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Abstract

In this paper we focus on the theoretical properties of
non-numetical representation of the uncertainty, As
usual, this representation is realized by an “ordinal
relation” {or, equivalently, by a “comparative scale”)
among the “entities” (events, alternatives or acts) of
a specific problem. After giving an overview of dif-
ferent known axioms characterizing some classes of
ordinal relations (and their duals), we introduce some
axioms capable to enclose the necessary and sufficient
conditions for the representability of ordinal relations
defined on arbitrary finite scts of events by the best-
known uncertainty measures.

Keywords: qualitative representation of uncertainty,
axiomatic frameworks, partial ordinal relations.

1 Introduction

The qualitative approach to the management of un-
certainty is just onc of the different tools a decision
maker can adopt, but it is a most general and “nat-
ural” one because it translates the intuitive idea of
ordering the events (or alternatives) in an “ordinal
scale”. A decision maker is often unable to express
numecrical values on the set of relevant events hecause
cither he/she just wants to compare some of them or
he/she doeg not have enough information.

This approach was originally introduced in probabil-
ity theory with the notion of eomparative probability,
sometimes called also qualitative probability, (see for
example [3], [12]. [8] and [3]) but it was also adopted
inside other uncertainty representation settings (like
in [7], [14]. [16]}. Anyway, all these models have a
common feature: an assessed ordinal relation < on a
set of events. 4 < B represents the decision maker's
idea that the occurrence of the event B is not less
“belicvable” than the occurrence of the event A.

Obviously these comparisons cannot be arbitrarily
given but must satisfy some propertics. Such prop-
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erties would reflect rules used (or wanted) by the de-
cigsion maker to compose different pieces of informa-
tion, or hetter, to evaluate combinations of events. In
other words, the assessed ordinal relation must “co-
here” with the subject way of thinking.

Since different ways of “managing uncertainty” are
possible, a varicty of “constraints” for the ordinal rela-
tion can be given. Thig aspect 18 well known in the nu-
merical approaches, where different uncertainty mea-
sures (probability, belief functions, possibility, lower-
probahility, cte. Jare characterized by different “con-
straints” (usually called “propertics” or “axioms™).
The aim of this paper is, keeping to the way started
in [1] and in [2], to show that such characterization is
also possible in a pure qualitative framework, where,
actually, all different ways of composition reduce to
fow classes of ordinal relations. This result is in line
with the axiomatic qualitative formulation property of
being more general than any numerical approach. In
[10] it is well explained how axiomatic qualitative set-
tings are the “foundation” of any measurcment pro-
cess (and we deal with the “measurement” of the deei-
sion maker’s uncertainty about the occurrences of the
events) since they can “capture the essence” of such
process, independently of any “scale factor” or any
“scale transformation”. We can also add now that
also the “essence” of the differences among numerical
uncertainty measures can be captured by qualitative
axioms and that several “numerical differences” share
common fundamental properties.

Since the goal is to express the subject reasoning, it
would be good to find axioms of immediate reading.
(rtherwise it is important to give an interpretation,
like for comparative probabilities.

The simple requirement of “agreement” with the sub-
ject’s idea of composition is the most natural and fun-
damental one (even if many others are proposed in
literature, see for example [14], sec. 4.5, and [13]).
Howcever, such “coherence” could be “strengthened”
by requiring compatihility of the ordinal relation with



gsome of the well known numerical uncertainty mea-
sures. This necessity could derive by the “wish” for
either a more “manageable” representation of uncer-
tainty or a “familiar” reference point (there is no
doubt that numerical approaches have had a greater
suceess and have been widely developed). Surpris-
ingly in [1] and in [2] it was shown that, apart from
comparative probability, such two “coherence require-
ments” eoincide and that they can be given with pure
qualitative axioms.

Whilce in [1] and in [2] the domain was supposed to be
a finite algebra of events and the strong requirement
of completeness was asked, in this paper we deal with
partial ordinal relations and defined on arbitrary fi-
nite scts of cvents too. In fact, there is no rcason
to require to he able to comparce all pairs of cvents,
especially if the available information is “poor”. In
this general framework we choase as “coherence prin-
ciple” the possibility of enlarging the iniftial ordinal
relation to a “coherent” one (complete and defined on
a proper algehra). Once again there could be two dif-
ferent kinds of coherence, but in this case, apart from
comparative probability, we are also able to show that
qualitative axioms ensuring both kinds of coherence
can he given.

Hence, the characterization of any kind of ordinal re-
lation = is given by axioms that must he read as prop-
erties < must satisfy to be compatible with one par-
ticular funetion.

In Section 2 we give (together with basic notions) an
overview of these axioms when < is complete and de-
fined on an finite algebra of events. On the other
hand, in Scction 3, following the idea given in [3] and
[11], we give the axioms for partial ordinal relations
defined on an arbitrary finite domain. Such axioms
ensure the existence of a coherent complete enlarge-
ment <* of < (ie. A X B = 4 <* B), defined on
a proper algebra. It turns out to be cquivalent that
= is representable by some special kind of numerical
uncertainty function f, the same compatible with <*.

2 Axioms on algebra

As mentioned in the introduction, we must give some
constraints to the ordinal relation < to be congistent
with a chosen system of rules to manage uncertainty.
These constraints are expressed by axioms that, when
= i3 complete and defined on an algebra (like in [1],
[6], [7], [13], [16]), turn out to be the same to ensure
the compatibility of < with at least one of the best-
known uncertainty measures.

In this section we restrict ourselves to report axioms
and connecctions with the numerical framework. For

more details refer to [1], [2], [13] and [16].

Before showing the axioms we need to formally intro-
duce the notion of an ordinal relation representable
by a numerical function.

Let < he an ordinal relation between events on a finite
algebra A of events expressing the intuitive idea of be-
ing “no more believable than ”. The symbols ~ and
~< represent, respectively, the symmetrical and asym-
metrical parts of <. A ~ B means that the occurrence
of 4 is judged “equal believable™ to the occurrence of
B, while 4 < B represents that the occurrence of B
is more “helicved” than the occurrence of A (in the
sequel we will call < “strict relation”).

A numerical function f : A — [0,1] represents < if
and only if, for cvery pair 4, B € 4

A< B = f(A) < f(B)
A~D = [(4)= D) (1)

On the other hand, we say that a numerical function
f:A—=10,1] induces an order relation < by

JA < By = A<D
=B = A~B 2

In the sequel “f agrees with =<7 or “f is compatible
with <" will be synonymous with “f represents and
induces, simultaneously, =", in other words

A<Be& f(4) < f(D)

The basic requirement for such functions f is to be
monotone with respect to €, hence the induced or-
dinal rclations < must be monotone with respect to
C.

Therefare the hasic axioms for the compatibility of <
are;

Al) < is a total preorder (reflexive, transitive and
defined for all pairs A, B € A)

A2) B < Q {where § and © are respectively the im-
possible and the sure events)

A3) 4 € B = 4 < B (monotonicity axiom)

While axioms A2) and A3) arc quite intuitive, Al)
is reagonable ouly if the available information is rich
enough to enable the decision maker to compare all
the pairs of events in A.

The previous axioms are the basic requirements, if
we want to “discern” the differences among “ways of
reasoning” we need to introduce more sophisticated
properties (always cxpressed by qualitative axioms).



Historically ([5]) the first additional requirement was
the “additivity” axiom

Py V4, B,CeAst. AANC =0 =B A we have
A<Bes AVC<BVC

(note that Al), A2) and P) imply A3) ).

Axiom P) looks like the natural qualitative transla-
tion of the numerical property of additivity, but nev-
ertheless it was proved, by an example, in [9] that,
together with Al) and A2), it is not sufficient to en-

surc the representability of < by a probability.

But, as cxplained in the introduction, The compati-
bility requirement of < with a numerical function can
be thought as a “stronger” coherence requirement. To
obtain the compatibility of < with a probability was
proposed in [13] an axiom that is not exactly of qual-
itative kind because it needs to introduce indicator
functions. We recall that, denoting by G the sct of
atoms in A, the indicator function o : G — {0,1}
associated to the event 4 € 4 is defined as

a(G) = { :

(where (¢ belongs to the set of atoms GJ.

fGcA
otherwise

We can now report the axiom that can be actually
considered as characteristic for any ordinal relation
representable by an additive function

Comparative probability arc characterised in [13] hy

SYv¥n € N VAy,...,A,.B,....,B, € A st. for
B.,: jél,j i= 1,...,‘”,—1
then

Zai = th - An. = Bn.

i=1 i=1

where a;, b; are the indicator functions of A4, B;, re-
spectively.

Ag we noted, axiom S) does not have a qualitative na-
ture and is not easily interpretable. however we think
that it is not possible to find a better equivalent for-
mulation.

In literaturce relaxed versions of the additivity axiom
P} were proposed. They turn out to be necessary
and sufficient conditions for < to be representable
by more “specifie” functions: lower probability, 0-
monotone, belief, A-measure, probability, plausibility,
O-alternating and upper probability.

In the sequel we list some axioms that are character-
istic for ordinal relations defined on an algebra A.

Comparative lower probabilitics are characterized in

[1] by
Ly VA BeAst. 0 <Aand AAB =10 then

B<AVBEB

Comparative belief arc characterived in [16] by
B) VA, DB.C, st. ACDBand BAC =0 then

A<B=AvC <BV(U

The interpretation of axioms L) and B) is immediate
since they are purcly qualitative and so they can be
read directly.

It is casy to obscrve that axiom L} is weaker than
(i.e. 1t is implied by) axiom B). Note, moreover, that
both only involve events with inclusion relations and
in strict relation.

It is possible to associate with each characteristic ax-
iom the set of ordinal relations satistying it {together
with Al), A2) and A3) ). We will call these scts
“classes” {for example a =<, satisfying Al), A2), A3)
and B), belongs to the comparative belief class).

The previous classes agree with different uncertainty
measures (for a complete overview see [1] and [2]) and,
in particular, in the following we list each class to-
gether with the classes of numerical functions com-
patible with it:

¢ Comparative lower probabilities are compatible
with lower probabilities and O-monotone fune-
tions (the former arc defined as lower envelopes
of classes of probabilitics, the last, known in liter-
ature also as super-additive, are those satisfving
the property f(Av B) > f(A) + f(B) for all
A, B e Asuch that A A B = §)

¢ Comparative beliof relations are compatible with
helief and n-monoctone functions (with n > 2)

¢ Comparative probabilities are compatible with
probabilities and A-measures with A > —1 (for
the definition of A-measures see [6])

We can also list the characteristic axioms for what are
usually called dual relations. That is, those compat-
ible with plausibility or upper probability, the dual
functions of helief and lower probahility, respectively.
Note that the axioms can be checked directly on the
relation = given hy the decision maker without using
(as done in [4], [16]} its dual < defined as

A= B B® 2 A



Comparative plavsibilities are characterized in [1] by
PLy VA,B,CeAdst. ACH CADB=§and
A~ B then

AvO~BvV(C

Comporative upper probabilities arc characterized in
[1] by

Iy VY4, Be Ast.  ~ A then

D~AVE

It is casy to check that axiom PL) implics U), morce-
over both involve only events, judged equivalent, with
inelusion relations. Hence all strict ordinal relations
trivially belong to the comparative plausibility class
(so also to the wider comparative upper probability
class).

For the previous classcs there is also compatibility
with different kinds of numerical functions. In partic-
ular

¢ Comparative plausihilities are compatible with
plausibilitics and n-alternating functions (with
n > 2)

e Comparative upper probabilities are compati-
ble with upper probabilitics and 0-alternating
functions (the former arc the dual functions of
lower probahilities, the last ones, known in lit-
erature also as sub-additive, are those satisfying
the property flAv B) < f(A) + f(B) for all
A, B € Asuch that AA B =)

Note that in the qualitative context, contrary to the
numerical one, some properties (like for example ad-
ditivity and A-additivity) are not distinguishable be-
cause they collapse in the same class of ordinal rela-
tlons.

As shown in [2] and [4], this is not the only difference
between the two approaches because sell-dual rela-
tions were detected. A self-dual relation < has the
property to coincide with its dual <¢.

In the numerical framework the only self-dual func-
tions are probabilities, while in the qualitative ap-
proach, besides comparative probabilitics, there is
also a sclf-dual class of comparative lower-upper prob-
abilities characterized by the axiom

LU} ¥4, B €A then
A~QeB~AVD

Comparative lower-upper probabilitics are those rep-
resentable simultancously by two different funetions:

one J-alternating and an other O-monotone or, equiv-
alently, by an upper probability and a different lower
probability. An example of such ordinal relation is
given in [2]. We report it here too for a better under-
standing of the simultaneous compatibility of < with
two different kinds of numerical funetions.

Example Let £ = {4, B, C, D} be a set of atoms and
= an ordinal relation defined on the power set of £ as
follows

@ A B C AVE
D AvD * BvD Y ¢ovD ™ AvBvVD *
BV ( AvVC AVBVC
“ BvecvD ~ AvcovD ~ Q

{elements in the same group are assessed equivalent).
Using this basic assighment

m{A4) =0.1 m(B)=10.2
m(C) = 0.3 m(D) =0
m(Dv E)=10 where EC Av Bv(C

m(Av B)=01 m(Av{)=02
m{BVCY=0 m(AvBvC)=0.1

we get a belief function representing =

Bel(A) = 0.1 Bel(B)=0.2

Bel(C) = 0.3 Bel(D) = 0

Bel(Av B) =04 BellAV )y =106
Bel(Bv ) =03 Bel(AvBv () =1
Bel(Dv E) = Bel(E) where ECAVBVC(C

Om the other hand, with the following basic assign-
ment

m(4) =0.2 m(B)=10.1

m(C) =10.3 m(D) =0

m{DV E)=0 where EC AV DBVC
m{Av B) =005 mAvC)=0

m(BvC)=02 m(AvBv{)=015

we get a plausibility representing =<

PIA) = 0.4 PIB) =05

Pl =0.65 PlIN =0
PUDVE)=PUE) where ECAvVBvVC
PI{AVE)=10.7 Pl{AVC) =109
PUBVC)=08  PIAVBV(C)=1

Note that < is not compatible with a probability func-
tion, because A < Band a+b+¢=b+4+a+ ¢, but
DBy < AvC, and this contradicts the axiom S).

Morcover, it i3 casy to check that also the weaker
axiom P) does not hold.

To summarize the previous results, Figure 1 shows the
relationships among the classes of ordinal relations
and the compatible numerical functions, while Figure
2 shows the inclusion relationships among the differ-
ent classes (examples proving the strict inclusions arc
reported in [1] and [2]).
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Figure 1: Relationships among ordinal relations and
numerical functions.

Comparative lower probability

Comparative upper probability

Figure 2: Relationships among the classes of ordinal
relations.

3 Axioms on finite sets without
structure

In the previous section we characterized different
(complete) ordinal relations defined on an algebra A.
But, usually, a decision maker is unable, or does not
want, to express his/her “comparisons” on a so “rich”
domain, especially at the very beginning of the for-
mulation of a problem. On the contrary, he/she just
compares some of the possible combinations among
the relevant events. Hence the axiom Al) seems to
be quite restrictive and the situations where it can be
used would be rare.

Actually, these kinds of relation are interesting be-
cause they leave more freedom to the decision maker
and it is important to investigate them.

The aim of this section is similar to the previous one:
to detect the most natural and intuitive qualitative

axioms ensuring the compatibility of the partial ordi-
nal relation with specific rules of uncertainty evalua-
tion.

We can anticipate that, inspired by the most used
numerical functions, once again it is possible to de-
tect which are the basic properties, and how they are
shared, for different way of judging. Surprisingly also
in this case, apart from partial comparative probabil-
ities, such properties, or better axioms, can be given
in a pure qualitative setting.

Before formalizing such concepts, it is better to under-
line that for partial ordinal relations the “coherence
principles” must be given again explicitly. We choose
to “derive” them by the principles given for the com-
plete ordinal relations, but this will be clearer in the
sequel.

Given a arbitrary finite set of events F (containing
0 and Q), let < be a reflexive binary relation on F
satisfying

A1") there are no intransitive cycles;
A2) =(2=<0);
A3") for all A,B € F s.t. AC B then (B < A)

(the symbol — means that the subsequent relation
does not appear in <).

We call such ordinal relation < “partial” because it
could be not defined for all pairs A, B € F. It means
that the decision maker has not enough information
to make “qualitative evaluation” for some pairs.

Mathematical properties of ordinal relations satisfy-
ing basic axioms Al’), A2") and A3') are deeply in-
vestigated in [4].

Note that, since transitivity and monotonicity are
natural inferential rules, starting from < we should
build its transitive closure (the smallest transitive re-
lation w.r.t. C extending <) and work directly with
it (as suggested in [4]).

The first “natural” requirement to ask the partial or-
der relation < is to be a restriction of some complete
relation reported in the previous section. This kind
of requirement, besides to be “natural”, is usual when
some “notion” is only partial (see for example [3], [4]
and [14]).

More precisely, starting from a partial ordinal relation
< on F, we look for axioms ensuring the existence of
a complete ordinal relation <* on Az (the minimal
algebra generated by F) being an enlargement of <
or, equivalently, VA, B € F

A<B = A=<*B



Ag a consequence of this requirement, a numerical
function f represents =< if and only if it is compat-
ible with at least an enlargement <* of <. Hence
the axioms cnsuring the existence of an enlargement
for < are actually those ensuring the existence of a
numerical function f representing —<.

A first result, in this direction, is given in [3], where
comparative coherent probabilities are characterized
by the following axiom

CP) for any Ay,....4,. By,..., B, € F, with

B, < A, ¥vi = 1,...,n, such that for some
Ty s o rn >0
n
sup Z ri{a: (G = bi{(G)) <0
aeG i

implieg that 4; ~ B, foralli=1,...,n
(@;, b; denote the indicator tunctions of 4;, B;, respec-
tively, and the supremum is over the atom’s set).

An ordinal relation satisfying CI’} is representable by
a coherent, probability assessment (in the sense of de
Finetti [5]), morcover a coherent probability asscss-
ment on F induces an ordinal relation satisfying CP)
(obviously, the induced relation will be complete on

Fy.

A similar result is also given for comparative belief in
[11]. Before introducing it we need to define a different
indicator function & : Ax — {0,1} associated to the
cvent 4 € F as

a(C) = { ;

(where C' belongs to the events of the algebra Ax).

ifCccA
otherwise

The difference between a; and a; is that the former
is defined for each event of the algebra 47, while the
last is defined on the set of atoms G.

The partial ordinal rclation =< is representable by a
beliof function if and only if

e for any A4,...,4,,B1,...,B; € F such that
By 24, Vi=1,...,nand B; < A;, for at

least a 7, then

sup Z ri{a(C) — ZAJJ(C')) >0 Vry,...,r, >0
Cedr i=1

Note that, while axiom CP) “cranslates” the axiom
S) in the framework of a not complete relation, the
game 15 not true for the previous axiom about partial
comparative belief because it “lost the qualitative na-
ture” of axiom B). Actually, we can give a different
axiom for this class of relations without involving the

indicator functions d;, f], This different axiom looks
like axiom B). The ides is that an axiom for < must
“avoid” violating, even only “potentially”, the corre-
sponding axiom for complete ordinal relations, oth-
erwise it would be impossible to find a comparative
belief enlargement <*.

Proposition 1 .

Let <= be a partial ordinal relotion on F.

There exists a comparative helief <* on Ar, such
thet =* is an enlargement of <. if and only if for oll
ABCeF st ACB, BAC =0 then

B) A<B=~(BVC<AVC)

By)
AVC ~ BVC = —~((AVC)AD < (BVC)AD)

VYD e F

In the same way, and with similar motivations, we can
give the axioms for the other classes of relations.

Proposition 2 .

Let £ be a partial ordingl relation on F.

There exists ¢ comparative lower probability <* on
Az, such that <* is an enlorgement of <, if and only

iffor all A, B e F s.t. AND =0 then

L) $§<A=~(AVvB=<B)

L:) B~AVB=— (i <A4)

Note that conditions D) and Bs) imply the condi-
tions characterizing the comparative lower probabili-
ties L) and Ls).

Similarly for the dunal relations we have anocther two
couples of characteristic axioms:

Proposition 3 .

Let <= be a partial ordinal relotion on F.

There exists o comparative plausibility =* on Agr,
such that <* is an enlorgement of <, if end only if

forall AJB e F st. AC D then

PL) A~B=-(AVC=<BVQ) YCEF

Pls) A<B=—=-(BACAANC)VC&F

Proposition 4 .

Let < be a partial ordinal relation on F.

There extsts o comparative upper probability =* on
Ar, such that <* is an enlargement of <, if and only
ifforall AABe T s.t. ANB =10 then



)
U)

f~r A= ~(C<AVC) YO eF
B<AvVvB= -0 ~A4)

In this case too, conditions PLy) and PLg) imply U7)
and Ta).

Partial self-dual ordinal relations are simply charac-
terized by the axoms L), L), U1) and Us) all to-
gether. Unlucky it is not possible to find a shorter
formulation.

All axioms from By) to [7) are entirely “qualitative”,
henee they have an immediate interpretation.

An explicit exposition of the relationships with the nu-
merical functions is actually redundant hecause they
arc implicitly given by the relationships “cncapsulat-
ed” into the potential enlargements <*, ag shown in
Figure 1.

With Proposition 1, 2, 3 and 4 we complete the spec-
trum of axioms for the characterization of partial or-
dinal relations.

The future work will consist in building an inferential
svstem, or, equivalently, to define an operational pro-
cedure, to classify a given partial ordinal relation into
one of the classes introduced in this paper.

References

[1] A. Capotorti, G. Coletti, B. Vantaggi. Non Addi-
tive Ordinal Relations Representable by Lower or
Upper Probabilities. Kybernetika, 34 (1), pages
79-90, 1998.

[2] A. Capotorti, B. Vantaggi. Relationships arnong
Ordinal Relations on a Finite Set of Events.
In Proceedings Tt International Conference IP-
MU98, 1, pages 495-502, 1998 {extended version
accepted for the publication in the volume “Infor-
mation, Uneertainty, Fusion™, Eds. B. Bouchon-

Meunier, R.R. Yager and L.A. Zadeh).

[3] G. Coletti. Coherent Qualitative Probability.
Journal of Mathematical Psychology, 34, pages
297-310, 1990.

M] G. de Cooman. Confidence Relations and Ordi-
nal Information. Infermation Sciences. vol. 104,
pages 241-278, 1997,

[5] B. dc Finetti. Sul Significato Soggettivo della
Probahilitd. Fundamenta Maternaticae, 17, pages

293-329, 1931.

[6] D. Dubois, H. Prade. Fuzzy Sets and Sys-
tems: Theory and Applications. Academic Proess,
(1980).

[7]

[3]

[9]

[14]

[15]

D. Dubois. Belief Structure, Possibility Theory
and Decomposable Confidence Measures on Fi-
nite Sets. Comput. Artif. Intell, 5(5), pages 403-
416, 1986.

T.L. Fine. Theories of Probability: An Eramina-
tion of Foundotions. Academic Press, New York,
1973.

C. H. Kraft, J. W. Pratt and A. Scidenberg:
Intuitive Probabilities on Finite Sets. Annals
of Mathematical Statistics, 30, pages 408-419,
1959.

D H. Krantz, R.D. Luce, P. Suppes, A. Tversky.
Foundations of Measurernent. Academic Press,

New York and London, 1971,

G. Regoli. Rational Comparisons and Numeri-
cal Representation. In: Decision Theory and De-
ciston Analysis: Trends and Challenges, Acca-
dernic Publishers, Dordreeht, The Netherlands,
pages 113-126, 1994,

L.J. Savage. The Foundotions of Stutistics.
Dover, New Yorlk, 1972,

D. Scott. Measurement Structures and Linear In-
equalities. Journal of Mathematical Psychology,
1, pages 233-247, 1964,

P. Walley. Statistical Reosoning with Fmprecise
Probabilities. Chapman and Hall, 1990.

P. Walley, T. Fine. Varictics of modal (classifica-
tory) and comparative probability. Synthese, 41,
pages 321-374, 1979,

S. K. M. Wong, Y. Y. Yao, I. Bollmann and H.
C. Biirger. Axiomatization of Qualitative Belief
Structurc. IEEFE Transactions on System, Man,
and Cybernetics, 21, pages 726-734, 1991.



