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Abstract

The question of whether a monoid presented by a finite Thue system is cancellative is shown to be

undecidable (its negation is semidecidable), even when the Thue system is Church-Rosser. A decision

procedure is described for the cjise of monadic Church-Rosser Thue systems and general commutative

Thue systems.
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CANCELLATIVITY IN FINITELY PRESENTED SEMIGROUPS

1. Introduction

Term-rewriting systems have been of considerable interest in recent years due to their

applications in such diverse areas as abstract data types, theorem proving, database schemes

and computer algebra. Most of these applications are centered around their word problems,

or, in other words, equivalences of terms in their equational theories. Though in their full

generality they are computationally infeasible (because the word problem is undecidable in

general) some large decidable subclasses of them have been found. For instance, term-

rewriting systems with the Church-Rosser property (also called canonical or complete term-

rewriting systems) are specially of interest, since the Church-Rosser property enables us to

compute normal forms for equivalence classes of terms.

In this paper, we focus our attention on string-rewriting systems or Thue systems, which

one can regard as presentations of semigroups. These have been studied in great detail in

[2,3,11,15,16,17]. The Church-Rosser property (though defined in a more restricted way than

for general term-rewriting systems) again plays an important role in these studies. The

algebraic properties of semigroups presented by Church-Rosser Thue systems have received a

lot of attention. Their algorithmic properties have been investigated too; here the effort has

been to identify decision problems, undecidable in general, which turn out to be decidable

once the Church-Rosser property is assumed.

In this paper we consider an algorithmic problem - that of deciding whether a

semigroup is cancellative - for Church-Rosser Thue systems and for general commutative

Thue systems. We show that the Church-Rosser property is not of much help here; the

problem is undecidable for arbitrary Church-Rosser systems. But if they are also assumed to

be monadic then cancellativity is decidable. For commutative systems which are canonical

(i.e., Church-Rosser relative to the lexicographic ordering of vectors), we show that

cancellativity is in co-NP, and deduce that cancellativity is decidable for general commutative

Thue systems.
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2. Basic Definitions

2.1. Strings Over an Alphabet

Let S be any finite alphabet and Z* the set of all possible strings over S, including the

null string \. Given a string w in S*, \w\ denotes its length. Given strings u and v, their

product uv is obtained by concatenating v onto u. A string x is said to be a prefix

(respectively, suffix) of y if there exists : such that y = xz (respectively, z.t); x is a proper

prefix (respectively, suffix) of y if x is a prefix (suffix) of y and |j:| < |>'|.

2.2. Thue Systems

A Thue system T is a set of pairs of strings over 2*:

Formally, the elements of 7", which we call rules (or relations) of the Thue system, are

merely ordered pairs of strings, but the notation 'L-^^R' is more suggestive than '{L,R).'

The Thue congruence -^^ defined by 7 is the reflexive transitive closure of the relation -<e^»

defined as follows: if u<r->v is an element of 7, then for all x, y, xuy <-^ xvy and xvy *—e»

xuy. When x<^y, we say that x and y are congruent modulo T. (Sometimes we write *-^*7-,

and so on, where the defining Thue system is not obvious from the context. Also, the phrase

'modulo 7' will be omitted whenever it is obvious from the context.) For any string jc, [x]f

denotes the congruence class containing x, i.e.,

[x]r- {y:y<^r^}-

We write x -^ y if jc *—> v and \x\ > |v|. Let -^ denote the reflexive, transitive

closure of -^. The relation ^ is referred to as reduction (modulo 7). When a rule Z.<-^-/?

has sides of differing length, we call the longer the redex and the shorter the reduct in the

rule; more generally, if a-e-^p or 3-e->a is such a rule and a is the redex, then for any

strings u and w we write uaw -^u^w and speak of the designated occurrences of a and 3 in

the respective strings as the redex and reduct, respectively. Inverse to the reduction relation

-^- J is the expansion relation -^ j-. we write also ^—^ to indicate the application of a single

length-increasing rewrite. Thus we can speak of 'reducing a redex' or 'expanding a reduct' in

a string. If x -^ y then x is &n ancestor of y and y is a descendant of x. For a set X of

strings, A'(X) denotes the set of all strings which are descendants of strings in X; i.e.,

A'(X) = [x: w -^ X for some w in X).
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Two strings x and v are said to be joinable if they have a common descendant. Clearly

two joinable strings are congruent. A string iv is irreducible (modulo T) if there is no v such

that w ^ V. IRR{T) denotes the set of all strings that are irreducible modulo T. If x -^ >•

and v is in IRR{T), then y is called a normal form for x.

A Thue system T is Church-Rosser if and only if every two congruent strings are

joinable. In other words, for every choice of x and y, x -e^ v implies that for some z,

X -^ z and y -^ z- It can be shown that in a Church-Rosser system every string has a

unique normal form.

A Church-Rosser system T is reduced if, for every rule L<—^R in T, neither L nor R is

reducible modulo T — {Z.«e^»/?}. Two Thue systems T and U are equivalent if they are

defined over the same alphabet and for any two strings x and y, x -s^ j- y if and only if

X -^^i^ y. In view of the following result, we shall assume in the rest of the paper that

every Church-Rosser system is reduced:

Proposition 2.1 [13]: For every Church-Rosser Thue system T, there is a unique

reduced Church-Rosser Thue system T' equivalent to T. It T is finite then T' is also

effectively computable from T. •

All the systems T constructed in this paper will be both Church-Rosser and reduced

based on the following condition, whose sufficiency is not difficult to show:

If r is a Thue system in which (i) in every rule the two sides have different lengths

and the redex determines the reduct uniquely, (ii) no two distinct redexes of T

overlap at all, and (iii) all reducts have the same length, then T is Church-Rosser

and reduced.

A Thue system is monadic if, in every rule, one side has length 1 or 0, and the other

side is longer.

3. Cancellative Semigroups

In this paper we shall investigate the property of cancellativity in finitely presented

monoids. Throughout the discussion, a Thue system T is considered to present a monoid Mj

(i.e., a semigroup with identity) in the following sense:

The elements of Mj- are the congruence classes [x]^-,

Given two elements [x]j and [y]j, their product in the semigroup is defined as [xy]j

(clearly, this is independent of choice of representatives of the two congruence classes),

and
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[\]j is the identity in the monoid.

A semigroup G satisfies the left cancellation law (or is left-cancellative) if for all

members a, x, and y of G, ax = ay implies x = y. The right cancellation law is defined

similarly in the obvious way. A semigroup is cancellative if it is both left- and right-

cancellative.

In what follows, of course, we shall be thinking only of semigroups which are monoids

presented by appropriate Thue systems. Throughout the rest of the paper we say '7" is

cancellative' to abbreviate 'the semigroup presented by T is cancellative.' The following

should be noted first:

Lemma 3.0: Given a finite Thue system T, it is undecidable whether T is (i) left-

cancellative, (ii) right-cancellative, or (iii) both.

Proof. The proofs for all three are identical, so we shall consider (i) only. It is enough

to show that left-cancellativity is a Markov property [11,12,16). In other words, it is enough

to prove (a) the property is a property of the monoid Mj independent of its presentation:

immediate from the definition; (b) there exists a system T with this property: any

presentation of the trivial semigroup is cancellative; and (c) there exists a monoid M^ which

cannot be embedded in any left-cancellative monoid Mj-. true, since, first, the system S =

{c'^^^ca} is clearly not (left-) cancellative, and, second, no cancellative monoid contains a

non-cancellative submonoid. Q.E.D.

Indeed, it is possible to extend the above result to Thue systems which are monadic.

We shall derive this stronger result from the analogue to Markov's theorem in finitely

presented groups; then we can exploit the fact that every finite presentation of a group, in

which the inverses of symbols are implicit, may be used to generate effectively a Thue system

which presents an isomorphic monoid; the latter Thue system is obtained by explicitly adding

new symbols to represent the inverse and explicitly adding rules of the form aa'^<^^\ and

a"'a-"e^X. The resulting Thue system is special, i.e., in every rule the reduct is the empty

string X

.

Proposition 3.0.1. (See [10]). Let 5 be a special (and therefore monadic) Thue system

presenting a group G. Given any word w over 5 one can construct effectively a monadic

Thue system Siw) (also presenting a group) over a larger alphabet which contains the

alphabet of 5, and a homomorphism h from M^ to Ms(,,) such that if w is congruent to \ then

Siw) presents the trivial group, and if »v is not congruent to X then h is an embedding. •
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We can assume that the group G presented by S has undecidable word problem, and

also that we can identify a symbol a m the alphabet for the presentation such that a is not

equal to the identity in G, so it is not congruent to \ (modulo S). If necessary, choose a to

be a new symbol not mentioned in the rules of S and add it to the alphabet for G: in the

resulting group the word problem remains undecidable. Let c be a symbol not in the

alphabet of 5(w), and define T{w) = S(w) u {ca'^—^c}. Clearly T{w) is monadic, and it is

easy to show that ^ff^,,, is (left-) cancellative if and only if w-^^ ^\. Since the word-problem

for G reduces effectively to deciding whether certain monoids A/ 7-,,,. are (left-) cancellative,

and we can choose G to have undecidable word-problem, the following generalization of

Lemma 3.0 is immediate.

Theorem 3.0.2 Cancellativity, or left-cancellativity, is an undecidable property of Thue

systems S even when the systems 5 are required to be monadic. •

We next consider the technically more challenging problem of determining whether

cancellativity is decidable for Church-Rosser (and, by implication, reduced) Thue systems T.

Lemma 3.1: A Thue system 7" presents a kft-canceHativc semigroup Mj- if and only if

the following condition holds:

For all a \n 1 and .r, y in S*,

ax <^ J ay implies x <-^
j y.

Proof: Clearly the 'only if part is true. To prove the converse, suppose that there exist

strings a, x' , and y' such that x' and y' are not congruent (modulo 7") but ax' and ay' are.

Let us suppose that a has minimum length among such strings, and write a = aP for some

alphabet symbol a. Then by minimality of |a|, px' and 3_v' are not congruent, and so we can

choose X = pjt' and y = py'. •

Corollary 3.1.1: A Church-Rosser Thue system T presents a left-cancellative semigroup

Mj if and only if the following condition holds:

For all a in 2 and x, y in IRR{T),

ax ^^ J ay implies x = y.

Proof: An easy consequence of Lemma 3.1 and the definitions. •

The following further corollary is easily shown:

Lemma 3.2: Let 7 be a reduced Church-Rosser system such that Mj is left-cancellative.

Then T cannot contain rules of the form ax -^^ ay where a € S. •
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The following theorem is stronger than Lemma 3.1 in the case where T is Church-

Rosser and reduced.

Theorem 3.3: Let 7 be a reduced Church-Rosser system. Then T is not left-cancellative

if and only if there exist a in S and v,, yj i" IRR{T) such that

(a) >! * >:.

{b) a>'| <r-^-f* ay 2, and

(c) the redexes in ay, and av, are incompatible (i.e., neither is a prefix of the other, so

the strings cannot be reduced by the same rule of T).

Proof: The 'if part is trivial.

Only if: Assume Mj is not left-cancellative and let S be the set of all triples (a,>',,y;)

satisfying (a) and (b). By Corollary 3. LI, S is nonempty. Let (a.^pv^) be a triple from S

such that

i'^) \y]\
•"

l^;! is minimal.

Now claim that (c) holds, otherwise, there exists a common prefix P of y, and y^ and a

rule ap-e^-y in T which can be applied to both strings. Write y, = pz, (i = 1,2), so -/z, are

congruent but z, are not. Choose the longest (necessarily nonempty) suffix of y, a' 3', say,

where a' is a single symbol, such that a'P'z, are congruent but P'z,, which we write as y,',

are not. Then the triple (a' ,y|',y.,') is also in 5, contradicting (d): this proves the claim.

Q.E.D.

The criteria in Theorem 3.3 can be rephrased as follows. Suppose that au —3>v is a rule

which applies to ay,, so, by (c), u is not a prefix of y2- Let us write

R^(au) = { aw : w (: [RR{T) and u is a prefix of w },

and

R^{au) = { ax: x € IRR{T) and u is not a prefix of x].

So ay, is in ^jC") (' ^ 1»2), and they have a common descendant in

A*(/;,(a«))nA*(/?2(a"))

(the intersection of the sets of descendants of strings in /J,(fl«) and R^iau)); therefore this

intersection is nonempty. Conversely, suppose that the intersection is nonempty. Then there

must exist strings ay, in R,(au) (i = 1,2), which have a common descendant. These strings

are clearly different by definition of the two sets /J,(au); thus ay, are congruent but y, are not.
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and the system T is not left-cancellative. Thus we can conclude the following:

Theorem 3.4. A reduced Church-Rosser Thue system T presents a left-cancellative

monoid if and only if for all redexes au of rules of T , ^* {R \(au))r\ ^* (R ^{au)) = 0. •

Note that the sets R,(au) are always regular. Thus the above theorem gives us a

decision procedure for finite monadic Church-Rosser Thue systems, since for every (effective

description of a) regular set /?, A"(/?) is also regular and effectively computable [2], and the

same holds, obviously, for IRR(T). Thus,

Theorem 3.5: Given a fmite monadic Church-Rosser Thue system T, it is decidable

whether Mj is left-cancellative. •

Clearly this also implies the existence of a decision procedure to test whether a finite

monadic Church-Rosser Thue system is cancellative, since right-cancellativity can be shown

to be decidable by a symmetric argument.

4. The Case of Arbitrary Church-Rosser Systems

In this section we show that the problem of cancellati^'ity is undecidable for arbitrary

Church-Rosser systems. The construction is a modification of that given in [14]. We start

with a Turing Machine Z with an undecidable halting problem and construct a Church-Rosser

Thue system 7", over an alphabet 2, and a regular set FINAL C 2,' with the following

property:

7", is cancellative, and, given a string x, the question of whether [x]j D FINAL is empty

is undecidable.

We then construct another Thue system T^ (by adding more rules to T,) and a symbol a

from an extended alphabet 2^ such that

r, is cancellative and Church-Rosser, a € I^"^!' ^nd given a string w, the question of

whether there exists a string y such that ay -^ w is undecidable.

Finally, we show how, for a given w, 7", can be extended to T^ such that T^ is

cancellative if and only if there does not exist any string y such that ay -^ w.

We shall now outline the construction of T"). Since the construction to be discussed here

is only a trivial modification of that in [14], we shall present it with a minimum of detail. Let

Z = (K,2,n,(ji.,9g,<7^,P) be a Turing machine where K is the (finite) set of states, 2 and FT the

input and tape alphabets respectively (2 C E), ji the transition function (expressed as

quintuples: see below), q^ the initial state, g^ the final state, and p the blank symbol.

Assume also that the halting problem for Z is undecidable. We now construct T", which is
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cancellative and Church-Rosser, over an alphabet F, such that the action of the Turing

Machine Z is simulated by expansion modulo 7",. The alphabet V is described below.

One begins with K (regarded as a finite alphabet) and 0, which are (without loss of

generality) disjoint sets. 'Mirror-image sets' K and are constructed, where

n =
{ a : a € n}, K = {(^q, , q„], and K = [p^, • •

, p ,,} Symbols in and fl we

call respectively right and left tape symbols, and the other symbols are called right and left

state symbols. As in [14], we classify the symbols of F as follows:

Left and right 'endmarkers' S and C .

State symbols, from K and K; the distinction is that the symbols in K will be called

'right state-symbols,' and the symbol being 'scanned' will lie to their right, and the

symbols in K will be called 'left state-symbols,' and the symbol being scanned will be to

their left.

Left and right tape symbols. The right tape symbols occur to the right of the state-

symbol, and are identical to the symbols of 11; FI is the set of left tape-symbols.

Left dummy symbols. These are dummy symbols to the left of the state symbol. There

is one symbol L. for every pair z in the following two sets:

K X ({c} u n)

and

({$} U fi) X K .

There is also a dummy symbol L; which can appear only to the left of the symbol S; D^

denotes the set of left dummy symbols.

Right dummy symbols R. for the same sets of pairs z, and an additional symbol R^,

which can only appear after the symbol C ; D^j denotes the set of right dummy symbols.

The alphabet F is the set of all symbols in the above five classes. The set

{$} U D^ U n comprises the left symbols in F; similarly the set {« } U D^ U Fl comprises the

right symbols of F. Finally, we define regular sets CONFIG, which encodes all possible

configurations of the machine Z, and FINAL, which encodes all the final configurations of Z:

CONf/G = L;{$}(n U DJ'(K U K)(n U Ds)"{«: }•-«;,

FINAL = L;-{$}-(n U D^y{qj,p^}{U U D^)* {tf }-i?;.
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Clearly FINAL C CONFIG.

The construction of 7, is illustrated by the following table (in it, a represents the

symbol in n corresponding to the symbol a in n and R. and L. are assumed to be pairs of

corresponding dummy symbols):

Definition of 7,
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Proof. Assume 7, is not left-cancellative. Then by Theorem 3.3 there exist a € f, and

x,y ^ IRR(T^) such that x ^ y, ax and ay are joinable and ax and ay do not get reduced by

the same rule.

Let CRUXl be the set of all possible substrings of strings in CONFIG; i.e.,

CRUXl = { w : xwy € CONFIG for some .r and y }.

Every string s in F* can be factored as a sequence s^s2 • S;, where the segments .s,, ... , ij.

are in CRUXl, and maximal in the sense that no string s, is contained in a longer string also

belonging to CRUXl. (Informally speaking, given s, the sequence s^S2 s^. can be got by

deleting from s the longest prefix belonging to CRUXl and repeating until the string is

exhausted.) By arguments similar to those in [14] if 5 -e^ r (mod 7,) then t has the form

/,/, • • •

tf. where r, € CRUXl and Sj ^^ r, (mod 7,) for 1 s y < *. Hence in the proof that

follows we may assume k = I and we only need to consider a, x and y such that ax and ay

belong to CRUXl. Furthermore, as noted in [14],

two strings in CRUXl are jc'aable if and only if one can be reduced to the other.

By inspecting the redexes of 7, we can conclude that a is either a left dummy-symbol or

a left state-symbol. Inspecting the reducts of 7, we conclude that (since a must recur as a

redact) it is a left dummy-symbol and it recurs in a rule of the form L.p,-^^-p,RJi..

However, expanding the string ay according to this rule yields a string beginning with p,, and

since this is the only occurrence of a state-symbol in the string (since k = I), the new string

cannot be expanded further: i.e., ax -^ ay implies x = y. This concludes the proof. Q.E.D.

Now we construct a system 7^ extending 7,. First consider the set

{C}-FINAL{D}

where C and D are symbols not in F. Let 5q, • • ,53 be four new symbols, let ft denote

FU{C,D}, and let ft be a disjoint copy of ft, and which does not contain the symbols 5,

(Note: ft contains both FI and U; ft contains yet another copy of 11). We define a Thue

system S with the following rules:

where a is any left tape- or dummy-symbol,
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where a is any right tape- or dummy-symbol, and

(i.Ds^<^-^s-XiDD.

The rules of S imitate a finite automaton accepting the regular set {C}FINAL{D], if we

think of ^3 as being the 'initial' state and the automaton reads its input from right to left.

The following lemma contains some straightforward properties of the systems 5 and 7,, and

the simple but tedious proofs will be omitted.

Lemma 4.3. (i) Given a string oj in fl*, the string coj^ has an ancestor begmning with

Sq (modulo S) if and only if co € {C}FINAL {D}, and given a string t) in (Hun)*, the string

5qTi has a descendant ending in 53 if and only if t) is the homomorphic image /i(9) of a string

e in {C}FINAL{D) under the homomorphism h: a -^aa on fl; (ii) if a is a string over the

alphabet nuftU{5Q, • • • s^], containing just one state-symbol (^, or p,) and a<-^j-3, then

either a -^
7- or 3 -^j-a; (iii) if a is a string over the alphabet given in (ii) containing

exactly one symbol from {sq, ,53}, and 0*^53, then either a-^53or3^5a. •

The system Jj i* defined as follows:

7, = 5U7',.

Theorem 4.4. (i) Both S and T, are Church-Rosser and reduced; (ii) a string a: in 2* is

accepted by the Turing machine Z if and only if the string CSq^xiDs^ has an ancestor 5oT|

(modulo T2), where f] is in fl*; and (iii) T, is cancellative.

Proof, (i) This can be argued in the usual way: the redexes do not overlap and no two

rules have the same redex. (ii) The 'only if part is straightforward, so we concentrate on the

'if part. Therefore, suppose that the string X = CSq^xiDs^ has an ancestor s^t] where -p is

in n*. Let 4 be the unique irreducible descendant of Sq1\ (modulo S) (note: not modulo T^)-

Notice that every descendant of ^ (modulo T^) is also irreducible (modulo 5): this implies that

X is the unique irreducible descendant of 4 (modulo Tj). But no rule of 7", can affect any

symbol j,, so, since X ends with ij, so does i,. By Lemma 4.3, ^ is in {C}FlNAL{Dsj}, so Z

accepts X by Theorem 4.1.

(iiia) T2 is left-cancellative: we argue by contradiction. Suppose otherwise, so by

Lemma 3.3 there exist strings x^y in IRR{T2), and a symbol a such that ax and uy are
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congruent (modulo T.) and the redexes in these strings are incompatible in the sense that

neither is a prefix of the other. Clearly. 7", is also cancellative over the (larger) alphabet of

7"-,, so ax and cry are not congruent (modulo T",). Let ^ and ti be the irreducible descendants

of ax and ay (modulo 5). Therefore we can write

ax ^^s^ ^^r, P "^ Tj^ ^ 5
t^y- (4.1)

and observe, as before, that no string between ^ and t| in (4.1) can be reduced by any rule of

S. Also we can assume that p is in //{/{(r,). Therefore the transformations carrying 4 to 'H

use only the rules of 7",.

Next we observe that the strings ^ and ti each contain at least one of the symbols s^.

This is because, since 7, is cancellative, at least some rules of 5 must be involved in the

above chain of transformations, and therefore at least one string in the sequence, and hence

all, must contain at least one symbol from {sq, ,53}. Let as be the shortest prefix of 4

containing one of these symbols, and let (Jr be the shortest such prefix of ti (so both s and t

are among the symbols i,). Since no rule of 7, involves any symbol 5,, it follows that s = t

and there exists a prefix -rr of p which is a common descendant of a and p (modulo T",).

Furthermore, by definition of the system 5, a, p, and -n have the property that they have at

most one occurrence of a state-symbol each, all the symbols to the left of it are left-symbols

(or C), and all the symbols to the right of it are right-symbols (or D). Thus, these strings

are substrings of strings in {C} CONFIG {D}, and just as for strings in CRUXl either a is an

ancestor of p (modulo T^) or vice-versa. But neither string can be expanded by any rule of

7"|^ so as = pr. However, by definition of 5, ax and ay begin with the same string (an

ancestor of as) and therefore begin with compatible redexes, contradicting the assumption.

Therefore T; is left-cancellative.

(iiib) T2 is right-cancellative. We can duplicate the reasoning of (iiia) to establish that if

it is not right-cancellative then there exists a sequence of transformations^

xa ^5- 4 «^ 7- T) <-s' y^'

where x and y are in IRRiT^), i and t) are in IRR(S), a is a single symbol from Q, and the

redexes in xa and ya are incompatible. But it is clear from the definition of 5 that a

determines the redex uniquely, and the contradiction is immediate. This concludes the proof.

Q.E.D.

^This is why rules involving the accepting state-symbols were excluded from category 5 of the table for T^.

^Here -^-
' denotes the transitive closure of —^ rather than the reflexive transitive closure —> .
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Given an input string x for Z. we form 7, from 7", by adding the rule

CSf^o^cDi, -^.S(, D. (4.2)

Theorem 4.5: (i) Tj is Church-Rosser and reduced, (ii) it is right-cancellative, and (iii)

it is left-cancellative if and only if Z fails to halt on input r.

Proof, (i) This follows from the same considerations as applied to T", and T^.

(ii) Supposing that T^ is not right-cancellative, by Lemma 3.1 there exist irreducible

strings u and v which are incongruent (modulo 7",), and a symbol a in nunujsQ, • • • ,^3}

such that

u<T ^j^p<^ jva. (4.3)

We can assume that (4.3) is realized by a minimal-length sequence of transformations. Since

T", is cancellative, the sequence (4.3) must involve at least one application of the rule (4.2),

whose reduct, SqD , overlaps no other redex nor reduct in T^.

Consider all occurrences of SqD in p. Among all the reducts and redexes of the rules in

Tj this string overlaps only one, where it occurs as a reduct of rule (4.2). Thus some

occurrences will be expanded in producing ua and others will be expanded in producing vcr.

We may assume that no occurrence persists (without being rewritten) throughout the

sequence (4.3), since otherwise we could factorize the strings and work with suffixes to the

right of the rightmost 'persistent' occurrence of SqD . Moreover, we can suppose that not

occurrence is expanded both in producing ua and vct, since that would be a redundant

operation and the sequence (4.3) could be shortened.

If the rightmost occurrence of SqD in ua is as a suffix then a = D. Then u and v are

irreducible but uD and vD are not; this is impossible since no redex of 7", ends in D. Hence

we may assume that neither s^D occurs as a suffix in neither u nor v.

Construct new strings Ua and Vcr by uniformly replacing occurrences of s^D in ua

(respectively, vct) by the redex in (4.2). Claim that these strings are congruent (modulo T,),

because if we follow the reductions applied in (4.3) but avoiding applications of the rule

(4.2), we obtain a common descendant p' which corresponds to replacing every occurrence of

SqD in p by the redex CSq^xiDs^. Since 7", is cancellative, U and V are congruent (modulo

Ij) and therefore u and v are congruent (modulo T-^), a contradiction.

(iii) It is easy to prove the 'only if part, so we concentrate on the 'if.' Thus suppose

there exist strings u and v which are incongruent (modulo Tj) and a symbol a such that
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au ^7-^p^ 7-CTv. (4.4)

By reasoning as in (ii) we can rule out the possibility that nonempty prefixes of both uu and

CTv are unaffected by the new rule X'^r-^s^p (X denotes the string CSq^xiDs-^). Therefore

we can assume that SqD is a prefix of crv and this is replaced by X somewhere in the sequence

of transformations (4.4). We can therefore write (4.4) as

•So" ^Tj-^"' -^^0^"' ^^Tj-SflV. (4.5)

Furthermore, since the string X has only one occurrence of D, we can write

JqM -^>
J Xu ,

by, if necessary, 'postponing' reductions involving the rule (4.2) which cannot apply to the

designated part of the strings. Note that in Xu' , no further reductions (modulo T-^) can be

applied except in u' . We then consider another canonical sequence of reductions beginning

with Sqm:

SqU ^sUftU2 ^j^YtU2 (4.6)

where we first apply rules of S as long as possible, to the leftmost i, -symbol in the reduced

strings, so that in the sequence (4.6) t is an i,-symbol, leftmost, and no reduction (modulo 5)

applied to fw, can involve the designated occurrence of t, and then reduce u, to an irreducible

string Y (modulo T,). Therefore we have

Xu' ^^T 1''"-.
'"

so these strings possess a common irreducible descendant (modulo T,). But no reduction

(modulo r^) can further affect either X or Yt, so we conclude that X = Yt, so by Theorem

4.4, applied to those prefixes of the strings affected by the transformations (4.6), Z accepts

the input string X. This concludes the proof . Q.E.D. ,,.

It immediately follows that the question: Is T^ (implicitly parametrized by input strings x

for Z) cancellative? is undecidable, and hence canccllativity is undecidable for Church-Rosser

systems. Finally, we should note that the property of a finite Church-Rosser system T not

being cancellative is semidecidable. This follows from the definition of canccllativity since

the word problem is decidable for T: there exist strings x, y, and z, where x and y are not

congruent but either xz and yz, or zx and zy, are congruent. Combining with Theorem 4.5 it

follows that canccllativity is complete for 11, in the arithmetic hierarchy.
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5. Cancellativity of commutative Thue systems is decidable

In this section, we show that the cancellativity problem is decidable for finitely

presented commutative Thue systems. A commutative Thue system is a rewriting system over

permutable strings, i.e., strings in which the order of symbols is immaterial.

Let 7" be a commutative Thue system over some alphabet 2. (Permutable) strings over

2 can be viewed as Parikh vectors or, in other words, n-tuples of non-negative integers

where n is the size of the alphabet: the value of the /'" element denotes the number of

occurrences of the i'^ symbol in the string.

Strings u and v are said to be conjugate if and only if there exists a string w such that

uw <^
J-
vw. Let Gj be the abelian group obtained from T by explicitly adding the inverses

of symbols in 2. For a string w over (Z U 2~') let RED(w) be its reduced form. (Thus, for

instance, /i£D(flfca'^') = X.) Let

AG{T) = {/f£D(u-'v)<-^\,^£D(v"'M)^^\: we-^v^T} U {aa'^^^X: a€2}.

Thus AG{T) is a commutative Thue system such that My!,c{D ^* isomorphic to Gy. Now it can

be shown that

Theorem 5.1: For all u,v € S', u and v are Longruent modulo AG(T) if and only if

they are conjugate modulo T.

Proof: The 'if part is trivial.

'Only if: let S abbreviate AG{T). It is enough to show that if u and v are Parikh

vectors (with 2n co-ordinates, since the inverses are considered explicitly in defining S) such

that we-^-jV, then there exists w in S* such that RED {uw)<-^>jRED (vw) . For by induction

it follows that if u^^^v then there exists a string w in 2* such that

RED{uw) <^ ^ RED{vw), which certainly implies the result when u and v are strings over

2* (note that if x€2* then RED{x) = x). There are two cases:

(i) u«—>jv by application of the rule aa~^<-^\. Then we can take w = \ since

RED{u) = RED(v).

(ii) M-e^-^v by application of a rule ry"'<-^X, where for some p in 2* px<-^py is a

rule of T. Write u = M,«7'jry"' and v = u^u^^, where m, are vectors in 2*. If w = pu^y,

then/?£D(wu) = pu^x and;?£D(wv) = pu^y, so RED(wu)<r^j^RED(wv). Q.E.D.

Corollary 5.2: Let 7 be a commutative Thue system that is not cancellative. Then there

exist M, V in 2' that are congruent modulo AG(T) but not congruent modulo T.
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Proof: Follows from the definition of canceilativity. •

Definition; A semi-Thue system, i.e., a set of oriented rewrite rules over strings, is

called complete (or canonical) if (i) it is noetherian, i.e., no string has infinitely many

descendants, and (ii) it is confluent, so all descendants of the same string have a (unique)

common descendant.

Proposition 5.3 [8]: For every commutative Thue system T there exists an equivalent

finite canonical commutative semi-Thue system which can be effectively constructed from T.

•

Corollary 5.2 and Proposition 5.3 immediately yield the following criterion for a

commutative Thue system not to be cancellative.

Theorem 5.4: Let 7" be a commutative Thue system that is not cancellative and let T' be

an equivalent finite canonical semi-Thue system. Then there exist distinct strings

M, V € IRR(T') which are congruent modulo AG{T). •

We now proceed to examine the word problem for abelian groups in an entirely

different light - as a ipecial case of the membership problem for polynomial ideals over Z.

This has been developed in great detail in [6]. Wc merely elucidate some of the important

points here.

Let A = {a,, a-,, • •
, a„} be the generators of an abelian group and let + stand for

the group operator. Clearly, every term over the group can be viewed as a linear polynomial

with no constant term over Z with the elements of A as indeterminates. If f is a finite

presentation of an abelian group over the alphabet A, then F can be viewed as a set of

equations of the form c^ * a^ + • + c„ * a„ = where the c,'s are integers. (The

notation c * a,, where c is an integer, denotes a, + ^ a, {\c\ times) if c is positive and

-a, -I- • -I- -a, (|c| times) if c is negative.) In other words, each relation in f is a linear

polynomial from Z[a,, • •

, a„] with a constant term of 0. Let (F) stand for the ideal

generated by F and = p- denote the congruence generated by F. We can show

Theorem 5.5: Let e^ and «; ^^ ^o expressions and let p be the polynomial

corresponding to f, - ^j- Then e, =/- C; '^ ^^'^ °°^y if P ^ (^)-

We can also show a stronger version of the above theorem:

Theorem 5.6: Let e^, e^ and p be as above and let F =
{/? ,, •

, p,„}. Then e, = f ^2

if and only if there exist integers c,, ... , c^ such that
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m

P = 2(c, *P,)-
1=1

Sketch of Proof: The main point to be noted here is that the p's are linear integral

polynomials with no constant terms. The theorem now follows from the proof of Claim 1 in

the proof of Lemma 3 in [6]. •

An immediate consequence of Theorem 5.6 is that the word problem for AG(T) can be

effectively reduced to linear programming and therefore is in NP (see [18]). It can now be

shown that testing whether a canonical commutative Thue system T is not cancellative is in

NP. (Thus cancellativity is in co— NP.) Let T be over an alphabet A = { a^, , a„ }. As

before we treat words as Parikh vectors. For ease in exposition, let us establish the following

(array-like) notation: for a word x, let x[i\ (1 < ; s n) denote the number of occurrences of

the letter a, in x. Let 7 =
{ (L, -^ /?)

|
1 </:£/(: }. We show how to non-deterministically

find words u and v such that u i^ v, u, v € IRR{T) and u and v are congruent modulo AG{T).

We treat the M[i]'s and v[/]"s as unknowns. Note that for two words to be distinct, it is

enough that they differ in the number of occurrences of some letter. In other words, w # v

if and only if u\j] i= \i\J\ for seme ; such that 1 < / :s k. In our non-deterministic

algorithm, we assume that j has been chosen correctly. Similarly, for a word w to be

irreducible by a rule (L, -» /?,), it is necessary and sufficient that w[j\ < L\j] for some ;.

Thus u is in IRR(T) if and only if there exist integers j^,
•

, j^ such that «[/,] < /,,[/,] for

all (', 1 s I s *. Hence they,'s are also choices that we have to make in our non-deterministic

algorithm. The condition that u and v be congruent modulo AG{T) can be expressed using a

system of linear integral equations as shown in Theorem 5.6.

The outline of the non-deterministic algorithm should be clear by now: choose the

2* + 1 integer values (each of which is bounded by n, the number of letters in the alphabet)

which reflect the choice of inequalities showing that u and v are distinct and irreducible, form

the system consisting of the appropriate inequalities and the equations denoting that u and v

are congruent (modulo AG(T)) as in Theorem 5.6, and check whether this system has an

integral solution. The last step mentioned, namely that of checking for solvability, is in NP

because integer programming is in NP. (See [18].) Thus the entire algorithm can be

performed in nondeterministic polynomial time. Summarizing:

Theorem 5.7. If 7 is a canonical commutative Thue system, the question of whether T

is not cancellative is in NP. •
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In view of Proposition 5.3, the following corollary is immediate.

Theorem 5.8. If 7 is a commutative Thue system, the question of whether T is

cancellative is decidable. •

A last point to note is that the results in this section could be rephrased as follows:

Cancellativity in commutative Thue systems is expressible as a formula in Presburger

Arithmetic (see [4]) and hence 's decidable.
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