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Abstract. An equational theory E is permutative if in every valid equation s =E t the terms s and t 

have the same symbols with the same number of occurrences. The class of permutative equational 

theories includes associativity and commutativity and hence is important for unification theory, for 

term rewriting systems modulo equational theories and corresponding completion procedures. 

It is shown in this research note that there is no algorithm that decides E-unifiability of tern1S for all 

permutative theories. 

The proof technique is to provide for every Turing machine M a permutative theory with a confluent 

term rewriting system such that narrowing on certain terms simulates the Turing machine M . 

Introduction. 

We assume the reader to be familiar with the basic notions and definitions of terms, equational 

theories, unification with respect to an equational theory, term rewriting systems and narrowing. As 

reference we refer to [KB70, H080,Hu80, Si86 ,BHS87] 

Permutative equational theories are a special class of equational theories, first introduced in [LB77] in 

order to generalize term rewriting system to term rewriting system modulo some equational theory 

(see also [JK84]). A permutative theory E is defmed as an equational theory, where for every valid 

equation s ~ t, the number of occurrences of every symbol in s is the same as in t. Well-known 

examples are commutativity (C), associativity (A) and their combination AC. It is easy to see that it 

is decidable whether a theory is pennutative by inspecting the axioms in one of its presentations. 

Permutative theories have some nice properties: Every equivalence class [s]=E with respect to ~ is 

finite, the word-problem with respect to ~ is decidable, E-matching is decidable, sets ofE-matchers 

are finite and effectively computable and minimal unifier set~ always exist (cf. [Sz82, Si86, 

BHS87]). 

A generalization of permutative theories are the finite theories, in which every ~-equivalence class is 

finite. It is known that finiteness of a theory is undecidable [N085] and that there exist finite theories 

with an undecidable unification problem. For example such a theory is DA (2-sided distributivity and 

associativity with the axioms: f(x g(y z» =g(f(x y) f(x z» ; f(g(x y) z» =g(f(x z) f(y z» ; g(x g(y 

z» = g(g(x y) z) [Sz82, Si86]. However, DA is not permutative, since the axiom f(x g(y z» = 

g(f(x y) f(x z» is not permutative. It was conjectured by Jouannaud [Ki87] that the more special 

class of theories which are generated by variable-permutative axioms (i.e. in every axiom 1= r the 

terms 1 and r have the same term-structure, but the variables may be permuted) has a decidable 

unification problem. An interesting example of this class is AC. It should be noted that 

variable-permutativity is in general not inherited to valid equations. 
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Abstract. An equational theory E is permutative if in every valid equation 5 =E t the terms s and t
have the same symbols with the same number of occurrences. The class of permutative equational

theories includes associativity and commutativity and hence is important for unification theory, for
term rewriting systems modulo equational theories and corresponding completion procedures.
It is  shown in this research note that there is no algorithm that decides E—unifiability of terms for all
permutative theories.
The proof technique is to provide for every Turing machine M a permutative theory with a confluent
term rewriting system such that narrowing on certain terms simulates the Turing machine M .

Introduction.
We assume the reader to be familiar with the basic notions and definitions of terms, equational
theories, unification with respect to an equational theory, term rewriting systems and narrowing. As
reference we refer to [KB70, H080,Hu80, Si86 ,BH887]

Permutative equational theories are a special class of equational theories, first introduced in [LB77] in
order to generalize term rewriting system to term rewriting system modulo some equational theory
(see also [IK84]). A perrnutative theory E is defined as an equational theory, where for every valid

equation 8 =E t, the number of occurrences of every symbol in s is the same as in t. Well—known
examples are commutativity (C), associativity (A) and their combination AC. It is  easy to see that it
is decidable whether a theory is permutative by inspecting the axioms in one of its presentations.
Permutative theories have some nice properties: Every equivalence class [s]=13 with respect to 2E is
finite, the word-problem with respect to ---E is  decidable, E-matching is decidable, sets of E-matchers
are finite and effectively computable and minimal unifier sets always exist (cf. [Sz82, Si86,
BHS 87]).
A generalization of perrnutative theories are the finite theories, in which every =E—equivalence class is
finite. It is known that finiteness of a theory is undecidable [N085] and that there exist finite theories

with an undecidable unification problem. For example such a theory is DA (2- sided distributivity and
associativity with the axioms: f(x g(y z)) = g(f(x y) f(x 2)) ; f(g(x y) z)) = g(f(x z) f(y z)) ; g(x g(y
z)) = g(g(x y) z) [Sz82, Si86]. However, DA is not permutative, since the axiom f(x g(y z)) =

g(f(x y) f(x z)) is not permutative. It was conjectured by Jouannaud [Ki87] that the more special

class of theories which are generated by variable—permutative axioms (i.e. in every axiom 1 = r the
terms 1 and r have the same term-structure, but the variables may be permuted) has a decidable
unification problem. An interesting example of this class is AC. It should be noted that
variable-pcnnutativity is in general not inherited to valid equations.



In this paper we solve the open question [IG87] whether or not unification in permutative theories is 

decidable. 

Reduction of the Halting Problem to the Unification problem in Permutative 

Theories. 

We proceed as follows: 

For a given Turing machine M we define a set of rewrite rules for every line of the Turing machine 

program. The resulting term rewriting system RM is shown to be confluent, hence we can use 

narrowing as unification procedure. The equational theory described by this rewrite rules is 

permutative. Then we give two terms s,t such that the narrowing process simulates the Turing 

machine M starting on blank: tape. 

We assume that the Turing machine uses as symbols from athe finite alphabet A = {I, ... ,n} and B 

(blank) and that blanks cannot be printed on the tape. Furthermore we can assume that it has a starting 

state qST and only one accepting state qACC' 

The transformation of M into a term rewriting system RM is as follows: 

We use a signature consisting of two constants a and b , a ternary function symbol f, a n+I-ary 

function symbol g and a function symbol h that has as many argument as M has states. The function 

symbol f is used for the instantaneous description of the Turing machine, g for the description of the 

tape, where the first n argument positions are reserved for and h for encoding the state. The 

instantaneous description alq~ of M is represented as f(q a l ~). Here q is the current state, a l is 

the tape content to the left of the head and ~ is the tape content to the right of the head including the 

currently scanned symbol. The state q is encoded as a term h(a, ... ,a,b,a, ...), where b is at the q'th 

argument position. The tape content is encoded with the function symbol g as follows: a blank B is 

represented as g(b a a ), I as g(a b a ), 2 as g(a ab ) and so forth. Hence a string 112B is 

represented as g(a b a g(a b a ...g(a ab g(b a a ... ) ) ...) ...). We abbreviate g(b a a ... ) and 

g(a ...a b a ... ) where b is at the k+1st position as gB("') and gk(" .), respectively. 

We explain the translation of the lines of the Turing machine program into a term rewriting system by 

examining all important cases. Besides the starting state, there are essentially 4 different possibilities: 

either the head moves right or left in some situation and either the head reads B or not. 

We describe the corresponding encodings: 

i) Suppose in state ql' if the head reads a symbol k E A, a symbol k' is printed, the new state 

is q2 and the head moves right. 

This is encoded in rewrite rules of the fonn: 

f(ql' gi(x), gk(g!y») ~ f(q2' gk,(gi(x», g!y». 

Here the symbols i and [range over symbols from A and B. 

In this paper we solve the open question [KiS7] whether or not unification in permutative theories is
decidable.

Reduction of the  Halting Problem to the Unification problem in  Permutative
Theor i e s .

We proceed as follows:
For a given Turing machine M we define a set of rewrite rules for every line of the Turing machine
program. The resulting term rewriting system RM is shown to be confluent, hence we can use
narrowing as unification procedure. The equational theory described by this rewrite rules is
permutative. Then we give two terms s,t such that the narrowing process simulates the Turing
machine M starting on blank tape.

We assume that the Turing machine uses as symbols from athe finite alphabet A = {1,. . .,n} and B
(blank) and that blanks cannot be printed on the tape. Furthermore we can assume that it has a starting
state qST and only one accepting state q Acc-

The transformation of M into a term rewriting system RM is as follows:
We use a. signature consisting of two constants a and b , a ternary function symbol f, a n+1—ary
function symbol g and a function symbol h that has as many argument as M has states. The function
symbol f is used for the instantaneous description of the Turing machine, g for the description of the
tape, where the first 11 argument positions are reserved for and h for encoding the state. The
instantaneous description (11a of M is rcpresented as f(q al  (12). Here q is the current state, (11 is
the tape content to the left of the head and a2 is the tape content to the right of the head including the
currently scanned symbol. The state q is encoded as a term h(a,.  . . ,a,b,a, .  . . ) ,  where b is at the q’th

argument position. The tape content is encoded with the function symbol g as follows: a blank B is
represented as g(b a a . . . ) ,  1 as g(a b a . . . ) ,  2 as g(a a b . . . )  and so forth. Hence a string 112B is
represented as g(a b a . . .g(a  b a . . .g(a  a b g(b a a . . . )  . . . )  . . . )  . . . ) .We  abbreviate g(b a a . . . )  and

g(a . . . a  b a . .  . )  where b is at the k+1St position as gB(. . . )  and gk(. . .) ,  respectively.

We explain the translation of the lines of the Turing machine program into a term rewriting system by
examining all important cases. Besides the starting state, there are essentially 4 different possibilities:
either the head moves right or left in some situation and either the head reads B or not.

We describe the corresponding encodings:
i) Suppose in state q ] ,  if  the head reads a symbol k e A, a symbol k' is printed, the new state

is q2 and the head moves right.
This is  encoded in rewrite rules of the form:

f (q1‚gi(x)‚  gk(g‚(y)) ) —> f(q2‚ gk'(gi(x))‚ gm).
Here the symbols i and [range over symbols from A and B.



ii) Suppose in state qI' if the head reads a symbol k E {O, I}, a symbol k' is printed, the new state 

is q2 and the head moves left. 

This is encoded in rewrite rules of the form: 

f(qI' g/gi(x», gk(Y)') -7 f(q2' gi(x), g/gk'(Y»)' 
The symbols i and j range over the symbols from A and B and if i is B, then j is also B. 

iii) Suppose in state qI' if the head reads a B, a symbol k is printed, the new state is q2 and 

the head moves right. 

This is encoded in rewrite rules as follows:
 

f(qI' gi(x), gB(gB(Y») -7 f(q2' gk(gi(x», gB(Y»'
 

f(qI' gB(x), gB(gi(Y») -7 f(Q2' gk(gB(x», gi(Y»'
 

The symbol i ranges over the symbols from A.
 

In the fIrst rule, the head is at the right end of the marked tape and in the second rule, the
 

head is at the left end.
 

iv) Suppose in state qI' if the head reads a B, a symbol k is printed, the new state is q2 and 

the head moves left. 

This is encoded in rewrite rules as follows:
 

f(qI' gB(gB(x», gB(Y» -7 f(q2' gB(x), gB(gk(Y»)'
 

f(qI' gi(gj(x», gB(Y» -7 f(Q2' gi(x), gj(gk(Y»)'
 

The symbols i and j range over the symbols from A. 

In the fIrst rule the head is at the left end of the marked tape and in the second rule,the head is at 

~~~ 0 

The above encoding needs at most fmitely many rewrite rules to encode one line of the Turing 

machine program. We have omitted the nonsensible combinations, which correspond to the case that 

a symbol from A is outside the marked tape or that a B is inside the marked tape. The omission of 

these redundant rules is necessary for the correct behaviour of the narrowing process, as we will see 

later. 

lilkl1|=> li lk'lll? ?
ii) Suppose in state ql ,  if the head reads a symbol k e {0, 1}, a symbol k' is printed, the new state

is  q2 and the head moves left.

This is encoded in rewrite rules of the form:
f(q1‚ gj(gi(x))‚ gk(y)‚ ) —> f(q2‚ gi(x)‚ gj(gk=(y)) ).

The symbols i and j range over the symbols from A and B and i f i  i s  B ,  then j is also B.

l i | j | k |= ,  I i  I j  l k l

iii) Suppose in state q1‚ if the head reads a B ,  a symbol k is  printed, the new state is q2 and
the head moves right.
This is encoded in rewrite rules as follows:

f(qp gibt), gB(gB(y))) -—> «(12a gk(gi(x))‚ gB(y)).
f(qp gB(x)‚  gB(gi(y))) —> f(q2. gk(gB(x)), gi(y)).

The symbol i ranges over the symbols from A.
In the first rule, the head is  at the right end of the marked tape and in the second rule, the
head is at the left end.

iv) Suppose in state q l ,  if the head reads a B ,  a symbol k is  printed, the new state is q2 and
the head moves left.
This is encoded in rewrite rules as follows:

f(q1, gB(gB(x)), gB(y)) —+ f(q2. gB(x). gB(gk(y))).
f(q1‚gi(gj(x))‚  gB(y)) —> f(q2‚ gi(x)‚ gj(gk(y))).

The symbols i and j range over the symbols from A.
In the first rule the head is at the left end of the marked tape and in the second rule,the head is at
the right end. CI

The above encoding needs at most finitely many rewrite rules to encode one line of the Turing
machine program. We have omitted the nonsensible combinations, which correspond to the case that
a symbol from A is outside the marked tape or that a B is  inside the marked tape. The omission of

these redundant rules is necessary for the correct behaviour of the narrowing process, as we will see

later.



Let 1:M be the equational theory generated by the term rewriting system RM; then we have: 

1.	 Lemma. 

i) 1:M is permutative. 

ii) RM is confluent. 

Proof. i) For the encoding above: if we count the number of symbols, we have the same number for 

all symbols on the left and right hand side for every rewrite rule. 

ii)	 The term rewriting system thus constructed is left-linear and there are no critical pairs. 

It is easy to see that RM is strongly confluent, and hence it is confluent (cf. Lemma 2.5 in 

[Hu80J).• 

Note that the term rewriting system RM may be nonterminating. However, since RM is confluent, the
 

normalform of a term t is unique.
 

We say a substitution is normal, iff all terms in its codomain are in normalform.
 

The idea is to use narrowing [Hl80, Fay79] now for the unification procedure, since RM is confluent.
 

The following theorem follows from results and proofs in [HI80] and is a specialization of the
 

completeness result in [Hus85]:
 

2.	 Theorem. Let s, t be two terms and let e be a normal1:M -unifier of s and 1. Then narrowing 

provides a 1:~unifier cr that is more general than eon V(s,t).• 

We use the following unification problem to simulate the Turing machine: 

(s =t)m where s =f(qST' gB(x), gB(y» and t =f(qACC' zl' z2)' By the structure of the equational 

theory we see that for every 1:M-unifier of s and t there exists a more general one that does not 

contain f's in the codomain terms and hence there exists a normal ~unifier of sand t, iff sand t are 

1:M-unifiable. 

Narrowing on t is not possible, since there does not exist a rewrite rule with qACC at the first 

argument position. Hence narrowing is only performed on the term s and its descendants. Obviously 

narrowing takes place always at the toplevel occurrence of s. A condition that the narrowing process 

succeeds is that it reaches the state qACC' since otherwise it is not possible to Robinson-unify the 

obtained term with t. On the other hand if it reaches the state qACC' then it terminates and gives a 

1:M"unifier. During the narrowing, the descendants of the term s represent the tape content as a string 

Bi1i2... inB or BBi1i2... ~B, where ij E A. This and the structure of the rewrite rules implies that 

there is always at most one narrowing step possible. If the head is inside the string, i.e., it scannes ij 
where j = 2,... ,n, then narrowing is just rewriting. If the head scannes the borderline of the string 

representation, i.e. the descendant of s is of the form f(q, gB(x), ...) or f(q, ... ,gB(x» then it may 

be possible that new blanks are added to the end of the string by the narrowing substitution. There are 

only two possibilities: 

Let £M be the equational theory generated by the term rewriting system RM; then we have:

1. Lemma.
i) GSM i s  permutative.
ii) RM is  confluent.

Proof. i) For the encoding above: if we count the number of symbols, we have the same number for
all symbols on the left and right hand side for every rewrite rule.

ii) The term rewriting system thus constructed is left-linear and there are no critical pairs.
It is  easy to see that RM is strongly confluent, and hence it is confluent (cf. Lemma 2.5 in
[Hu80]). I

Note that the term rewriting system RM may be nonterminating. However, since RM is confluent, the
normalm of a term t is  unique.
We say a substitution is normal, iff all terms in its codomain are in normalform.

The idea is to use narrowing [H180, Fay79] now for the unification procedure, since RM is confluent.
The following theorem follows from results and proofs in [H180] and is a specialization of the
completeness result in [Hus85]:

2 .  Theorem. Let s ,  t be two terms and let B be a normal £M-unifier of s and t. Then narrowing

provides a ‘EM-unifier G that is more general than 8 on V(s,t). I

We use the following unification problem to simulate the Turing machine:
(s = 01M where s = f(qST, gB(x), gB(y)) and t = f(qACC, z l ,  zZ). By the structure of the equational

theory we see that for every "EM—unifier of s and t there exists a more general one that does not
contain f ’s in the codomain terms and hence there exists a normal EM—unifier of s and t, iff s and t are
EM-unifiable.
Narrowing on t is  not possible, since there does not exist a rewrite rule with q ACC at the first
argument position. Hence narrowing is only performed on the term s and its descendants. Obviously
narrowing takes place always at the t0p1evel occurrence of s. A condition that the narrowing process
succeeds is that it reaches the state q ACC, since otherwise it is  not possible to Robinson-unify the
obtained term with t. On the other hand if it reaches the state qACC! then it terminates and gives a
QEM-unifier. During the narrowing, the descendants of the term s represent the tape content as a string

Biliz. . .  inB or BBiliz... inB, where ij e A. This and the structure of the rewrite rules implies that
there is always at most one narrowing step possible. If the head is inside the string, i.e., it scannes ij

where j = 2, . .  .,n, then narrowing is just rewriting. If the head scannes the borderline of the string
representation, i.e. the descendant of s i s  of the form f(q, gB(x), . . . )  or f(q,..  . ,gB(x) ) then it may

be possible that new blanks are added to the end of the string by the narrowing substitution. There are

only two possibilities:



i) either a rewrite step is perfonned or 

ii) the narrowing-substitution is of the fonn {z ~ gB(z')} . 

Since narrowing on the ~M-unification-problem (s,t) simulates the Turing machine M starting on 

blank tape, we have the following Proposition: 

3. Proposition. The terms s and t are ~M-unifiable, iff M accepts blank tape.• 

Since it is well-known that it is undecidable whether a Turing machine accepts blank tape, we have 

our final result: 

4 Theorem. There is no algorithm that decides the unifiability of tenns in permutative theories. 

In other words unification in permutative theories is undecidable.• 

We have also the stronger result: 

5 Theorem. There exists a permutative theory ~M' such that there is no algorithm that decides the 

unifiability of terms in ~M' 

Proof. For M we use a universal Turing machine and as unification problem we choose (s =: t)'EM 

where s =f(qST' aI' ~) and t =f(qACC' zl' ~), where the term s represents the tape content at 

the start. The same arguments as above apply to this configuration.• 
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