to de-
cidability is taken in [46], where decidable cases of the unification problem are found by
showing that the search tree for some problems, although infinite, is regular, and that the
set of unifiers can be represented by a regular expression. More generally, it has been
shown by Statman [44] that the set of all decidable unification problen~s is polynomial-time
decidable.

Besides the undecidability of higher-order unification, another problem is that mgu's
may no longer exist, a result first shown by [17]. For example, the two terms F(a) and a
have the unifiers [Ax. a/ F] and [Ax. x/F], but there is no unifier more general than both
of these. This leads us to extend the notion of a mgu(S)[W] to the higher-order case by
considering complete sets of unifiers. Our definition is a generalization of the one found in
[26] to term systems.7

We also generalize slightly the Huet definition by allowing the protected set of variables to be arbitrary.

24 Higher-Order Unification Revisited

Definition 4.5 Given a system S and a finite set W of 'protected' variables, a set U of
normalized substitutions is a complete set of unifiers for S away from W (which we shall
abbreviate by CSU(S)[W]) iff

(i) For all a E U, D(a) FV(S) and I (a) n (W U D(a)) = 0 ;
(ii) U c U(S) ;

(iii) For every normalized 0 E U(S), there exists some a E U such that a Ip
@[FV(S)l-

The first condition is called the purity condition, the second the coherence condition, and
the last the completeness condition. If S consists of a single pair (u, v) then we use the
abbreviation CSU(u, v)[W] . When W is not significant, we drop the notation [W].

That there is no loss of generality in considering only normalized substitutions may

be seen by the fact that any substitution is /3q-equal to a normalized substitution. By
providing a version of Lemma 3.11 for this new context, we see that condition (i) is without
loss of generality as well.

Lemma 4.6 For any system S, substitution 8, and set of protected variables W, if 8 E

U(S) then there exists some normalized substitution a such that

(i) D(u) 2 FV(S) and I(a) n (W U D(a)) = 0 ;
(ii) a E U(S) ;

(iii) a I,, @[FV(S)] and 8 $, a[FV(S)].

Proof. If a = OIFV(S) satisfies condition (i), then we have our result trivially. Otherwise,
if I(@) = ($1, . . . , xn) then let {yl, . . . , y,) be a set of new variables disjoint from the
variables in W, I(@), and FV(S) such that ?.(xi) = 7(yi) for 1 5 i 5 n. Now define the

renaming ~~bst i tu t ions Pl = [~ ~ [Y I] / x I , . . . , q [yn] /xn] and p2 = [V[X I] /YI , . . . , q[x ,]/y,],
let a' = @ 0 pl 1 F V (S) , and then let a be the normalized version of a'. Clearly o sa,titisfies (i),
and since a =p, 0 o pl[FV(S)] we have the second part of (iii). Now, because pl o p2 =p,

Id[FV(S) U I(0)], we must have 0 =p, 8 o pl o p2[FV(S) U I(0)l. But then by the fact that

a =p, 4 0 pi [FV(S)] we have 0 =p, a 0 p2[FV(S)], and so a I p , @[FV(S)], proving the
first part of (iii). To show (ii), observe that for any (u, v) E S we have B(u)J= O(v)J, and
for any term t , we have a 1 (t) A P , a(t) , and so

The original definition imposed the restriction that W n F V (S) = 0 in order that variable renaming
not be necessary. We relax this restriction so that we have a true generalization of a mgu(S)[W] to
higher-order unifiers, and allow renaming to be imposed or not, by setting W appropriately. Note
that our definition is based on, our use of C,,; in the version for the PQ-calculus, condition (iii) would
use I@,, and substitutions would not have to be normalized. The original Huet definition of a
complete set may also be found in [9] in the context of E-unification.

4 Higher Order Unification via Transformations 25

which shows that a E U(S) .

This shows us that for any S and W, the set of all normalized unifiers satisfying
condition (i) and (ii) of Definition 4.5 is a CSU(S)[W], and so in particular there is no loss of
generality in considering only normalized, idempotent unifiers 8 such that D(8) n I(8) = 0
in what follows. This will simplify our presentation.

Finally, we examine the relevance of solved form systems in L,.

Lemma 4.7 If S = {(xl,t l) , .. . , (xn , tn)) is a system in solved form, then {as} is a
CSU(S)[W] for any W such that W n FV(S) = 0.

Proof. The first two conditions in Definition 4.5 are satisfied, since as is an idempotent
mgu of S, W n FV(S) = 0, and I(as) & FV(S). Now, if 8 E U(S), then 8 =p as o 8,
since 8(xi)t*--tS8(ti) = 8(as(xi)) for 1 5 i 5 n, and 8(x) = 8(as(x)) otherwise. Thus
as Ip 8 and so obviously as <p B[FV(S)] .

4.1 Transformations for Higher Order Unification

We may analyze the process of higher-order unification as follows. Let us assume, without
loss of generality, that u and v are two lambda terms in L,,, and that 8 is an idempotent,
normalized unifier of u and v. Thus there exists some sequence of reductions to a p-normal
form: B(u) A p w A p B(v). (Note that if all the terms instantiated by the substitution are
first-order, then this sequence is trivial, since there are no P-reductions.) We may analyse
this sequence top-down, examining the way in which each binding in the substitution (with
its subsequent @-reduction, if the binding is higher-order) makes the two terms identical
at each level of the terms. We have the following five cases (which are not intended to be
mutually exclusive).

(A) u = v and no unification is necessary. (Assume u # v in the remaining cases.)

(B) No substitution takes place at the head in either term. In this case, Head(u) =

Head(v) and, since u # v, we must have I u I , IvI > 0. Thus, suppose u = AG.a(K) ,
w = A=. a (K) , and v = A=. a(G) , where n > 0 and either a E C, or a = xi for
some i, 1 2 i 5 k, or a is a free variable not in D(8). In this case we must have
B(X-. ui) Aa XG. wi G p B(X=. vi) for 1 _< i 5 n , that is, the subterms of u and v
are pair-wise unifiable by 8.

(C) Our two terms are u = A=. F (G) and v = A=. v', for some variable F and
some term v', and where F $ FV(v). In this case, we must have

8(AG. F(=))+%~ @(A=. v'),

26 Higher- Order Unification Revisited

where F tif FV(v), and, if 8 = [A y i ~ . t /F] U 6' , then since

6(F) B(A=. F(G)) ,~ we have e (~) t l - t ~ @(A%. v') , where F does not occur in v', so
that we may use the same argument we used in the first-order case. If we let a = [A%. v l / F]
then 8 =p a o 8, since 6 and a o 8 differ only at F, but

8(F)t*--tP B(A=. v') = a o B(F).

This in fact shows that a pair of terms in this form has a single mgu. (For example,

Ax. F(x) and Ax. f(x, z) are unified by 8 = [Xy. f(y, a)/F, alz] , but a = [Xy. f (y, z)/F]
is an mgu.) It should be obvious that this is a generalization of variable elimination to
higher-order, since u is (up to 17-equivalence) simply a variable not occurring in FV(v).

(D) Some substitution takes place at the head of only one term; assume that this term
is u (so that Head(w) = Head(v)). Then let u = A%. F (z) and v = A=. a (G) for
some atom a # F which is either a function constant, a bound variable, or a free variable
not in D(6). Now in order for the two terms to unify, we must make the head of u become
a at some point in the sequence of @-reductions from 8(u) to w. There are two possibilities:
either we imitate the head of v by substituting a term for F whose head is a, or we substitute
a term for F which projects up a subterm of u. (The latter case is only possible if F is of
higher-order type.) We consider each of these in turn.

(Imitation) The substitution for F matches the head symbol of v by imitating the
head symbol a, where a E C or a is a free variable not in D(8), as we saw in Example 4.2.'

Thus we have 8(F) = A T . a (G) for some terms and we have a reduction sequence of
the form

where r : = ri[ul /zl, . . . , u,/z,] for 1 5 i 5 m. (Notice that by the idempotency of 6, for
illustration we can partially instantiate the term u with just the binding for the head F in
this sequence.)

(Projection) The substitution for F attempts to match the head symbol a of v by
projecting up a subterm of u. There are three ways to do this, depending upon the head
symbol of the term projected up. First of all, perhaps a subterm of u has a head a which
provides the match; for example, F(Xx. f (x, a)) and f (b, a) will be unified by the substitu-
tion [Ay. y (b) /F] in this fashion (note that we had to provide an argument b to the subterm

a Note that the P-reduction simply replaces the bound variables yl , . . . , yk with X I , . . . , x k , a useless
operation in view of our assumption of a-equivalence.

Note that it is impossible to imitate a bound variable, since the rules of the calculus disallow free
variable capture.

4 Higher Order UniJcation via Transformations 27

Ax. f (x, a) for the projection to work). The second reason to project is that perhaps a sub-
term of u is flexible, allowing us to start all over again in attempting to match the head of
this new term to v. For example F(Ax. G(x, a)) and b can be unified by the substitution

[Xy. y(b)/F, Xx1x2. xl/G], where the binding for F works in this way. The third motivation
for projection is that perhaps the subterm is itself a projection, and after some sequence of
reductions, we have a term which is either flexible (and so we continue), or whose head is

a and the match succeeds. For example, 0 = [Xyl. y1(Xy2. y2(a))/F] unifies the two terms

u = F(Xxl. xl(Xx2. f (x2))) and v = f (a) in this manner:

In substituting a projection for the head of a flexible term u = A=. F (K) , we are
restricted by the type of F to projecting up a subterm uj which will preserve the type of u. In
particular, since we can only substitute a term of the same type as F, and since unification is
only defined between terms of the same type, if ~ (u) = ~ (v) = all . . . , crk + P, then ~ (u ;)
must be some type yl, . . . , y,t -+ ,Ll in order that the result of the projection preserves
the type of u. Thus the type of the matrix of u, must be the same as the matrix of u,
and the substitution must provide arguments for each of the variables in the lambda binder
of ui. Thus if 8(F) = A%. zi(=) for some i, 1 5 i 5 n, then u; must be in the form -
u, = Xy,l. u: where the type of the matrix u: is the same as the type of the matrices of u

and v. In this case, the head a of u can be a function constant, a free variable, or a bound
variable (i.e., one of the xi), and thus we have a reduction sequence of the form

-
where r: = ri[ul/zl, . . . , un/z,] for 1 5 i < m', XG. a ' (q) = (A%. [(A%. u ~) r ~ ,]) ~ , and
either a' = a or a' is a free variable in D(8).

(E) Substitutions take place at the heads of both terms. Then let u = X q . F (G)
and v = XG. G (K) , where both F and G are in D(8). Here we must eventually match
the heads of the two terms, but we can do it in a large number of ways. In order to simplify
our analysis, we attempt to reduce it to the previous case if we can. Let us (without loss of
generality) focus on the binding made for the variable F . There are two subcases.

28 Higher-Order Unification Revisited

(i) 8 substitutes a non-projection term for F, e.g., B(F) = X z . a(%), where a # G is not
a bound variable (and by idempotency is not a variable in D(8)), and then (possibly)
causes a @-reduction, after which we can analyse the result using case (D).

(ii) 8 substitutes a projection term for F (which obeys the typing constraints discussed
above), e.g., 8(F) = XZ,. z j (G) , and then, after we reduce to normal form, if the head
symbol is either a function constant, a bound variable, or a variable not in D(8),
we may analyse the result using case (D); if the head is a variable in D(8), then we
(recursively) apply case (E) to these new terms.

By recursively applying this analysis to the subproblems generated we may account for every
binding made by 8 and every @-reduction in the original sequence. This forms the basis
for the set of transformation rules below, which find unifiers by 'incrementally' building up
bindings using partial bindings, as informally shown in the introduction. In case (D) above,
this means that there will only be a finite number of choices for a partial binding, since
there is only one possible imitation and only a finite number of possible projections. In case
(E), unfortunately, this is not true. As shown in [26], the problem is that two flexible terms
may not possess a finite CSU, and in fact there may be an infinite number of independent
unifiers which contain flexible terms as bindings, so that even if we only attempt to find
the top function symbol of the binding, there are potentially an infinite number of choices,
since for each type there is always an infinite number of function variables. Thus, even if
there is only a finite number of function constants in the language, it is not possible to
reduce the non-determinism of this case in general to a finite number of choices of partial
bindings, and so the search tree must be infinitely branching.10

Given a system S of terms from LeZP and some normalized 8 E U(S), a complete
unification procedure must always be able to find some substitution u such that a E U (S)
and a Sp B[FV(S)] . Recall from the introduction that the basic idea of the transformation
method is that, given some 8 E U(S), we attempt to find 'pieces' of 8 by finding solved
pairs (x, t) such that 8 (x) A p B(t) ; in this case, we know by an argument similar to that
used in Lemma 4.7 that 8 =p [$/XI 08, and by finding enough such pairs, we eventually have
a a =p [tl /xl] o . . . o [tn/xn], where a is a unifier of S more general than (or equivalent to)
8. In other words, we may successively approximate 8 until we have built up just enough
of the substitution to unify the system. We do this by 'solving' variables (as in case (C)
above) or using approximations to individual bindings, as in Huet's method and in [15],
which we call partial bindings.

Definition 4.8 A partial binding of type all . . . ,a, -+ /? (where @ is a base type) is a

lo See Section 55, where we discuss Huet's solution to this problem.

4 Higher Order Unification via Transformations 29

term of the form

for some atom a , where

(1) ~ (y ,) = ai for 1 < i 5 n,
(2) r(a) = yl, . . . ,y, + p, where yi = ipj, . . . , ip;, -t y: for 1 5 i 5 m,
(3) r(zj) = ipj for 1 < i 5 n and 1 < j <pi;
(4) T (H ~) = a17 ... , ~ ~ ~ , i p ; , . .. ,ipki + 7; for 15 i 5 m,

where yi, . . . , y, ' are of base types. The immediate subterms of a partial binding (i.e., the
arguments to the atom a) will be called general flexible t e r n s .

Note that these partial bindings are uniquely determined (up to renaming of the free
variables) by their type and by their head symbol a.

Definition 4.9 For a partial binding as in the previous definition, if a is either a function
constant or a free variable, then such a binding is called an im i ta t ion binding for a; if a is

a bound variable yi for some i, 1 5 i < n , then it is called an ith projection binding. A
variant of a partial binding t is a term p(t)J , where p is a renaming of the set H I , . . . , H,
of free variables at the heads of the general flexible terms in t away from all variables in the
context in which t will be used. For any variable F, a partial binding t is appropriate t o F
if ~ (t) = T(F). An imitation binding is appropriate to X q . F (G) iff it is appropriate to
F.

In the case of an ith projection binding t for some i, 1 5 i 5 n, appropriate to a term
A%. F (G) of type al, . . . , ai, + P, the reader may check that r(ui) = pl , . . . , pq -t P
for some types cpl , . . . , ipp, so that the result of substituting the binding and P-reducing
will preserve the type of the term.

For notational brevity we shall extend our vector style notation to represent partial
bindings in the form

A K . Hm(y,, K)).

Following our analysis of higher-order unification given above, we have the following
set of transformations.

Definition 4.10 (The set of transformations 'FIT.) Let S be a system of lambda-terms
(possibly empty). We have the following transformations.

Higher-Order Unification Revisited

{ (A ~ . ~ (~) , x ~ . ~ (G)) } U S * U {(AG.ui, A G . v i)) US,
l<_a<n

(2)

where a is an arbitrary atom.

If u = A=. F(=) and v = A=. v', for some k, some variable F, and some term v',
where F $ FV(v) , then

where o = [A=. v'/ F].
These three transformations are analogous to the set ST. To provide for function

variables, we need one more transformation, which is divided into three cases.

{(A=. F(K), A%. a (K))) U S { (F , t) , (A%. F(K), A=. a (K))) u S, (4a)

where a is either a function constant or a free variable not equal to F and t is a variant of
an imitation binding for a appropriate to F, e.g., t = A E . a (A K . H , (G , X)) .

{(A=. F (K) , AG. a (G))) U S + {(F, t) , (AG. F (G) , A=. a (K))) u S, (4b)

where a is some arbitrary atom (possibly bound) and t is a variant of an ith projec-
tion binding for some i, 1 5 i 5 n, appropriate to the term A=. F(=), that is,
t = A Z . y i (Aq. H q (% , q)) , such that if Head(u;) is a function constant, then
Head(ui) = a.

{(A,,. F(u,), A=. G(V,))) U S ==. {(F, t) , (AFT. F(u,), A=. G(V,))) U S, (44

where t = A E . a (A K . H,(K,Xpm)) is a variant of some arbitrary partial binding appro-
priate to the term AG.F(=) such that a # F and a # G.

As a part of the transformations (4a)-(4c), we immediately apply transformation (3)
to the new pair (F, t) , which effectively amounts to just applying the substitution [t /F] to
the rest of the system. As in the set ST, note that the unions above are multiset unions.

Henceforth we say that 0 E Uni fy(S) iff there exists a series of transformations
S &- Sn, with Sn in solved form, and 0 = asn lFv(s) .

4 Higher Order Unification via Transformations 31

Example 4.11 For example, the following series of transformations leads to a system in
solved form. l l

(F (f (a)) , f (F (a)))
Xz. f (Y (z Xz. f (Y (x

*qa (~ 7 A X - f (Y (x)))7 y a f (f(Y(a):))a 1)
=$2 (F , Ax. f (Y (x))) , (Y (f (a))) , f (Y (a)))

d d a (F , A X . f(-)), (Y, A X . x) , ((*xj:2f(aL7 f (v))
=J1 (F , Ax. f (X I) , (Y7 Ax.

Hence, [Ax. f (x) / F] E U n i f y (F (f (a)) , f (F (a))) -

4.2 Soundness of the Transformations

The following lemmas will enable us to prove the soundness of this set of transformations.

Lemma 4.12 If S + S f using transformation (1) or (3) , then U (S) = U (S 1) .

Proof. As in the first-order case, the only difficulty is in transformation (3) . We must

show that U ({ (x , v)) U S) = U ({ (x , v)) U a (S) 1) where a = [v l x] and x @ F V (v) .
For any substitution 8, if 8 (x) A a 9 (v) , then 9 = p a o 8 , since o o 9 differs from 8
only at x , but 9(x)t*--ta8(v) = a o B(x) . But then, using Lemma 2.21, it is easy to
see that 9 E U (S) iff a o 0 E U (S) . Furthermore, since for any term u we must have
a o 9 (u) = 9 (a (u)) L p 9 (o (u) J) , it can easily be shown that a o 9 E U (S) iff 0 E U (o (S) J) .
Thus,

9 E U ({ (x , v) I U S)

iff 8 (x) A 8 9(v) and 9 E U (S)

iff 8 (x) A B 8(v) and a o 9 E U (S)

iff 9 (x) A p 9(v) and 0 E U (a (S) J)

iff 8 E U ({ (x , v)) U a (S) J) .

This lemma shows that the invariant properties of a problem are preserved under these
two transformations, as they were in the first-order case.

l1 In order to show the effect of the P-reductions which follow the application of substitutions in (3), we
often explicitly represent these reductions using an 'inference' style notation, e.g., we represent the
effect of the substitution 0 on the term e as to illustrate both the effect of the substitution @(eU '
and the subsequent P-normal form.

32 Higher- Order Unification Revisited

Lemma 4.13 Let S S' where the pair in S transformed is (AG. a (~) , A x . a (~)) .
For any substitution 0,

(i) if a is either a constant or a bound variable or a free variable not in D(O), then
0 E U(S) iff 0 E U(S1);

(ii) if a E D(0) then 0 E U(S1) implies that 0 E U(S).

Proof. If @(A-. ui) t f- tp B(A=. vi) for 1 5 i 5 n, then clearly we must have

and so for any atom a we have 0 E U(S) whenever 19 E U(S1). If a is either a function
constant, a bound variable, or a variable not in D(O), then @(a) = a and it is easy to see

that the reverse direction holds as well.

Lemma 4.14 If S + S' using transformation (2) or (4), then U(S1) C U(S) .

Proof. For (2) the result is a consequence of our previous lemma. Transformation (4) is in
two parts, first adding a pair (F, t) to the system S, and then applying (3) to this new pair.
Clearly, since S {(F, t)) U S we must have U({(F, t)) U S) U(S). That the subsequent
application of (3) to the new pair is sound has been shown by lemma 4.12.

Since in transformation (4) we effectively commit ourselves to a particular approxi-
mation of a solution, it is hardly surprising that the inclusion U(Sf) G U(S) is in general
proper. Similarly, in the case of (2), decomposing flexible pairs may eliminate unifiers; for
example (F(a, b) , F(c , d)) has an infinite number of unifiers, but the system (a, c) , (b, d)
has none. These results show us that in higher-order unification, the set of solutions is
invariant only under transformations (I), (3), and (2) in the case of two rigid terms.

Finally, using these lemmas we have

Theorem 4.15 (Soundness) If S S', with S' in solved form, then the substitution

US1 ~FV(S) E U(S) -
Proof. By a simple induction on the length of transformation sequences, and using the
previous lemmas in the induction step, we may show that as1 E U(S). But since the
restriction has no effect as regards the effect of the substitution on the terms in S, we see

that 0s) (FV(S) E U(S) .

4.3 Completeness of the Transformations

The completeness of our set of transformations will be proved along the lines of the proof of
completeness of the set of transformations ST given earlier, except that now the transfor-
mation relation is not terminating in general, so we shall prove only the non-deterministic

4 Higher Order Unification via Transformations 33

completeness of the set, i.e., we show that for any system S, if 8 E U(S), then there exists
some sequence of transformations which finds a unifier a such that a sp B[FV(S)].

First we show the exact sense in which partial bindings can be considered to be
approximations to bindings in substitutions.

Lemma 4.16 If s = X Z . a (K) is any term, then there exists a variant of a partial
binding t and a substitution q such that q (t) A P s.

Proof. If m = 0, i.e. s = XG. a, then the result is trivial by taking t = s and

q = Id. Otherwise, assume m > 0, and let t = A%. a(XZp,. H,(g,%)) and q =

[A=. sl/H1, . . . , X z . sm/H,]. Then by the type of the head a, the ith subterm s; must
be in the form Xzpi. s:, SO that

for each i, 1 5 i 5 m. Thus q(t)-Ap s. [7

Lemma 4.17 If 8 = [s/ F] uBI then there exists a variant of a partial binding t appropriate
to F and a substitution 7 such that

Furthermore, if D(8) n I(8) = 0, then 8" = [s/ F] U 7 U 8' is a unifier of the pair (F, t) and
D(8") n I(@") = 0.

Proof. Given the term s, let t and q be as in the previous lemma. Since t is a variant,
D(q) n D(8) = 0, and since furthermore rl(t)&p s, we have [s/F] = [s/F] U q =p [t/F] o

7[D(8)], from which the first part follows. If D(8) n I(8) = 0 (so that 8 is idempotent),
then since t is a variant, D(7) n I(8) = 0, so that D(8") n I(8") = 0 (and Otl(s) = s) and
finally, 6Jt1(F) = s Lp q(t) = O"(t). 17

Note that if D(8) n I(8) # 0 in this lemma, then potentially 8 has a binding for the
head of s and t, and so possibly Ott(t) # q(t). Also, notice that [s/F] U q and [t/F] o q
are only P-equal (over D(0)) because we do not assume that the implicit P-reductions are
performed when substitutions are composed. These lemmas show the motivation for the
term 'partial binding' and provide the formal justification for the assertion that partial
bindings can be used to build up substitutions incrementally.

Next we define a set of transformations on pairs 8, S which shows how the structure
of a substitution 8 can determine an appropriate sequence of transformations.

34 Higher- Order Unification Revisited

Definition 4.18 (The set C7) Let 8 be a normalized substitution and S be an arbitrary
system. The first three transformations are essentially from the set 3-17:

for 1 5 i <_ 3 iff S = j i St in the set X I , with the restriction that (2) is only applied to
a pair (u, v) if the top function symbol in u and v is not a free variable in D(0). Also, we
have

[s/F] U 8, {(A=. F (G) , A=. v)) U S =*4 [s/F] U r] U 8, {(F, t), (A%. F(U,), A=. v)) U S,

where F is not solved in the system on the left side, s is some term A%. a(=) ,

is a partial binding appropriate to F with the same (up to a-conversion) head as s, and

(Note that perhaps m = 0 in which case q is omitted.) Transformation (3) is immediately
applied as a part of (4), as in the set 3-17. Again, notice that [s/F] U 7 U 8 = p [t/F] o 7 U 6.

Example 4.19 Let 6 = [Ax. f (x)/F] and S = {(F(f (a)), f (F(a)))). We have the fol-
lowing sequence of CI-transformations.

[Ax- f (")lFl7 {(F(f (a)), f (F(a))))
Xz. Y x Ax. Y z

*4 [Ax. f (x)lF, Ax. x/Yl, {(F, Ax. f(Y(x)))7 ((f{$(;(;;;;(a) 7 f ((f;$(:);))a))I
*2 [Ax. f (x)lF7 Ax- x/Yl7 ((3 ' 7 Ax. f (Y(x))), (Y(f (a))), f (Y(a))))

(Xz. z)z IXx. z)f (a) , f ((Xz;z)a)))
*4 [Ax. f (x)/F, Ax- x/Yl, {(F, Ax. f (-))7 (Y7 Ax. 4 7 (f(a)

-1 [Ax. f (x)lF, Ax- x/YI, {(F, Ax. f (x)), (Y7 Ax. 2))

The next lemma shows us how these transformations are useful for proving complete-
ness.

Lemma 4.20 If 8 E U(S) for some system S not in solved form, and W is a set of
variables, then there exists some transformation 8, S * 8', S' such that

(i) 8 = O1[W];
(ii) If D(6) n I(0) = 0 then 8' E U(S1) and D(6') n I(@) = 0; and

(iii) S * S' with respect to the set 3-17.

4 Higher Order Unification via Transformations 35

Proof. Since S is not in solved form, there must exist some pair (u, v) which is not

solved in S. We have three cases: (A) If u = v then we may apply (1) or (2); (B) if
Head(u) = Head(v) $ D(8), then we can apply (2); otherwise, (C) we have u # v and
either Head(u) # Head(v) or Head(u) = Head(v) E D(8). In case (C), either u or v has
an unsolved variable from D(8) at its head; without loss of generality, assume that u has.
Thus, we have u = A=. F (K) and v = A%. v' with F E D(8) and F not solved in S and
(4) must apply, and in the special case that u - 5 , F and F $ FV(v), we can alternately
apply (3). Although there may not be a unique choice about which transformation to apply,
at least one must apply, and thus we have some transformation 8, S * i 8', St. In the case
that 1 5 i 5 3, (i) holds because 8' = 8 , by our soundness lemmas of the previous section
we have (ii), and (iii) holds by the definition of the set CT. If i = 4 then by our previous
corollary we haveextended 8 = [s /F]Ucp to asubstitution 8' = [s/F]UqUcp =p [t/F]oqUcp
where we can assume that D(q) n W = 0 (showing (i)), and we have added a pair (F, t)
to S to form St. From the definition of C T and the previous lemma it is clear that we
have D(8') n I(@') = 0 and B1(F) = s A p q(t) = B1(t), so that 8' E U(S1), showing (ii).
Finally, since S is unifiable it is not hard to see that the conditions imposed on (4) in C T
are consistent with (4) in ' H I . If Head(v) is not a variable in D(8), then we have two
cases: if Head(s) = Head(v), then S +4a S' (i.e., this is an imitation case); otherwise,

s is a projection, and S *4b St. If Head(v) E D(8) then S =+4, St.

Corollary 4.21 If 8 E U(S) and no transformation applies to 8, S then S is in solved
form.

Finally, we may present our completeness proof.

Theorem 4.22 (Completeness of 7i7) For any system S, if 8 E U(S) then there exists
some sequence of transformations

S=S0 ==. Sl ==. s2 * ... * S,,

where S, is in solved form and as,, < p B[FV(S)].

Proof. B y Lemma 2.26 we may assume without loss of generality that D(8) n I(8) = 0
(since if not we may find a substitution 8" = B[FV(S)] fulfilling these conditions). We
prove this result using the set C T , first showing that every sequence of C 7 transformations
terminates. For any 8 and S, define the complexity measure 4 6 , S) = < M, n >, where
n is the sum of the sizes (i.e., the number of atomic subterms) of all terms in S, and M is
the sum of the sizes of the bindings in 8 for variables which are not solved in S:

36 Higher- Order Unification Revisited

where Sol(S) is the set of all variables solved in S. The standard lexicographic ordering
on pairs of natural numbers is well-founded, and any C7-transformation produces a pair
strictly smaller under the ordering: (1) and (2) reduce n without affecting M, (3) reduces M
by removing a variable from D(8) - Sol(S), and (4) reduces M. In (4), for some variable
F in D(0) - Sol(S), the binding [s/F] is deleted from 0 where s is some tern1 of the
form X K . a (Z) , and some new bindings [A z . sl /HI, . . . , X Z . sm / H,] associated with
new unsolved variables are added to 8 to form 0'. However, the sum of the sizes of the new
bindings in 8' is strictly smaller than the size of s (since s also contains a) . Hence every
sequence of C7- transformations is finite.

Thus there must exist a sequence of transformations

such that no transformation applies, and by induction on rn using the previous lemma, with
FV(S) for the set W, we have 0 = Om[FV(S)], 8, E U(S,), and there is a corresponding
sequence of 'HI-transformations

and by the corollary we know that Sm is in solved form. Finally, by Lemma 4.7 we have

as,,, I p 8, = B[FV(S)].

The reader should note that this proof is essentially similar to that of Theorem 3.9.
Finally, combining our soundness and completeness results, we have that this method is
capable of non-deterministically finding a unifier of S more general than any given unifier.
More formally, we may characterize the set of substitutions non-deterministically found by
the set of transformations 'FIT as follows.

Theorem 4.23 For any system S, the set

{asf IFqS) I S &- Sf, and S' is in solved form)

is a CSU(S). By application of the appropriate renaming substitution away from W, this
set is a CSU(S)[W] for any W.

PTOO~. We must simply verify the conditions in Definition 4.5. Coherence was shown
in Theorem 4.15 and our previous result demonstrated completeness. By restricting the
idempotent substitution erst to FV(S) we satisfy purity for W empty. If TV is not empty,
we may suitably rename the variables introduced by each of the substitutions as1 a,way from
W, using Lemma 4.6.

5 Huet 's Procedure Revisited 37

The careful reader will note that we have made no assumptions about the order in
which transformations are performed, and so these results apply in a very general way to the
derivation of solved form systems from initial systems of terms. In particular, we see that
the strategy of eager variable elimination, in which transformation (3) is performed as soon
as possible on any pair to which it applies, is complete (in the case of general E-unification
this problem is still open, see [15]). The search space is thereby reduced, since we do not
need to build up such solved pairs one symbol at a time. In addition, it shows how this

set of transformations is a true generalization of the transformations used for first-order
unification.

5 Huet's Procedure Revisited

The set of transformations given in the previous section were proved to be complete for the
problem of general higher-order unification, that is, they can non-deterministically find any
higher-order unifier of two arbitrary terms. Unfortunately, as remarked above, the 'don't
know' non-determinism of this set causes severe implementation problems in the case of two
flexible terms (case (E) in our analysis), and, as discussed above, this 'guessing' of partial
bindings in this case can not be avoided without sacrificing completeness, and so the search
tree of all transformation sequences may be infinitely branching at certain nodes, causing
a disastrous explosion in the size of the search space.

Huet7s well-known solution to this problem [25, 261 was to redefine the problem in
such a way that such flexible-flexible pairs are considered to be already solved; this par-
tial solution of the general higher-order unification problem turns out to be sufficient for
refutation methods (see [24]), and this is the method used in most current systems. We
show here how to explain this approach in terms of transformations on systems. The only
changes have to do with redefining the notion of a solved system and restricting the set of
transformations.

Definition 5.1 A pair of terms (x, e) is in presolved form in a system S if it is in solved
form in S (as above) or if it is a pair consisting of two flexible terms. A system is in
presolved form if each member is in presolved form. For a set S in presolved form, define
the associated substitution us as the mgu a9 of the set St of solved pairs of S.

Definition 5.2 Let Z be the least congruence relation on L containing the set of pairs
{(u, v) (u, v are both flexible terms } . A substitution 6 is a preunijier of u and v if 6(u)lE

@(v>l.
The importance of pre-unifiers is shown by our next definition and lemma.

38 Higher- Order Unification Revisited

Definition 5.3 For every $ = al, .. . ,an + ,f3 E 7 , with n 2 0, define a term

h

ed = Axl . . . x,. v,

where ~ (x ,) = a, for 1 < i 5 n and v E V' is a new variable which will never be used in
any other term. Let 5 be an (infinite) set of bindings

Finally, if S' is a pre-solved system containing a set S" of flexible-flexible pairs, then define

the substitution

Ssl = C ~ F V (S ~ ~) -

As in [26], it is easy to show this next result.

Lemma 5.4 If S is a system in pre-solved form then the substitution as U Ss is a unifier
of S.

This lemma asserts that pre-unifiers may always be extended to true unifiers by finding
trivial unifiers for the flexible-flexible terms in the pre-solved system.

The set of transformations for finding preunifiers is a slightly restricted version of the
set of transformations 'FIT.

Definition 5.5 (The set of transformations PT) Let S be a system, possibly empty. To
the transformations (1) and (3) from 'FIT we add three (restricted) transformations:

{ (A . a) , A . a)) } U S U {(A=. Ui, A=. vi)} U S,
15iSn

(29

where a E C or a = x j for some j, 15 j 5 k.

{ (A ~ . F (K) , A ~ . a (K))) U S * {(F,t),(A~.F(TK),A3Z.a(~)))US, (4'a)

where a E C and t is a variant of an imitation binding for a appropriate to F.

{(A=. F (G) , A 2 k . a(2),))) U S =+ {(F, t) , (Aq . F(=), AG. a (G))) U S, (4'b)

where either a E C or a = xi for some j, 1 5 j 5 k, and t is a variant of an ith projection
binding for some i, 1 < i 5 n, appropriate to the term Aq . F(=).

5 Huet 's Procedure Revisited 39

After each of (4'a) and (4'b), we apply transformation (3) to the new pair introduced.
As in our previous definitions, recall that the unions are multiset unions.

We say that 8 E PreUni fy(S) iff there exists a series of transformations from P'T

s=so 3 S1 * ... * S n ,

with Sn in pre-solved form, and 6) = as,, I Fv(s).

In terms of Huet's procedure (see the Appendix) the first two transformations rep-
resent approximately the effect of Simplify, and (4'a) and (4'b) represent the processes of
imitation and projection respectively in Match. Transformat ion (3) represents the effect of
applying substitutions in Simplify, but also allows variable elimination, which was remarked
upon by Huet (see [26], p. 3-57) but not emphasized.12 Note that the transformations (I),
(2'), and (3) in PT preserve the set of solutions invariant, as discussed in Section $4.2.

We now present the major results concerning this formulation of higher-order unifica-
tion, following [26]. Their proofs are simple modifications of our previous results, and are
left to the reader.

Theorem 5.6 (Soundness) If S =%- St, with S' in presolved form, then the substitution

as! JFV(,y) is a preunifier of S.

Theorem 5.7 (Completeness) If 6) is some preunifier of the system S, then there exists
a sequence of transformations S &- St, with St in presolved form, such that

The search tree for this method consists of all the possible sequences of systems created
by transforming the original two terms. Leaves consist of pre-solved systems or systems
where no transformation can be applied. These correspond to the S and F nodes in Huet's
algorithm; in fact, the search trees generated are essentially the same as the matching trees

defined in [25], except that here an explicit representation of the matching substitutions
found so far is carried along in the system (see the Appendix). The set of pre-unifiers
potentially found by our procedure is the set of pre-solved leaves in the search tree.

As in the case of general higher-order unification, the strategy of eager variable elimi-
nation is complete, allowing a reduction in the size of the search space, since we do not need
to build up the terms using partial bindings. This rule had been suggested as a heuristic

Jensen and Pietrzykowski [41] suggest a similar rule as a heuristic improvement.

40 Higher- Order Unification Revisited

in [26] and [41], but not emphasized as an essential part of the method of building up sub-
stitutions, as here. We note also as a minor point that in some cases it is possible to apply
variable elimination to a presolved system so that that this binding is incorporated into the
mgu of the final solved form system. For example, the following initial system is presolved,
but in fact has a mgu [Ax. G(a, x)/F]:

(Ax. F(x), Ax. G(a, x)), (F(b), G(a, b))
Ax. G a x)) b

3 3 (F, Ax. G(a, x)), ((G(: , i) 7 G(a, '4)
(F, Ax. G(a, 3)).

We give a pseudo-code version of Huet's method for the typed @r]-calculus in an
appendix as an example of the way in which these transformations can be used to design
more practical procedures.

6 Conclusion

We have presented in this paper a reexamination of the problem of general higher-order
unification, using the abstract approach of transformations on systems of terms. We feel
that this kind of analysis provides the right level of abstraction by revealing the logical issues
in their purest form. As shown in our application of this method to general E-unification
[15], this abstract approach allows us to derive complete sets of abstract transformations for
unification in various contexts from an analysis of what it means for two terms to be 'the
same' (e.g., modulo a set of equations in E-unification and modulo @-reduction in higher-
order unification). We claim that this approach is more perspicuous than those previously
advanced, permits more direct soundness and completeness proofs, and unifies and justifies
the various approaches taken to unification problems. This abstract characterization of the
process of unification in various settings clarifies the basic similarities and differences of the
problems by removing the notion of control and showing exactly where non-determinism
arises and where it may be eliminated. The three sets of transformations ST, PT, and 7-tT
thus represent an (inclusion) hierarchy of abstract methods for unification. One result that
came out of this is that variable elimination can be extended from first-order unification to
both general higher-order unification and to pre-unification; in particular, the strategy of
eager variable elimination is still complete. This work is part of a project [43] which attempts
to provide a general theory of complete sets of transformations for unification, including
higher-order unification and general E-unification; we hope to extend this approach to
higher-order E-unification and unification of polymorphic lambda terms. It is our hope
that the abstract method of transformations on systems will yield still further insights into
the nature of unification problems in the future as well.

Acknowledgment: We would like to thank Dale Miller, Frank Pfenning, Rick Statman,
Eric Tiden, and the anonymous referees for many helpful comments which improved the
paper immeasurably.

Appendix

The basic idea of the seminal higher-order preunification procedure developed by Huet [26]
is to search for preunifiers of two lambda-terms one substitution at a time by alternately
decomposing terms and finding matching substitutions for the heads, stopping when the
subterms are found to be either trivially unifiable, or not unifiable. More specifically, the
procedure generates a tree (of OR branches) from a root consisting of the original pair of
terms, whose nodes are disagreement sets of pairs of terms not yet unified, and whose arcs
are labelled by substitutions found and applied to generate new descendants. The tree is
explored and unifiers incrementally created by decomposing pairs of terms until their heads
are no longer equal and then finding substitutions which match the heads of pairs, if possible.
Identical pairs of terms are fully decomposed and eventually removed from the disagreement
set. When either a trivially unifiable disagreement set, composed only of flexible-flexible
pairs, is found (success) or an un-unifiable pair, i.e., a rigid-rigid pair with dissimilar top

function symbols, is found (failure), a branch is terminated. In general this process may
not terminate, since whether two lambda terms are unifiable is only semi-decidable.

We now present a pseudo-Pascal version of Huet's non-deterministic procedure for
pre-unifying two terms in the pq -calculus.

Higher- Order Unification Revisited

global variable T : searchnee;

procedure LambdaUnifiers(el , e2 : A-terms) ;
{ This procedure enumerates a complete set of pre-unifiers for

two A-terms of the same type.)
var

N, N' : treeNodes; e: , e i : Xterrns; C : substset; a, p, 0 : unifier;
begin

T := the one node tree consisting of simp1ify({(el, e2)));
while exists an unmarked leaf node N in T do

begin
Pick some flexible-rigid pair (el, e2) E N;
C := ~ a t c h (e ~ ,e2, FV(N));
i fC=0

then mark N with "F"
else

for each a E C do
begin

N' := simplify (u(N));
Add a descendant arc from N to N' labelled by a;
if N' is labelled "S"

then begin
e := Id;
for each p on path from N' to root of T do

e : = P O B ;
Output(@)

end
end

end
end.

function Simplify(N : disSet) : node;
{ Takes a disagreement set of pairs of terms of the same type and returns

a node marked with "F" or "S", or a new disagreement set containing
at least one flexible-rigid pair.)

begin
{ Dissolve all rigid-rigid pairs.)
while exists rigid-rigid pair (el , e2) in N do

begin
{ Suppose el = Axl . . . x,. a1 (ei , . . . , ei ,)

and e2 = Ayl . . . yn.a2(e:, . . . ,eg,))
{ See if heads same.)
if not (Ax1 . . .x,.al A, Ayl, . . . , yn.a2)

then Return(N marked with "F");
{ Else we know r(a1) = r (a2) and thus pl = p2)
Replace (el, e2) by the pairs

(Azl . . . z n . et , Ayl . . . y,. e3) for 1 5 i 5 p1
end;

{ Orient pairs.)
while exists rigid-flexible pair (el, e2) E N do

Replace (el, en 1 by (e2, el);
if exists some flexable-rigid pair in N

then Return(N)
else Return(N marked with "S")

end;

7 References

function Match(e1, e2 : A-terms; V : setOfVars) : substset;
{ Returns a set of substitutions which matches head of el to head of en.

el is a flexible term Xzl . . . z,. F(ei , . . . , ek,)
. .

and ea is a rigid term Ayl . . . y,. a(e:, . . . , ei,),
where r(el) = r(e2) = a1, . . . , a, + /3. The set of unifiers
returned is obtained by imitat ing the head of ez and
by projecting el on each of its arguments which preserves the type.)

var C : substset; i : integer;
begin

{ Imitate heading of e2 if possible.)
if Const ant (a)

t h e n C := { [Xzl.. . ~ ~ ~ . a (~ ~ (z ~ , . . . ,zpl) , . .. ,Gp2(z1, . . . , z p l)) / 4);
{ Where r(zi) = ~(e:) , for 1 5 i 5 pi , and the Gj are

variables not in V such that r(Gj) = ~ (e i) , . . . , r(ekl) -+ r(e3))

else C := 0;
{ Next project F on each of its arguments which has appropriate type. }
for i := 1 t o pl d o

if ~ (e i) = 71, . . . , hi + /3 for some yj { Note that possibly mi = 0.)
t h e n

C := C u { [Xzl . . . zP1. z~(H: (zl, . . . , zpl), . . . , HLi (zl, . . . , z p l)) / ~]);
{ Where ~ (z ;) = r(ei) for 1 5 i 5 pl

and the Hf for 1 5 j 5 mi are variables not in V

of type T (H ~) = ~(e:) , . . . , r(ei ,) --+ ~(e;)}

Return(C)
end;

7 References

[I] Andrews, P.B., "Resolution in Type Theory," JSL 36:3 (1971) 414-432.

[2] Andrews, P.B., "Theorem Proving via General Matings," JACM 28:2 (1981) 193-214.

[3] Andrews, P.B., D. Miller, E. Cohen, F. Pfenning, "Automating Higher-Order Logic,"
Contemporary Mathematics 29 (1984) 169-192.

[4] Andrews, P.B., An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, Academic Press, Inc. (1986).

[5] Barendregt , H.P., The Lambda Calculus, Nort h-Holland (1984).

[6] Church, A., "A Formulation of the Simple Theory of Types," JSL 5 (1940) 56-68.

[7] Darlington, J.L., "A Partial Mechanization of Second-Order Logic," Machine Intelli-
gence 6 (1971) 91-100.

[8] Elliot, C., and Pfenning, F., "A Family of Program Derivations for Higher-Order
Unification," Ergo Report 87-045, CMU, November 1987.

Higher- Order Unification Revisited

Fages, F., and Huet, G., "Complete Sets of Unifiers and Matchers in Equational
Theories," TCS 43 (1986) 189-200.

Farmer, W., Length of Proofs and Unification Theory, Ph.D. Thesis, University of
Wisconsin-Madison (1 984).

Farmer, W. "A Unification Algorithm for Second-Order Monadic Terms," Unpub-
lished Technical Report, MITRE Corporation, Bedford, MA.

Felty, A., and Miller, D., "Specifying Theorem Provers in a Higher-Order Logic Pro-
gramming Language," Ninth International Conference on Automated Deduction, Ar-
gonne, Illinois (1988).

Gallier, J .H. Logic for Computer Science: Foundations of Automatic Theorem Prov-
ing, Harper and Row, New York (1986).

Gallier, J.H., and Snyder, W., "A General Complete E-Unification Procedure," RTA,
Bordeaux, 1987.

Gallier, J .H., and Snyder, W., "Complete Sets of Transformat ions for General E-
Unification," to appear in TCS (1989).

Goldfarb, W., "The Undecidability of the Second-Order Unification Problem," TCS
13:2 (1981) 225-230.

Gould, W.E., A Matching Procedure for Omega-Order Logic, Ph.D. Thesis, Princeton
University, 1966.

Guard, J.R., "Automated Logic for Semi-Automated Mathematics," Scientific Report
1, AFCRL 64-411, Contract AF 19 (628)-3250 AD 602 710.

Guard, J., Oglesby, J., and Settle, L., "Semi- Automated Mathematics," JACM 16
(1969) 49-62.

Hannan, J. and Miller, D., "Enriching a Meta-Language with Higher-Order Features,"
Workshop on Meta-Programming in Logic Programming, Bristol (1988).

Hannan, J. and Miller, D., "Uses of Higher-Order Unification for Implementing Pro-
gram Transformers," Fifth International Conference on Logic Programming, MIT
Press (1988).

Herbrand, J., "Sur la Thkorie de la D6monstration," in: Logical Writings, W. Gold-
farb, ed., Cambridge, 1971.

Hindley, J., and Seldin, J., Introduction to Combinators and Lambda Calculus, Cam-
bridge University Press (1986).

7 References 45

Huet, G., "A Mechanization of Type Theory," Proceedings of the Third International
Joint Conference on Artificial Intelligence (1973) 139- 146.

Huet, G., "A Unification Algorithm for Typed A-Calculus," TCS 1 (1975) 27-57

Huet, G., R6solution d7Equations dans les Langages d70rdre 1,2, . . . , w , Thkse d'Etat,
Universitk de Paris VII (1976).

Huet, G., and Lang, B., "Proving and Applying Program Transformations Expressed
with Second-Order Patterns," Acta Inforrnatica 11 (1978) 31-55.

Huet, G., "The Undecidability of Unification in Third-Order Logic," Information and
Control 22 (1973) 257-267.

Lucchesi, C.L., "The Undecidability of the Unification Problem for Third Order Lan-
guages," Report CSRR 2059, Dept. of Applied Analysis and Computer Science,
University of Waterloo (1972).

Martelli, A., Montanari, U., "An Efficient Unification Algorithm," ACM Transactions
on Programming Languages and Systems 4:2 (1982) 258-282.

Miller, D., Proofs in Higher-Order Logic, PhD. Dissertation, Carnegie-Mellon Uni-
versity, 1983.

Miller, D., and Nadathur, G., "Higher-Order Logic Programming," Proceedings of
the Third International Conference on Logic Programming, London (1986).

Miller, D., and Nadathur, G., "A Logic Programming Approach to Manipulating
Formulas and Programs," IEEE Symposium on Logic Programming, San Fra.nciso
(1987).

Miller, D., and Nadathur, G., "Some Uses of Higher-Order Logic in Computational
Linguistics," 24th Annual Meeting of the Association for Computational Linguistics
(1986) 247-255.

Nadathur, G., A Higher-Order Logic as the Basis for Logic Programming, Ph.D.
Dissertation, Department of Computer and Informat ion Science, University of Penn-
sylvania (1986).

Paulson, L.C., "Natural Deduction as Higher-Order Resolution," Journal of Logic
Programming 3:3 (1986) 237-258.

Pfenning, F., Proof Transformations in Higher-Order Logic, Ph.D. thesis, Department
of Mathematics, Carnegie Mellon University, Pittsburgh, Pa. (1987).

Higher- Order Unification Revisited

Pfenning, F., "Partial Polymorphic Type Inference and Higher-Order Unification,"
in Proceedings of the 1988 ACM Conference o n Lisp and Functional Programming,

ACM, July 1988.

Pfenning, F., and Elliott, C., "Higher-Order Abstract Syntax," Proceedings of the
S I G P L A N '88 Sympos ium o n Language Design and Implementation, ACM, June
1988.

Pietrzykowski, T., "A Complete Mechanization of Second-Order Logic," JACM 20:2
(1971) 333-364.

Pietrzykowski, T., and Jensen, D., "Mechanizing w-Order Type Theory Through
Unification," TCS 3 (1976) 123-171.

Robinson, J.A., "Mechanizing Higher-Order Logic," Machine Intelligence 4 (1969)
151-170.

Snyder, W.S., Complete Sets of Transformations for General Unification, Ph.D. Dis-
sertation, Department of Computer and Information Science, University of Pennsyl-
vania (1988).

Statman, R., "On the Existence of Closed Terms in the Typed A-Calculus 11: Trans-
formations of Unification Problems," TCS 15:3 (1981) 329-338.

Winterstein, G. , "Unification in Second-Order Logic," Electronische Informationsver-
arbeitung und Kybernetik 13 (1977) 399-411.

Zaionc, Marek, "The Set of Unifiers in Typed A-Calculus as a Regular Expression,"
Proceedings of the RTA 1985.

