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Abstract 

Current reinforcement learning algorithms require long training 
periods which generally limit their applicability to small size problems. 
A new architecture is described which uses fuzzy rules to initialize its 
two neural networks: a neural network for performance evaluation and 
another for action selection. This architecture is applied to control of 
dynamic systems and it is demonstrated that it is possible to start 
with an approximate prior knowledge and learn to refine it through 
experiments using reinforcement learning. 

1 INTRODUCTION 

Reinforcement Learning (RL) can be used in domains where learning has 
to be done without the presence of a direct supervisor and through a distal 
teacher. Unlike supervised learning, an explicit error signal is not assumed 
in RL and external reinforcement may be delayed. In GARIC [l], RL is 
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Figure 1: The architecture of GARIC 

combined with Fuzzy Logic Control (FLC) 121 to refine the knowledge base 
of a controller. GARIC is composed of three main elements: an Action 
Selection Network (ASN) which maps the state to an action using fuzzy 
control rules; an Action-state Evaluation Network (AEN) which evaluates 
the action and the resulting system state; and a Stochastic Action Modifier 
(SAM) which explores the search space for possible actions (see Figure 1). 
In GARIC, fuzzy inference is used only in the ASN to incorporate prior 
knowledge as well as to handle continuous input-output without artificial 
discretizing. The AEN remained a two-layer feed forward neural net, which 
starts with random weights, an ad hoc architecture, and which may not be 
able to  handle complex tasks. 

In this paper, concentration is on using fuzzy inference in the design and 
operation of the evaluation network. Specifically, the problem of how to use 
prior knowledge to design the architecture is addressed getting a head start 
on the way of learning to evaluate. Fuzzy rules are used to represent the 
heuristic knowledge of state evaluations. 
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Figure 2: The Action Evaluation Network 

2 NETWORK ARCHITECTURE 
Earlier, Anderson 131 used conventional neural nets to implement both the 
ASN and AEN, but since these were initialized randomly, learning needed 
a large number of trials. In GARIC 111, the ASN was initialized using ap- 
proximate rules, which were used to drive a neural net implementing fuzzy 
inference. The incorporation of heuristic knowledge led to substantial re- 
duction in learning time. Here, this principle is further extended by being 
applied to the AEN (the evaluation critic) and by using fuzzy rules that wiIl 
help in computing the goodness of a state. 

To build in fuzzy rules into the net, some modifications in its structure 
are required. Both the ASN and AEN will now have similar architectures, 
and each is based on some initial rule base. The structure of the net consists 
of 5 layers, connected in feedforward fashion, and shown in Figure 2. 

Layer 1 is the input layer and performs no computation. 
A Layer 2 node represents one possible linguistic value of one of the input 

variables. It computes pL(x), and outputs using the clause: if x is L in their 
if part. 

Layer 3 implements the conjunction of all the antecedent conditions in a 
rule using the softmin operation. There is one node per rule here; its inputs 

3 



come from all its antecedents, and it produces w,, the degree of applicability 
of rule T .  

A Layer 4 node represents a consequent label. Its inputs come from all 
rules which use this consequent label. For each w, supplied to it, this node 
computes the corresponding output action as given by rule r .  

A Layer 5 node combines the recommended actions from all the rules, 
using a weighted sum, the weights being the rule strengths w,. In the AEN, 
a state score v is produced (see [l] for more details). Learning modifies 
weights into Layers 2 ancf4 y, thTe others being fixed at unity. 

3 LEARNING IN THE AEN 
The learning algorithm is largely determined by the choice of the objective 
function used by each component for optimization. Two such choices and the 
corresponding results are described. For both policies, both AEN and ASN 
learn simultaneously as per the learning cycle outlined in Figure 3. Also for 
both policies discussed here, AEN outputs v which is then combined with an 
external reinforcement T to produce f .  

In policy 1, the ASN retains its earlier objective of maximizing the state- 
score v. However, the AEN tries to maximize the internal reinforcement ?, 
since + M 0 is a good prediction of failure and a high f otherwise is equivalent 
to moving to better states. Tuning the AEN parameters to attain this is done 
by computing d i / d v  from 

starting state ; 
failure state; 

~ [ t  + 11 + ~ v [ t ,  t + 11 - v[t ,  t]  otherwise. 
+ 1) - .[t, t] 

Then a gradient descent method leads to, 

where M &/dv = (1 -7) +y(d2v) ,  assuming the derivative doesn’t depend 
on T .  The second derivative of v is approximated by the finite difference 
v[t]  - 2v[t - 11 + v[t  - 21, and only the sign 2 is used so that noise is reduced. 
The term dv/dp is the dependence of the net output on its parameters (the 
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load-st ate( ) ; 
vt-1 = evaluate-state(); /* AEN:I */ 

load-state(); 
vt = evaluate-state(); /* A E N 2  */ 
compute et, gradients; 
modify-parameters(); /* learn as  per data in AEN:l and ASN:l */ 

ply-action( action = SAM(select-action(),it-l)); /" ASN:I "/ 

Figure 3: Steps in a learning cycle 

centers and spreads of the membership functions) and can be easily computed 
using a backpropagation-like scheme [l]. 

If the future, 
discounted reward be equal to Cj,oyj-lrt+j, then v may be interpreted as 
a truncation of this series to 1 or 2 terms. For good prediction, v ( t )  should 
closely approximate r(t+ 1). Thus minimizing the error ( ~ t - r t + I ) ~  is needed. 
Learning in both AEN and ASN is geared towards this same objective. 

In policy 2, a different objective function can be used. 

4 RESULTS 

4.1 CART-POLE BALANCING 
In this problem a pole is hinged to a cart which moves along one dimension. 
The control tasks are to keep the pole vertically balanced and the cart within 
the track boundaries. The displacement and velocity of the cart (x, k), and 
of the pole (e ,  6) is the system state. The action is the force F to be applied 
to the cart. A failure occurs when IS] > 12" or 1x1 > 2.4 m, whereas a success 
is when the pole stays balanced for 100000 timesteps (M 33 minutes of real 
time). f is calculated using y = 0.9. Also, half-pole length = 0.5 m, pole 
mass = 0.1 kg, cart mass = 1.0 Kg. A trial lasts from an initial state to 
success or failure. 

The design of the initial ASN rule base is from [4, 51, and results in 9 and 
4 rules for controlling the pole and cart respectively. So the architecture has 
4 inputs, 14 units in layer 2 (the number of antecedent labels), 13 units in 
layer 3 (the number of rules), 9 units in layer 4 (the number of consequent 
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Figure 4: The 9+4 rules for the ASN; four qualitative labels for each input, 
and nine labels for Force. 

labels) and one output (force) as shown in Figure 4. The AEN is started 
with 10 rules, with 4,12,10,3, and 1 nodes in its 5 layers respectively. All 
the rules and membership functions involved are shown in Figure 5. The 
resulting input-output functions are shown in Figure 6. 

The experiments performed are of three types: (a) changes of tolerance 
and physical system values, (b) damage to parameters of the membership 
functions, (c) changes to the rule base reflecting different granularity. The 
damages to parameters can be for the AEN or ASN or both. Learning is 
by Policy 1 or 2. In the following figures, each graph shows the first two 
trials (up to 6 sec), and the first and last 6 sec of the final (successful) trial. 
Both policies are considered. Some runs are shown and explained in Figures 
7,8,9 for Policy 1 and Figures l O , l l ,  12 for Policy 2. The learning is quicker 
by about one or two orders of magnitude, when compared to a randomly 
started AEN. Overall, Policy 1 is better, learning faster and shifting labels 
consistently. 

4.2 BACKING UP A TRUCK 
This problem involves backing up a truck so that it reaches a loading dock at 
a right angle. The two inputs are the z-coordinate of the rear of the truck, 
and its angle ( 4 )  to the horizontal. The output is the steering-angle (e). The 
ASN rules are from [SI, whereas the AEN rules were approximately designed 
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Figure 5: The 5+5 rules for the AEN, followed by the membership functions 
(3 each for the 4 input and 1 output variable). 

FORCE 

Figure 6: 1/0 surfaces implemented. 
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Figure 7: Policy 1, 3 antecedent AEN labels, 2 consequent AEN labels and 
3 consequent ASN labels damaged. Start position = -0.1. Learning took 3 
trials. 
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Figure 8: Policy 1, Tolerance changes: 161 : 0.2 --$ 0.1, ]le1 : 2.4 -+ 0.4, 
I : 0.5 -+ 0.4, Start position = 0.05. Learning took 3 trials. 
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Figure 9: Policy 1, 1x1 : 2.4 3 0.5, AEN: 3 antecedent, 1 consequent labels 
changed, random start-positions. Learns in 4 trials. 

POLE ANGLE (deg) CART POSITION (m) 

Figure 10: Policy 2, Same change as Figure 8, learnt in 18 trials. 
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Figure ll: Policy 2, good and bad both changed to center at -1. good was 
shifted to 0. 
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POLE ANGLE (deg) CART POSITION (m) 

Figure 12: Policy 2, mcart = 2 kg (from 1 kg). Random starts, learnt in 4 
trials. 

based on simple considerations and are given in Figure 13. The evaluation 
here is based on the same inputs z and 6, and the basic surface generated 
by the AEN is quite similar to the one used in the pole-balancing problem. 
Since it is desirable for the truck to be centered and pointing straight down, 
(50,90) is a good state. When 5 is left of center, an angle less than 90 is 
desirable, since it can then approach the center line quickly. However, and 
angle greater than 90 is a bad state, since more maneuvering is required. 
Using these considerations, five simple rules were devised for the AEN. 

The GARIC architecture for this problem has 2,12,35,7 and 1 units in 
the ASN layers, and 2,6,5,3 and 1 units in the AEN layers respectively. The 
initial ASN rulebase assumes sufficient y-coordinate clearance. 

The results presented in Figures 14 and 15 are from the older scheme 
when the AEN was a randomly initialized neural net. In Figures 16 and 17, 
we see results when the AEN is initialized using the rules discussed before. 
The ASN uses the same 35 rules in all cases. The curves show the pre- and 
post-learning paths of the rear-end of the truck. 

An interesting phenomenon was observed when the damage was too great 
to rectify. Since .i. maximization is the goal, the system usually manages to 
achieve it via correction of the ASN labels. However, when the damage here 
is such that correction is not done quickly, the gradient descent mechanism 
begins to act with increasing pressure on the AEN output labels, specifically, 
the label "good". It is the definition of these labels that plays a key role in 
defining the value of v, and therefore i. In fact, the system discovers that 
steadily increasing the value of v by pushing the label "good" to the right, is 
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Figure 13: The 5 rules which evaluate the state for the truck-docking prob- 
lem, and the 9 membership functions needed (3 per variable). 
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Figure 14: Learning to back up a truck when AEN is not initialized with 
rules and linguistic labels are incorrect. 
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Figure 15: Learning to back up a truck when AEN is not initialized with rules 
and inference is done with incomplete knowledge (y-coordinate not known). 
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Figure 16: Learning to back up a truck when the AEN is initialized using 
fuzzy rules, then extensive label damage is quickly repaired. 
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Figure 17: Learning to back up a truck when the AEN is initialized using 
fuzzy rules, then learning occurs even when the start-position after each 
failure is randomly chosen. 
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a better way to achieve high i ,  at least in all those time steps which are not 
labeled as failure. Therefore, except in the instant where the truck actually 
falls off the platform, the system redefines "good" so as to appear to be doing 
well even when it is not learning in the desired way. This phenomenon can 
be eleminated by either hard-limiting the positions of the AEN labels, or by 
reducing the learning rate on them (as compared to the for the ASN). This 
may also be the result of choosing i as the objective function rather than some 
other measure. Of course, choosing v in its place (as was done for the ASN 
in GARIC earlier) would lead to a similar problem. Since absolute scales for 
both v and i are quite meaningless, restricting them to any arbitrary range 
is permissible, so a hard-limit may be a reasonable solution here. 

5 CONCLUSION 
A nonrandom initialization of the neural networks, if guided by heuristic 
knowledge will substantially speed up learning. Extensive retraining is un- 
necessary if there are tolerance/parameter changes. A unified approach is 
shown by which a few simple, heuristic and imprecise rules can be directly 
built into a neural network as a starting configuration, and all subsequent 
tuning is performance-driven and automated. By doing this, we gain sub- 
stantially in learning speed and achieve a uniform integration of RL and fuzzy 
inference. By changing the rules, the state of the system is kept within a 
particular region of the state-space. More informative reinforcement signals 
can be easily incorporated. For complex tasks, inclusion of prior knowledge 
can have a significant effect on learning speed. This hybrid method offers a 
broader scope by combining the robustness of fuzzy logic and the learnability 
of neural nets. 
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