
Using Fuzzy Logic for Performance
Evaluation in Reinforcement Learning

-

Hamid R. Berenji
Intelligent Inference Systems Corp.

AI Research Branch, MS: 269-2
NASA Ames Research Center

Pratap S . Khedkar'
CS Division, Department of EECS
University of California at Berkeley,

Berkeley, CA 94720
Mountain View, CA 94035 khedkar@cs.berkeley.edu

Abstract

Current reinforcement learning algorithms require long training
periods which generally limit their applicability to small size problems.
A new architecture is described which uses fuzzy rules to initialize its
two neural networks: a neural network for performance evaluation and
another for action selection. This architecture is applied to control of
dynamic systems and it is demonstrated that it is possible to start
with an approximate prior knowledge and learn to refine it through
experiments using reinforcement learning.

1 INTRODUCTION

Reinforcement Learning (RL) can be used in domains where learning has
to be done without the presence of a direct supervisor and through a distal
teacher. Unlike supervised learning, an explicit error signal is not assumed
in RL and external reinforcement may be delayed. In GARIC [l], RL is

'Supported by NASA grant NCC-2-275 and MICRO

1

i----
i

perturbation

Evaluation

Selection
Network

Figure 1: The architecture of GARIC

combined with Fuzzy Logic Control (FLC) 121 to refine the knowledge base
of a controller. GARIC is composed of three main elements: an Action
Selection Network (ASN) which maps the state to an action using fuzzy
control rules; an Action-state Evaluation Network (AEN) which evaluates
the action and the resulting system state; and a Stochastic Action Modifier
(SAM) which explores the search space for possible actions (see Figure 1).
In GARIC, fuzzy inference is used only in the ASN to incorporate prior
knowledge as well as to handle continuous input-output without artificial
discretizing. The AEN remained a two-layer feed forward neural net, which
starts with random weights, an ad hoc architecture, and which may not be
able to handle complex tasks.

In this paper, concentration is on using fuzzy inference in the design and
operation of the evaluation network. Specifically, the problem of how to use
prior knowledge to design the architecture is addressed getting a head start
on the way of learning to evaluate. Fuzzy rules are used to represent the
heuristic knowledge of state evaluations.

2

3 4 5

Labels
Rules Consequent output

1 2
inputs Antecedent

Labels

Match Softmin Local Meanof-Max

Figure 2: The Action Evaluation Network

2 NETWORK ARCHITECTURE
Earlier, Anderson 131 used conventional neural nets to implement both the
ASN and AEN, but since these were initialized randomly, learning needed
a large number of trials. In GARIC 111, the ASN was initialized using ap-
proximate rules, which were used to drive a neural net implementing fuzzy
inference. The incorporation of heuristic knowledge led to substantial re-
duction in learning time. Here, this principle is further extended by being
applied to the AEN (the evaluation critic) and by using fuzzy rules that wiIl
help in computing the goodness of a state.

To build in fuzzy rules into the net, some modifications in its structure
are required. Both the ASN and AEN will now have similar architectures,
and each is based on some initial rule base. The structure of the net consists
of 5 layers, connected in feedforward fashion, and shown in Figure 2.

Layer 1 is the input layer and performs no computation.
A Layer 2 node represents one possible linguistic value of one of the input

variables. It computes pL(x), and outputs using the clause: if x is L in their
if part.

Layer 3 implements the conjunction of all the antecedent conditions in a
rule using the softmin operation. There is one node per rule here; its inputs

3

come from all its antecedents, and it produces w,, the degree of applicability
of rule T .

A Layer 4 node represents a consequent label. Its inputs come from all
rules which use this consequent label. For each w, supplied to it, this node
computes the corresponding output action as given by rule r .

A Layer 5 node combines the recommended actions from all the rules,
using a weighted sum, the weights being the rule strengths w,. In the AEN,
a state score v is produced (see [l] for more details). Learning modifies
weights into Layers 2 ancf4 y, thTe others being fixed at unity.

3 LEARNING IN THE AEN
The learning algorithm is largely determined by the choice of the objective
function used by each component for optimization. Two such choices and the
corresponding results are described. For both policies, both AEN and ASN
learn simultaneously as per the learning cycle outlined in Figure 3. Also for
both policies discussed here, AEN outputs v which is then combined with an
external reinforcement T to produce f .

In policy 1, the ASN retains its earlier objective of maximizing the state-
score v. However, the AEN tries to maximize the internal reinforcement ?,
since + M 0 is a good prediction of failure and a high f otherwise is equivalent
to moving to better states. Tuning the AEN parameters to attain this is done
by computing d i / d v from

starting state ;
failure state;

~ [t + 11 + ~ v [t , t + 11 - v[t , t] otherwise.
+ 1) - .[t, t]

Then a gradient descent method leads to,

where M &/dv = (1 -7) +y(d2v) , assuming the derivative doesn’t depend
on T . The second derivative of v is approximated by the finite difference
v[t] - 2v[t - 11 + v[t - 21, and only the sign 2 is used so that noise is reduced.
The term dv/dp is the dependence of the net output on its parameters (the

4

load-st ate() ;
vt-1 = evaluate-state(); /* AEN:I */

load-state();
vt = evaluate-state(); /* A E N 2 */
compute et, gradients;
modify-parameters(); /* learn as per data in AEN:l and ASN:l */

ply-action(action = SAM(select-action(),it-l)); /" ASN:I "/

Figure 3: Steps in a learning cycle

centers and spreads of the membership functions) and can be easily computed
using a backpropagation-like scheme [l].

If the future,
discounted reward be equal to Cj,oyj-lrt+j, then v may be interpreted as
a truncation of this series to 1 or 2 terms. For good prediction, v (t) should
closely approximate r(t+ 1). Thus minimizing the error (~ t - r t + I) ~ is needed.
Learning in both AEN and ASN is geared towards this same objective.

In policy 2, a different objective function can be used.

4 RESULTS

4.1 CART-POLE BALANCING
In this problem a pole is hinged to a cart which moves along one dimension.
The control tasks are to keep the pole vertically balanced and the cart within
the track boundaries. The displacement and velocity of the cart (x, k), and
of the pole (e , 6) is the system state. The action is the force F to be applied
to the cart. A failure occurs when IS] > 12" or 1x1 > 2.4 m, whereas a success
is when the pole stays balanced for 100000 timesteps (M 33 minutes of real
time). f is calculated using y = 0.9. Also, half-pole length = 0.5 m, pole
mass = 0.1 kg, cart mass = 1.0 Kg. A trial lasts from an initial state to
success or failure.

The design of the initial ASN rule base is from [4, 51, and results in 9 and
4 rules for controlling the pole and cart respectively. So the architecture has
4 inputs, 14 units in layer 2 (the number of antecedent labels), 13 units in
layer 3 (the number of rules), 9 units in layer 4 (the number of consequent

5

NE ZE PO VS

NE

ZE

vs

PO

NE

ZE

vs

PO

NE ZE PO VS ZE
NE PO

- 0 +
NVS ZE PVS

- 0 2 5 10 15 2 0

Figure 4: The 9+4 rules for the ASN; four qualitative labels for each input,
and nine labels for Force.

labels) and one output (force) as shown in Figure 4. The AEN is started
with 10 rules, with 4,12,10,3, and 1 nodes in its 5 layers respectively. All
the rules and membership functions involved are shown in Figure 5. The
resulting input-output functions are shown in Figure 6.

The experiments performed are of three types: (a) changes of tolerance
and physical system values, (b) damage to parameters of the membership
functions, (c) changes to the rule base reflecting different granularity. The
damages to parameters can be for the AEN or ASN or both. Learning is
by Policy 1 or 2. In the following figures, each graph shows the first two
trials (up to 6 sec), and the first and last 6 sec of the final (successful) trial.
Both policies are considered. Some runs are shown and explained in Figures
7,8,9 for Policy 1 and Figures l O , l l , 12 for Policy 2. The learning is quicker
by about one or two orders of magnitude, when compared to a randomly
started AEN. Overall, Policy 1 is better, learning faster and shifting labels
consistently.

4.2 BACKING UP A TRUCK
This problem involves backing up a truck so that it reaches a loading dock at
a right angle. The two inputs are the z-coordinate of the rear of the truck,
and its angle (4) to the horizontal. The output is the steering-angle (e). The
ASN rules are from [SI, whereas the AEN rules were approximately designed

6

I ZE
PO ZE NE PO ZE NE

PO

ZE

NE

0 +

0 0.2 0 . 5 0.7 1.0

State Score v

Figure 5: The 5+5 rules for the AEN, followed by the membership functions
(3 each for the 4 input and 1 output variable).

FORCE

Figure 6: 1/0 surfaces implemented.

7

POLE ANGLE (deg) CART POSITION (m)

Figure 7: Policy 1, 3 antecedent AEN labels, 2 consequent AEN labels and
3 consequent ASN labels damaged. Start position = -0.1. Learning took 3
trials.

POLE ANGLE (deg) CART POSITION (m)

0 ' I
I

Figure 8: Policy 1, Tolerance changes: 161 : 0.2 --$ 0.1,]le1 : 2.4 -+ 0.4,
I : 0.5 -+ 0.4, Start position = 0.05. Learning took 3 trials.

8

POLE ANGLE (deg) CART POSITION (m)

0.4

0.2

0.oc
-0.05

0 4

0

-0.4 I

W

v --

Figure 9: Policy 1, 1x1 : 2.4 3 0.5, AEN: 3 antecedent, 1 consequent labels
changed, random start-positions. Learns in 4 trials.

POLE ANGLE (deg) CART POSITION (m)

Figure 10: Policy 2, Same change as Figure 8, learnt in 18 trials.

POLE ANGLE (deg) CART POSITION (m)

9-00

0.00

-3.00 I-

Figure ll: Policy 2, good and bad both changed to center at -1. good was
shifted to 0.

9

POLE ANGLE (deg) CART POSITION (m)

Figure 12: Policy 2, mcart = 2 kg (from 1 kg). Random starts, learnt in 4
trials.

based on simple considerations and are given in Figure 13. The evaluation
here is based on the same inputs z and 6, and the basic surface generated
by the AEN is quite similar to the one used in the pole-balancing problem.
Since it is desirable for the truck to be centered and pointing straight down,
(50,90) is a good state. When 5 is left of center, an angle less than 90 is
desirable, since it can then approach the center line quickly. However, and
angle greater than 90 is a bad state, since more maneuvering is required.
Using these considerations, five simple rules were devised for the AEN.

The GARIC architecture for this problem has 2,12,35,7 and 1 units in
the ASN layers, and 2,6,5,3 and 1 units in the AEN layers respectively. The
initial ASN rulebase assumes sufficient y-coordinate clearance.

The results presented in Figures 14 and 15 are from the older scheme
when the AEN was a randomly initialized neural net. In Figures 16 and 17,
we see results when the AEN is initialized using the rules discussed before.
The ASN uses the same 35 rules in all cases. The curves show the pre- and
post-learning paths of the rear-end of the truck.

An interesting phenomenon was observed when the damage was too great
to rectify. Since .i. maximization is the goal, the system usually manages to
achieve it via correction of the ASN labels. However, when the damage here
is such that correction is not done quickly, the gradient descent mechanism
begins to act with increasing pressure on the AEN output labels, specifically,
the label "good". It is the definition of these labels that plays a key role in
defining the value of v, and therefore i. In fact, the system discovers that
steadily increasing the value of v by pushing the label "good" to the right, is

10

LT VE RT

LT

CE

RT

20 50 70

-20 50 90 160

0 0.4 0.5 0.7 1 .o
State Score v

Figure 13: The 5 rules which evaluate the state for the truck-docking prob-
lem, and the 9 membership functions needed (3 per variable).

11

100. (

80.C

60.0

40.C

10.00 50.00

Figure 14: Learning to back up a truck when AEN is not initialized with
rules and linguistic labels are incorrect.

12

100. c

90.0

8 0 . 0

7 0 . 0
X

Figure 15: Learning to back up a truck when AEN is not initialized with rules
and inference is done with incomplete knowledge (y-coordinate not known).

13

100.

20. ob
10 * 00 50.00

Figure 16: Learning to back up a truck when the AEN is initialized using
fuzzy rules, then extensive label damage is quickly repaired.

14

100.0.

0 .

0 .00 20.00 40.00 60.00 80 .00 100.00

Figure 17: Learning to back up a truck when the AEN is initialized using
fuzzy rules, then learning occurs even when the start-position after each
failure is randomly chosen.

15

a better way to achieve high i , at least in all those time steps which are not
labeled as failure. Therefore, except in the instant where the truck actually
falls off the platform, the system redefines "good" so as to appear to be doing
well even when it is not learning in the desired way. This phenomenon can
be eleminated by either hard-limiting the positions of the AEN labels, or by
reducing the learning rate on them (as compared to the for the ASN). This
may also be the result of choosing i as the objective function rather than some
other measure. Of course, choosing v in its place (as was done for the ASN
in GARIC earlier) would lead to a similar problem. Since absolute scales for
both v and i are quite meaningless, restricting them to any arbitrary range
is permissible, so a hard-limit may be a reasonable solution here.

5 CONCLUSION
A nonrandom initialization of the neural networks, if guided by heuristic
knowledge will substantially speed up learning. Extensive retraining is un-
necessary if there are tolerance/parameter changes. A unified approach is
shown by which a few simple, heuristic and imprecise rules can be directly
built into a neural network as a starting configuration, and all subsequent
tuning is performance-driven and automated. By doing this, we gain sub-
stantially in learning speed and achieve a uniform integration of RL and fuzzy
inference. By changing the rules, the state of the system is kept within a
particular region of the state-space. More informative reinforcement signals
can be easily incorporated. For complex tasks, inclusion of prior knowledge
can have a significant effect on learning speed. This hybrid method offers a
broader scope by combining the robustness of fuzzy logic and the learnability
of neural nets.

References
[l] H.R. Berenji and P. Khedkar. Learning and tuning fuzzy logic controllers

through reinforcements. IEEE Transactions on Neural Networks, 3(5),
1992.

16

[Z] H. R. Berenji. Fuzzy logic controllers. In R. R. Yager and L.A. Zadeh, ed-
itors, An Introduction to Fuzzy Logic Applications in Intelligent Systems,
pages 69-96. Kluwer Academic Publishers, 1991.

[3] C. W. Anderson. Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9(3):31-37, 1989.

[4] H. R. Berenji, Y. Y . Chen, C. C. Lee, S. Murugesan, and J. S. Jang. An
experiment-based comparative study of fuzzy logic control. In American
Control Conference, Pittsburgh, 1989.

[5] H.R. Berenji, Y.Y. Chen, C.C. Lee, J.S. Jang, and S. Murugesan. A hi-
erarchical approach to designing approximate reasoning-based controllers
for dynamic physical systems. In P.P. Bonissone, M. Henrion, L.N. Kanal,
and J. Lemmer, editors, Uncertainty in Artificial Intelligence: Volume
VI, in the series Machine Intelligence and Pattern Recognition, pages
331-343. Elsevier, North-Holland, 1991.

[6] B. Kosko. Neural Networks and Fuzzy Systems. Prentiee Hall, 1992.

17

